ebook img

Localization conditions and diffused necking for damage plastic solids PDF

23 Pages·1.015 MB·English
by  Xue L.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Localization conditions and diffused necking for damage plastic solids

EngineeringFractureMechanics77(2010)1275–1297 ContentslistsavailableatScienceDirect Engineering Fracture Mechanics journal homepage: www.elsevier.com/locate/engfracmech Localization conditions and diffused necking for damage plastic solids Liang Xue* DepartmentofMechanicalEngineering,NorthwesternUniversity,2145SheridanRoad,Evanston,IL60208,USA a r t i c l e i n f o a b s t r a c t Articlehistory: WestartbygeneralizingtheonedimensionalConsidèreconditiontoamaximumpower Received15September2009 condition for arbitrary three dimensional loadings. In particular, proportional loadings Receivedinrevisedform14December2009 with arbitrary confining pressures andLode angles are considered. It is shown that the Accepted21December2009 maximumpowerlocalizationcriterionforJ2materialdoesnotagreewithexperimental Availableonline4January2010 observations.Theconstitutiverelationshipofdamageplasticsolidsisthenintroducedto themaximumpowerconditionforthediffusednecking.Weshowthattheonsetoflocal- Keywords: izationisaspontaneousconsequenceoftheevolutionofplasticdamageastheweakening Damageplasticitytheory rateincreases.Emphasisisgiventotheextensivelystudiedsheetmetalforming.Weshow Localization thatthegoverningfactorofthelocalizationconditionfordamageplasticsolidsisnotthe Maximumpowercriterion Diffusednecking damage itself, but the resulting effect of the rate of the weakening from the plasticity Sheetmetalforming induceddamage,which isafunction ofthe stressstates onthe loading path. Effectsof Forminglimitcurve thepressuresensitivity,theLodeangledependence,thedamageaccumulationandweak- ening are explored through parametric studies. Examples are given for several metallic alloysthatexhibitdifferentshapesoftheforminglimitcurve(FLC).Thepredictedstrain componentsattheonsetoflocalizationagreewellwiththeexperimentalresults. (cid:2)2009ElsevierLtd.Allrightsreserved. 1. Introduction Neckingandfracturearetwoimportantthemesforductilemetalsundersignificantplasticdeformation.Thelocalization problemisofgreatinteresttoengineersbecauseitisoftenrelatedtopoorproductqualityforplasticformingandisanearly indicationofultimatestructuralfailures.Forductilematerials,localizationatamaterialleveloftenoccursafterconsiderable plasticdeformation.Theoreticalworkinthisregardshasbroughtremarkablescientificthoughtsintothephysicalunder- standingoftheneckingphenomena[1–8].Differentapproacheshavebeenpursuedfromtheirperspectiveviews,e.g.peak principalforces[3],zeroextensionline[4],bifurcationfrompointvertexontheyieldsurface[6]orpre-existingimperfec- tionsandanisotropy[8,9].Ontheotherhand,modelingofthefractureofductilesolidshasattractedagreatdealofefforts frommacrophenomenologicaldescriptions[10–17]tomicrostructuralaspectsinordertopredictthecrackformationand propagation[18–25].Agoodpredictivemodelforlocalizationreliesonboththeassumptionsmadeforlocalizationandthe constitutivemodels used for the material. A unified method to predict the localization and the ductile fracture has been sought from theoretical and numerical approaches. For instance, damage and fracture models have been used to study theapplicabilityandtoidentifygoverningfactorsoflocalizationinthesheetmetalformingindustry.Forinstance,Ozturk andLeeshowedthatthepredictionusingexitingductilefracturemodelsisnotsatisfactory[26].Inthepresentstudy,an attemptismadetolinkadamageplasticitymodel(DPM)tothelocalizationconditioninthesenseofenergydissipation. Inthepresentstudy,wefocusontheonsetoflocalization,whichisoftenrelatedtotheso-called‘‘diffusednecking”[1,3]. Upon further deformation, the necking region further localizes until an infinitesimal band, which is often related to the * Tel.:+18474913046. E-mailaddress:[email protected] 0013-7944/$-seefrontmatter(cid:2)2009ElsevierLtd.Allrightsreserved. doi:10.1016/j.engfracmech.2009.12.008 1276 L.Xue/EngineeringFractureMechanics77(2010)1275–1297 materialinstabilityortheso-called‘‘localizednecking”,e.g.[2,5].Thediffusedneckdiffersfromthelocalizedneckinthatits immediatepost-neckingdeformationmodedoesnotpresumeaninfinitesimalband,ratheritpresumesastrainrateofgreat- ermagnitudeinthesamedirectioninaportionoftheuniformlydeformedregion,suchasintheConsidère’sconditionwhere thestrainratebifurcatesatamaterialpointwhenthemaximumforceisreachedinasimpletensionbar.Herein,weadopt theonsetofneckingasthebifurcationfromauniformdeformationmode,whichisthefirsttraceofalocalizeddeformation mode.Inaseparatepaper,thematerialinstabilityorthe‘‘localizednecking”intonarrowshearbandsintheHadamardsense willbediscussed[27]. Inarecentdevelopmentforductilefracturemodeling,athreedimensionaldamageplasticitymodel(DPM)isformulated usingthe‘‘cylindricaldecomposition”conceptandthecouplingofthedamageinducedweakeningwiththeplasticity[16]. Withthisdevelopment,inthepresentpaper,weproposeathreedimensionallocalizationconditionsimilartothatofthe Considèrecondition[1]intheonedimensionalcase. Inthepresentpaper,thebifurcationpointforthelocalizeddeformationisconsideredfromthesenseofenergydissipa- tion.Itisunderstoodthatthelocalizationmodetakestheleastenergyforthesameprescribedboundarycondition,whichin thepresentcaseisunderstoodastheonsetofthediffusednecking.Weadoptedthedamageplasticitytheoryandshowthat thegoverningfactorfortheshapeofforminglimitcurves(FLC)isnotthedamageitself,buttherateofdamageandtherateof weakening(seeSection4.1).Therefore,theplasticdamageinducedweakeningshouldnotbeoverlooked. Thispaperisorganizedasfollows.InSection2,ageneralizationoftheonedimensionalConsidèreconditionfortheonset ofneckingforarbitrarythreedimensionalloadingcasesispresented.InSection3,theplasticdamageisintroducedtothe constitutiveequations.Asaspontaneousconsequenceoftheplasticdamageevolution,theeffectofdamageinducedweak- eningingeneralizedlocalizedneckingconditionisdiscussed.InSection4,theinfluencingparametersofdamageandweak- eningandtheirsignificanceontheneckingconditionsarediscussed.InSection5,wediscussthesignificanceofthematerial parametersforthepressureandtheLodeangledependenceofthefractureenvelopeontheshapeofFLC.InSection6,we utilizetheexistingexperimentalresultsforforminglimitcurvesinsheetmetalformingandusethedamageplasticitymodel to predict the FLC and the fracture curve at the same time. Good agreement on the predicted and experimental FLC’s is achievedforseveralaluminumalloysandastainlesssteel. 2. Conditionsforlocalization Weareconcernedwithalocalbifurcationconditionforplasticallydeformedsolidsintheenergysense.Theprincipleof minimumwork,whichstatesthedeformationshouldtakeplacewheretheresistanceistheminimum.Adirectcorollaryis thefollowing:forproportionallyloadedmaterials,whentheincrementalenergyrequiredtodeformthematerialinauni- formmannerisgreaterthantodeformitinalocalizedmatter,localizationoccursregardlessofthenatureofthedeformation beingelastic,plasticorvisco-plastic,etc.Intheabovestatement,boththeuniformandthenon-uniform(localized)defor- mationarekinematicallyadmissible.Forfixedloadingrateintime,theincrementalenergycanbeinterpretedasthepower. Forsimplicity,wewillusepowerinourderivation,butbearinmind,thetimeonlyservesasatime-likevariableinourder- ivationsincethematerialisassumedtoberateindependent.TheConsidère’sconditionisaspecialembodimentofthiscor- ollarywhereonlyonedirectionofthematerialissubjectedtotension,orinotherwords,doesthework. LocalizationphenomenadonotonlyoccurinroundbarsundersimpletensionasConsidèrehasstudied;inmanyother applicationswheremultiaxialstressesexist,localizationcanalsooccurandcanbesignificantandeventuallyleadtocata- strophicfracture.Therefore,amoregeneralizedlocalizationconditionisinneed. Inthepresenttheoreticalanalysis,weconsidertheductilesolidsasrigidplasticsincethetotalelasticdeformationisusu- allynegligibleforductilemetalscomparedwiththeplasticdeformationwhenlocalizationisthesubjectofstudy.Themate- rialisassumedtobeisotropic,strainhardenableandthevolumeconservationisenforcedfortheplasticdeformation.Inthis section,thematerialisassumedtoobeyrateindependentJ2plasticityandassociatedflowrule.Inthenextsection,wewill extendthisstudytoplasticallydamageablematerials. Weworkintheco-rotationalframework,wheretherigidbodyrotationisremovedfromthesystemduetoobjectivity. Proportionalloadingpathsareconsideredandtheprincipaldirectionsdonotrotatewithrespecttothebody.Foranarbitrary stressstate,theorderedprincipalstressesðr ;r ;r Þcanberepresentedinacylindricalcoordinatesystemðp;r ;h Þ,where 1 2 3 eq L p¼(cid:2)ðr þr þr Þ=3isthehydrostaticpressure,r isthevonMisesequivalentstressand 1 2 3 eq ! 1 27J h ¼(cid:2) sin(cid:2)1 3 ð1Þ L 3 2r3 eq is the Lode angle, where J ¼s s s is the third stress invariant and s ; s ; ands are the ordered principal deviatoric 3 1 2 3 1 2 3 stresses. Let us consider a Lagrangian body, which is subjected to multiaxial stretching. The velocity is fixed in the maximum stretching direction, such that the velocitiesin the other two principal directions can be determined from the deviatoric stressstate,i.e.theLodeangle.Thesimplestcaseisthesimpletensionofaroundbar.Togainperspective,webeginwith reviewingthewell-knownConsidède’scriterionforlocalizationinasimpletensionroundbar[1].Inthisonedimensional case, it is shown that the localization condition is influenced by both the material (the current hardening capacity) and L.Xue/EngineeringFractureMechanics77(2010)1275–1297 1277 thedeformedgeometry(thecurrentcross-sectionalarea).Wewillfurthergeneralizeittothreedimensionalcasesthattake accountsboththematerialaspectsandthegeometryaspects. 2.1. Considèreconditionforsimpletension Considèreisthefirsttoproposedthattheonsetofneckingofatensileroundbartobetheattainmentofthemaximum pulling force based on experimental observations [1]. The load condition he considered can be formally written as p¼(cid:2)r =3andh ¼(cid:2)p=6. eq L Themagnitudeoftheinstantaneouspullingforceoverthecross-sectionalareaisaffectedbytwofactorssimultaneously: (1)theworkhardening–thestrainhardeningtendstoincreasetheforceand(2)thegeometricalsoftening–theshrinkageof thecross-sectionalareatendstodecreasetheforce.Neckingoccurswhenapeakforceisreached,i.e.thesetwoinfluencing factorsreachabalance.Inrealworld,therealwaysexistcertainmaterialorgeometricalimperfectionsinthetensilebarthat couldtriggertheneckingattheweakestpointwhenConsidère’sconditionismet.Usingthelogarithmicdefinitionofstrain, theConsidèreconditionstates @F ¼0 ð2Þ @e eq attheonsetoflocalization,whereFistheaxialforcefortheuniaxiallystretchedroundbarand,inthiscase,theequivalent strainisthesameastheplasticstrain,i.e.e ¼e ¼e ande isthemajorstraininthepullingdirection.Beforenecking,the eq p 1 1 stress distribution is uniform across the cross-sectional area, therefore, the pulling force F¼r A, where A is the current 1 cross-sectionalarea.Bytheproductruleofderivatives,Eq.(2)canbere-castedas @F @r @A (cid:2)@r (cid:3) 0¼ ¼ 1Aþr ¼ eq(cid:2)r A ð3Þ @e @e 1@e @e eq eq eq eq p wherer istheequivalentstressandr ¼r fortheuniaxialtensioncase.Note,A¼A expð(cid:2)e Þ,whereA istheoriginal eq eq 1 0 1 0 cross-sectionalareaoftheroundbar. Forthesimpletensioncase,whenincompressibilityisenforcedandelasticityisignored,theConsidèreconditionisthe sameas @r eq(cid:2)r ¼h(cid:2)r ¼0 ð4Þ @e eq eq eq whereh¼@r =@e isthestrainhardeningmodulusandr istheuniaxialyieldstressthattakesintoaccountforthestrain eq p eq hardeningande istheplasticstrain. p Itistrivialtoshowthatthedissipationpowerreachesmaximumwhentheaxialforceisthemaximum.Letusconsider theprincipalstresscomponents.Forthreedimensionalloadingcases,notonlythestresscomponentintheaxialdirection (i.e.themaximumprincipalstressdirection)doesthework,butalsotheothertwoprincipalcomponentsofstress.Therefore, weextendthemaximumforceconditionasConsidèretothemaximumpowerconditionfortheonsetoflocalization,i.e. @P ¼0 ð5Þ @e eq wherethepoweratamaterialpointisdefinedasP¼r:e_ ¼r e_ . eq eq Whenthedissipationpowerreachesitsmaxima,theuniformdeformationmodenolongerdissipatestheminimumen- ergyfortheincrementaldeformationoftheLagrangianbodyand,therefore,localizationtakesplace. 2.2. Generalizationtoarbitraryconfiningpressure AmoregeneralcasetothesimpletensiondiscussedinSection2.1canbeobtainedbyaddinganarbitraryconfiningpres- sure, p , in the lateral direction of the one dimensional bar, i.e. by removing the constraint of p¼(cid:2)r =3 and retaining c eq h ¼(cid:2)p=6forthe simpletensioncase.Roundbars justafter theonsetofneckingare shownin Fig.1for threecases:(a) L nolateralpressure;(b)withconfiningpressureonthelateralsurfacebuttheendsurfacesarenotsubjectedtothesuperim- posedpressureand(c)theentirespecimenissubmergedinthepressurizedfluid,i.e.thepressureisall-round.Note,ina laboratorysetupforhighpressuretestsusingahydro-pressurizedchamber,theendsurfacesofthetensilespecimenareusu- allynotsubjectedtothesuperimposedpressure. Thesuperimposedpressureeffectondiffusedneckingisaclassicproblem.However,acorrectderivationseemsstilllack- inginliterature.HillconsideredtheconfiningpressureonatensileroundbarusingthesameapproachasConsidèreinthefirst editionofhisclassicbookin1950[28,p.12].Heusedthenetaxialforceinthebar.Beforelocalizationoccurs,theaxialforceis F0¼F ¼r A0¼ðr (cid:2)p ÞA ð6Þ true 1 eq c wherer isthetrueaxialstress,p istheconfiningpressure,A0¼Aistheuniformcross-sectionalareaandF0istheaxialforce 1 c attheendandF istheaxialforceattheminimumcross-section(beforeneckingoccurs,F ¼F0).Byusingthemaximum true true forceintheaxialdirection(i.e.case(b)inFig.1),thelocalizationconditionis 1278 L.Xue/EngineeringFractureMechanics77(2010)1275–1297 Fig.1. Aschematicdrawingofneckedroundbarrightaftertheonsetoflocalization:(a)simpletensionofaroundbarunderzeroambientpressure,(b)a tensilebarunderlateralconfiningpressureand(c)atensilebarsubjectedtoall-roundhydrostaticpressure.Thenecksareexaggeratedinthesefigures. @r eq¼r (cid:2)p ð7Þ @e eq c eq wherep istheconfiningpressureandtakenasapositivevalueforcompression.Hillconcludedthattheconfiningpressure c canhaveabeneficialeffecttoextendtheuniformdeformation[28].Hillremovedhisderivationinlatereditionsofhisbook withoutgivinganewinterpretation.Morerecently,Wuetal.[29]showedthesamederivationasHill’s.However,thisder- ivationisinfacterroneousforhydrostaticpressureexertedbysurroundingfluids,asshownbyXue[30],whichisgivenbe- low.Inamorerecentpaper[69],Wuetal.includedthisderivationfrom[30]tocorrect[29]. Infact,withthearbitraryconfiningpressureaddedtothesystem,thelocalizationconditiondoesnotchange.Thisiswell- knowntotheexperimentalists.Withthesuperimposedhydrostaticpressure,thelocalizationconditioncanbederivedunder Considère’sframeworkbyconsideringthecontributionoftheconfiningpressuretotheaxialforceattheincipientoftheneck [30].WeadoptthesamehypothesisasConsidèrethattheonsetofneckingcanbedeterminedbytheattainingofthemax- imumoftheremotelyappliedforce,whichcanbereadfromanexternalaxialloadcell. FromFig.1b,thetrueforceactingontheneckisdenotedasF .Attheincipientneck,theremotelyappliedforceisthen true F0¼F (cid:2)p dA¼ðr (cid:2)p ÞA(cid:2)p dA ð8Þ true c eq c c wheredAistheshrinkageofcross-sectionalarea(apositivescalarwhenshrinking,i.e.neckingoccurs)andF ¼r A.Note true 1 theminimumcross-sectionalareaAis(seeFig.1) A¼A0(cid:2)dA ð9Þ andthecross-sectionalareaoutsidetheneckA0remainsconstantafterlocalizationoccurs.ComparingwithEq.(6),apressure dependentterm((cid:2)p dA)isaddedinEq.(8)totheaxialforceaftertheincipientneckoccurs.Thistermisintroducedbythe c pressureontheincipientareareduction,whichisessentialinthefollowingderivationsincethepost-neckloadingpathwill havetoincludethispart.Ifthistermismissing,afictitiousincreaseinthecriticalstrainatlocalizationisconcluded.This hydrostaticpressuretermontheincipientneckisvitalinthederivationforthecriticalstrainfordiffusedneck. InthespiritofConsidère,substitutingEq.(8)intoEq.(2),wehave @F0 @F @dA (cid:4)(cid:2)@r (cid:3) (cid:5) 0¼ ¼ true(cid:2)p ¼ 1(cid:2)r (cid:2)p A ð10Þ @e @e c@e @e 1 c eq eq eq eq Note,@A=@e ¼(cid:2)@dA=@e isusedinderivingEq.(10).Knowingr þp ¼r ,Eq.(10)canberearrangedas eq eq 1 c eq @ðr (cid:2)p Þ @r 0¼ eq c (cid:2)r ¼ eq(cid:2)r ð11Þ @e eq @e eq eq eq ForJ2materials,thelocalizationconditionforaroundbarunderarbitraryconfiningpressureisthen h 61 ð12Þ r eq L.Xue/EngineeringFractureMechanics77(2010)1275–1297 1279 Theconditionr ¼r ¼(cid:2)p remainsconstantisusedinthederivationofEq.(11),whichisthesameasEq.(4).Eq.(11) 2 3 c remainstrueforpositivetractiononthelateralsurfaceoftheroundbar(justanegativevalueofp ),providedthatr >0. c 1 Therefore,Eq. (12) covers allgeneralizedtension scenarios where the Lode angleis (cid:2)p=6. The above derivationassumes the material is not permeable, such that the superimposed hydrostatic pressure can apply on the outer surface of the round bar only. For all-round hydrostatic pressures (Fig. 1c), the necking condition is the same. This is because outside the neck, the post-necking cross-sectional area does not change, such that the difference between F00 and F0 is merely a constant p A0. Drawing a free-body-diagram of the dash-line boxed region can show these two cases Fig. 1b and c are c identical. Now,letusconsiderthesameproblemintheenergysense.Theworkdonebyr isreducedcomparingwiththesimple 1 tensioncasefortheincrementalelongation,becauser decreaseswithincreasingconfiningpressure.However,theconfin- 1 ingpressureonthelateralsurfacedoesadditionalworktothetensilebar.ThetotalexternalpowerPofaunitvolumeis (cid:2) 1 1 (cid:3) P¼r e_ þð(cid:2)p Þðe_ þe_ Þ¼r e_ þð(cid:2)p Þ (cid:2) e_ (cid:2) e_ ¼ðr þp Þe_ ¼r e_ ð13Þ 1 1 c 2 3 1 1 c 2 1 2 1 1 c eq eq eq TakingderivativeofbothsidesofEq.(13)withrespecttoe ,weobtainthesameconditionasEq.(12).Eq.(12)essen- eq tially means the confining pressure will not retard necking in an axially pulled round bar, hence, no benefit in forming underhighpressureforJ2materials.Intheenergysense,thisisbecausetheexternalworkfromallmediatothesystem should be considered. In this case, additional work is done by the surrounding fluid. The onset of localization is solely a function of the stress–strain curve of the material for generalized tension condition, and is independent of the superim- posed pressure. This agrees generally with the experimental observations by Bridgman [31], who found the maximum axial load was independent of the confining pressure, e.g. for armor steels and is confirmed on Brass [32] and on other metals and alloys [33,34]. A collection of experimental evidences on high pressure experiments are shown in a review paper by [35]. Ontheotherhand,forsomematerials,thehydrostaticpressuredoeshaveaneffectofincreasinguniformelongationto someextent.Theincreaseinuniformstrainingismainlyduetotwoeffects:(1)Thehydrostaticpressureoftenincreasethe workhardening,thoughsmallamountformetals.Thispressureinducedhardeningtendstoincreasetheneckingstrain.Ala- dagetal.reportedthataslightincreaseintheneckingstrainforBerylliumunderhighpressureanditwasattributedtothe increaseinthehardeningcapabilityunderhighpressure[36].(2)Thematerialdeteriorationduetothedamageisreducedor inhibitedbythesuperimposedhydrostaticpressure.Liuetal.showedthatifthelocalizedshearistriggeredbysomedilatant process,thepressurebecomesmoreimportanttothelocalizationstrainsincethedilatantprocesswillbesuppressedbythe superpositionofpressure[37].Inreality,thesetwoeffectsbothexistforductilemetals.However,theirinfluencescannotbe capturedusingpressureindependentplasticitytheorieswithoutdamage.Thedamageeffectwillbediscussedinthenext section. Itshouldalsobenoted,theneckingstraincanbeincreasedwhenthehydrostaticpressureappliesonlywhendeformation takesplaceandisnotpresentattheincipientneck,suchasusingalinearpaddleformingdevicedescribedbyAllwoodand Shouler[38].Theyfoundtheuniformtensilestraincanbesignificantlyincreasedwhenthesheetislaterallypressedbya hardtool.SeealsoananalysisgiveninRef.[39]. 2.3. GeneralizationtoarbitraryLodeangle Themaximumpowerconditioncanbereadilytobeappliedtothreedimensionalloadingconditions.Forproportional loadingpathsandassociatedflowrule,wehavetherelationship r_ r_ r_ r_ e_ e_ e_ e_ eq¼ 1¼ 2¼ 3 and eq¼ 1¼ 2¼ 3 ð14Þ r r r r e e e e eq 1 2 3 eq 1 2 3 Therefore,thepartialdifferentialsofstrainrateare @e_ @e_ @e_ @e_ eq¼ 1¼ 2¼ 3 ð15Þ @e @e @e @e eq 1 2 3 Theminimumcross-sectional areaoccursin theloadingdirectionof e .Wefix thepullingvelocityinthemajorprin- 1 cipaldirectionsuchthatthestrainratesintheothertwoprincipaldirectionscanbedeterminedsolelyfromtherelative stressratiov,whichisathreedimensionalgeneralizationofthein-planestressratiointheplanestresscaseandisdefined as s (cid:2)s v¼ 2 3 ð16Þ s (cid:2)s 1 3 Atamaterialpoint,thepowerdensityP is P¼r:e_ ¼r e_ ð17Þ eq eq 1280 L.Xue/EngineeringFractureMechanics77(2010)1275–1297 andthepartialdifferentialofPwithrespecttothedeformatione is eq @P @r @e_ ¼ eqe_ þr eq ð18Þ @e @e eq eq@e eq eq eq @e_ ¼he_ þr 1 ðusingproportionalityÞ ð19Þ eq eq@e 1 ¼he_ (cid:2)r e_ ðusinglogarithmicstraindefinitionÞ ð20Þ eq eq 1 h (cid:6) p(cid:7)i ¼ h(cid:2)r cos h þ e_ ð21Þ eq L 6 eq Therefore,themaximumplasticdissipationcriterionforlocalizationcanbewrittenas (cid:6) p(cid:7) h(cid:2)r cos h þ 60 ð22Þ eq L 6 Theleft-hand-sideoftheinequality(22)isamonotonicincreasingfunctionwithrespecttothecosinefunctionoftheLode angleh ,whereh 2½(cid:2)p=6;p=6(cid:3).Therefore,theLodeanglestabilizesthedeformation(notallowingthedeformationrateto L L localizebyapplyingadditionalconstraint). Forpowerlawstrainhardeningmaterial,r ¼Ken,theplasticstrainattheonsetofnecking,e ,canbederivedfromEq. y p n (22) n en¼cos(cid:8)h þp(cid:9) ð23Þ L 6 Note,fromEq.(23),forequi-biaxialtensioncase,theequivalentneckingstraine equalsto2n,whichisthesameasHill’s n localized necking solution for simple tension [4]. It is trivial to show that for Swift stress–strain relationship, r ¼r ð1þe =e Þn,Eq.(22)yields y y0 p 0 n en¼cos(cid:8)h þp(cid:9)(cid:2)e0 ð24Þ L 6 Eqs.(23)and(24)canbeplottedonatriaxialstraincomponentplane,asshowninFig.2formaterialswithhardening exponentn¼0:2.Itcanbeseenthatthemaximumpowercriterionforpowerlawmaterialisaperfecttriangleforisotropic materials.Theverticesofthetrianglealignwiththegeneralizedcompressiondirection.ForSwifthardeningmaterials,the FLC is inside the FLC predicted by the power law material of the same hardening exponent n. The pre-strain e results a 0 uniformdecrease(samemagnitude)fromtheperfecttriangleforpowerlawmaterial.Sincethesamemagnitudeyieldsa differentpercentageoftheneckingstrainfordifferentLodeangle,thetriangleforpowerlawmaterialsbecomesathree- pointstarwhenthepre-strainingbecomesmoresignificantcomparedwiththeneckingstrain.ThisisshowninFig.2for threedifferentpre-strainlevelse ¼0:02,0.05and0.1.InplottingFig.2,thestressmagnitudeKforthepowerlawrelation- 0 shipandtheinitialyieldstressr fortheSwiftrelationshipdonotchangetheFLC’s. y0 n=0.2 ε (MPa) 2 90 0.4 120 60 0.3 150 0.2 30 0.1 180 0 ε 210 330ε 3 1 power law 240 300 Swift (ε0=0.02) Swift (ε=0.05) 270 0 Swift (ε=0.1) 0 Fig.2. TheFLCpredictedbythemaximumpowercriterionforpowerlawandSwiftstress–strainmaterials. L.Xue/EngineeringFractureMechanics77(2010)1275–1297 1281 Example:transverseplanestrainLetusconsideraspecialcaseoftransverseplanestraininagroovedplate,wherer ¼2r 1 2 andr ¼0.Forthetransverseplanestraincondition,thestraincomponentintheintermediatestressdirectionremainszero, 3 whichdoesnotdoanywork.Therefore,thelocalizationconditionEq.(2)remainsthesame.However, p ffiffiffi 2 3 eeq¼pffi3ffiffie1 and req¼ 2 r1 ð25Þ Thepartialdifferentialoftheplasticdissipationpoweris @P @P @e pffi3ffiffi ! ¼ 1 ¼ h(cid:2) r e_ ð26Þ @e @e @e 2 eq eq eq 1 eq Therefore,theonsetoflocalizationconditionis p ffiffiffi 3 h(cid:2) r ¼0 ð27Þ 2 eq Inthetransverseplanestrain,onlythemaximumprincipalstressdoestheworkand,therefore,themaximumpowerdis- sipationconditionisreachedwhentheforceinthemaximumprincipalstressdirectionreachesthemaxima.Itistrivialto showthatthemaximumforceisreachedwhenconditionEq.(27)issatisfied. 2.4. Planestress–sheetmetalforming Themaximumpowercriterionisderivedforarbitrary3Dloadingcases.However,experimentalstudyforthreedimen- sionallocalizationisscarceanddoesnotallowfurtherdetailedanalysis. Thelocalizationinsheetmetalforminghasattractedagreatdealoftheoreticalandexperimentalefforttoreducetherisk offailureinthemanufactureprocess.Duringsheetmetalforming,thethroughthicknessstressisusuallynegligibleandthe loadingconditionissimplifiedasplanestress.Whenaneckformsinthesheetmetal,thequalitycontroloftheproductislost andfurtheroverallformabilityofthesheetislimitedbeforeultimatefractureoccurs.Here,thediffusedneckingisconsidered asthefirsttraceoffailure. Weconfineourselvestoproportionalloadingpathsanddenotetheratiooftheminortomajorin-planeprincipalstressesto beaforbiaxialtensionðr Pr P0; andr ¼0Þ,whichisequaltotherelativestressratiovforthethreedimensionalcases 1 2 3 r (cid:2)r r v¼ 2 3¼ 2¼a ð28Þ r (cid:2)r r 1 3 1 Withanassociatedflowrule,theevolutionoftheplasticstrainandtheprincipalcomponentsfollow: e e e e 2pffi1ffiffiffi(cid:2)ffiffiffiffipffiaffiffiffiffiþffiffiffiffiffiaffiffiffi2ffiffi¼2(cid:2)1a¼2a(cid:2)2 1¼(cid:2)1(cid:2)3 a ð29Þ ApplyingEqs.(29)and(22)canalsobeshownforbiaxialplanestresscasessuchthattheexistingexperimentalresultsin thesheetmetalformingindustrycanbeutilized.TheFLCforproportional2DstretchingisplottedinFig.3.Forpowerlaw materials,themajorprincipalstrainremainsconstantformaximumpowercriterion;whileasthepre-straine makesthe 0 0.4 0.35 0.25 0.3 0.2 0.25 ε1 0.15 ε n 0.2 0.15 0.1 power law 0.1 power law Swift (ε=0.02) Swift (ε=0.02) 0.05 0 0 Swift (ε=0.05) 0.05 Swift (ε=0.05) 0 0 Swift (ε=0.1) Swift (ε=0.1) 0 0 0 0 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0 0.2 0.4 0.6 0.8 1 ε χ 2 Fig.3. TheFLCpredictedbythemaximumpowercriterionfor2DbiaxialstretchingcaseforpowerlawandSwiftstress–strainrelationshipmaterials. 1282 L.Xue/EngineeringFractureMechanics77(2010)1275–1297 majorprincipalstraingreaterfortheequi-biaxialtensioncasethanthesimpletensioncase.Italsopredictedthattheplane straintensioncasehasagreatermajorstrainthanthesimpletensioncase,whichdoesnotagreewithcommonlyobserved experimentalresults.ThisnonconformitywillbeaddressedinSection4whenthedamageplasticitymodelisintroduced. Insummary,forafixedpullingvelocityinthemajorprincipaldirection,theConsidère’sconditionofmaximumforcecan begeneralizedasthemaximumpowercondition.Neglectingtheelasticity,theindependenceofthemechanicalpowerwith respecttothesuperimposedhydrostaticpressureseemsobviousbecausetheplasticdeformationisisochoric,i.e.thepres- sureeffectiscanceledoutbysummationoverallthreeprincipaldirections. Applyingthemaximumpowerconditionfor3Dlocalization(Eq.(24))tothesheetformingunderbiaxialstretching,the forminglimitcurveisplottedforaluminumalloy2024-T3.TheexperimentalresultsaregiveninVallellanoetal.[40].The stress–straincurvecanbefittedusingSwiftrelationshipr ¼330ð1þe =0:025Þ0:245MPa.TheFLCpredictedbyaconstant M p hardeningmodulusforsimpletensionisalsoplottedinFig.4(curvedenotedbyh¼r ).Itcanbeseenthattheconstant M hardeningmoduluscriterionunder-predictstheFLCintheright-hand-sideoftheFLCwheree >0andover-predictsthe 2 FLCintheleft-hand-sideoftheFLC,wheree <0. 2 TheshapeoftheFLCobtainedbythesheetmetalformingindustryisdifferentfromthatthemonotonicallyincreasing majorstrainpredictedbythemaximumpowercriterion(e.g.Lankfordetal.[43],Keeler[41],Goodwin[42],Emburyand Duncan[44]).Thesheetformingmeasurementsshowtheonsetofneckingisastrongfunctionoftheratioofthein-plane principalstresscomponents–anon-monotonicshapeofthethemajorstrainisobservedformanymetals.Theexperimental FLC’susuallyformavalleyaroundzerominorstrain,whichrepresentstheplanestraincondition.Ontheleft-handsideof FLC ðe <0Þ, the major strain decreases and on the right-hand side of the FLC ðe >0Þ, the major strain increases with 2 2 increasinga.ThisshapeofFLCbecomeswell-knowntothecommunitysincethemidoflastcentury. Theoretical efforts have been made to understand this phenomenon. Swift derived the localization condition for dif- fused necking as both of the in-plane principal stresses peaked Swift [3]. Hill proposed the localized necking occurs on zero extension line in the plane of the sheet, which is only valid for the left-hand side of the FLC [4]. On the right-hand side of FLC, no such zero extension line exists. Stören and Rice used a vertex point yield surface to derive a localization condition for the full range of FLC [6]. Marciniak and Kuczynski analyzed a through thickness defects and normal aniso- tropicmaterialandshowedtheright-handsideofFLCissignificantlyinfluencedbytheanisotropy[9].Theseanalysesin- volve the conventional constitutive laws and impose constraints in the stress and strain rates such that a bifurcation condition can be derived. 3. Localizationconditionfordamageablesolids 3.1. Constitutivemodelingofdamageplasticity WeadoptanewdamageplasticitytheoryproposedbyXueforductilematerials[16,17].Itisparticularlysuitableforduc- tilefractureproblems.ThisnewdamageplasticitymodelisanI1,J2,J3theorythattakesintoaccountallthreestressinvari- AA 2024−T3 AA 2024−T3 0.4 0.5 h=σM 0.45 h=σM 0.35 max power criterion max power criterion Experiment, Vallellano et al. 2008 Experiment, Vallellano et al. 2008 0.4 0.3 0.35 0.25 0.3 ε2 0.2 εf 0.25 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0 0.2 0.4 0.6 0.8 1 ε χ 1 Fig.4. Predictionsofforminglimitcurvesbymaximumpowerandhardeningcriteriaforaluminumalloy2024-T3.Plottedalsoaretheexperimentalresults (after[40]). L.Xue/EngineeringFractureMechanics77(2010)1275–1297 1283 ants.Specifically,thedamageportionofthemodelincludesathreedimensionalfractureenvelopeandnonlineardamage evolutionandweakeninglaws. Ajointprogramofexperimentalinvestigationandnumericalsimulationforaluminumalloy2024-T351hasshownthat the model predicts crack paths in common loading cases, such as cup-cone fracture of round bar, slant crack in doubly groovedplatesandshearcrackinupsettingofcylinders,andincaseswherecrackmodesarewell-knowntoexperimentalist butunabletopredictinsimulationpreviously,e.g.themodetransitioninductileplate,formationofshearlips,shearlocal- izationinpipes,etc.[45–48].Wesummarizethekeyingredientsofthistheoryhere. Tobeginwith,weadoptthevonMisesyieldconditionforthematrixmaterialanddefinethemacroscopicequivalent stressastheproductofthematrixyieldstress(r ,afunctionofstrainhardening)andtheweakeningfactor(w,afunction M oftheplasticdamage).Theyieldconditionis U¼r (cid:2)wðDÞr 60 ð30Þ eq M wherer isafunctionoftheplasticstraine ofthematerialandwðDÞisascalarweakeningfunctionoftheplasticdamageD M p tocharacterizethematerialdeterioration.ApowerlawformoftheweakeningfunctionwðDÞ¼1(cid:2)Db isassumedinXue [16],wherebisamaterialconstantandfurtherextendedtoapower-exponentforminXue[49]. The plastic damage is calculated from the so-called ‘‘cylindrical decomposition” where the pressure sensitivity and the Lode angle dependence of the fracture strain and the nonlinear damage accumulation process are described. The plastic damageprocessischaracterizedinrateform (cid:2)e (cid:3)ðm(cid:2)1Þ1 D_ ¼m p e_ ð31Þ e e p f f where e ¼e l ðpÞl ðhÞ ð32Þ f f0 p h wherel isthepressuredependencefunction,l istheLodeangledependencefunctionande isareferencefracturestrain p h f0 andmisthedamageexponent.Thesetwofunctionsarephenomenologicalinnatureandtherearemanychoicesforl and p l .Forinstance,twokindsofLodeangledependencefunctionsareproposed[16].Inparticularwechoosealogarithmicpres- h suredependencefunction (cid:2) p (cid:3) l ðpÞ¼1(cid:2)qlog 1(cid:2) ð33Þ p p lim todepicttheincreaseinductilitywhenthematerialissubjectedtosuperimposedhydrostaticpressure.Wealsoadoptthe secondkindofLodeangledependencefunction (cid:2)6jh j(cid:3)k l ¼cþð1(cid:2)cÞ L ð34Þ h p wherej(cid:4)jdenotestheabsolutevalue,q; p ; candkarematerialconstants.Thematerialconstantcisdefinedastheratioof lim thefracturestrainatv¼0:5(generalizedshear)andv¼0(generalizedtension)underthesamepressure. Comparedwiththewell-knownpressuresensitivityofductilefracture,theLodeangledependenceofductileisarecent development.Inamacroscopictreatment,alessthanunitycvalueisintroducedbyobservingtheexperimentaldatafrom Clausing[50],McClintock[51],BaoandWierzbicki[52],BarsoumandFaleskog[53],XueandWierzbicki[48].Microscopi- cally,thetraditionalmicro-mechanicalmodelsuchastheGurson-typemodelisnotapplicableinthelowstresstriaxiality regime,wherevoidsdonotgrowduetothelackofmeanstress.Numericalsimulationofunitcellmodelalsoshowedthe Lode angle of the stress state has significant influence on the void coalescence [54,55]. To fix this drawback in the Gur- son-typemodel,particularlytomodelthematerialfailuresduetoshearbands,Xue[25,56]modifiedtheGurson-typemodel byadoptingBerg’sviscoussolution[18]andintroducedanaddictiveJ3dependentvoidshearterminthevoidevolution.The evolutionofthevoidsheartermdependsonthecurrentvoidvolumefraction,theequivalentplasticstrainandtheLodean- gleofthestressstate.Inthisway,themodifiedGursonmodelcanbeusedtopredictfailuresinlowstresstriaxialityzone, suchasasimpleshearfracture[25].NahshonandHutchinsonmodifiedthesheartermtostudylocalizedneckingusingM-K approachbyintroducingthroughthicknessdefects[57].Here,weapplythemaximumpowercriteriontothemacroscopic damageplasticmodel. 3.2. Maximumpowercriterionfordamageplasticsolids ThemaximumpowercriterioncanbederivedinthesamewayasSection2.3.Similarsolutioncanbeobtainedforthe presentmaterialmodel.Atanarbitrarilydamagedstate,theequivalentstressatyieldingis r ¼r wðDÞ ð35Þ eq M Uponfurtherstretching,theinstantaneouspoweratthedamagedstateremains 1284 L.Xue/EngineeringFractureMechanics77(2010)1275–1297 P¼r:e_ ¼r e_ ð36Þ eq eq andthepartialdifferentialofthepowerwithrespecttotheequivalentstrainis @P @r (cid:2)@w @r (cid:3) @e_ ¼ eqe_ þr e_ ¼ r þw M e_ þwr eq ð37Þ @e @e eq eq eq @e M @e eq M@e eq eq eq eq eq @e_ ¼ðwDDerMþwhÞe_eqþwrM@e1 ðusingproportionalityÞ ð38Þ 1 ¼ðwDDerMþwhÞe_eq(cid:2)wrMe_1 ðusinglogarithmicstrainrelationshipÞ ð39Þ h (cid:6) p(cid:7)i ¼ ðwDDerMþwhÞ(cid:2)wrMcos hMþ6 e_eq ð40Þ wherewD¼@w=@DandDe¼@D=@ep. Tomaintainanincreasingpowerwithrespecttotheequivalentstrain,theterminthebracketofEq.(40)hastobegreater thanzero,i.e. (cid:6) p(cid:7) ðwDDerMþwhÞ(cid:2)wrMcos hLþ6 >0 ð41Þ Localizationoccurswhenthederivativeofthepowerdropsequaltoorbelowzero.Therefore,wehavethelocalization conditionofdiffusedneckingfordamageplasticsolidsasthefollowing: h þwDDe6cos(cid:6)h þp(cid:7) ð42Þ r w L 6 M Note,atadamagedstate,wD<0; De>0andw>0. Fromtheinequality(42),theeffectofdamageistakenintoaccountinthesecondtermontheleft-handside,whichis wDDe=w.Iftheweakeningeffectisneglectedðw(cid:5)1andwD(cid:5)0ÞorthedamagingeffectisnotconsideredðDe(cid:5)0Þ,thegen- eralizedmaximumpowerconditionisrecoveredforJ2plasticitymaterial(seeEq.(22)).Forrealmaterials,DeandwDcanbe negligibleattheonsetofnecking,buttheyarenotzero.Note,De>0andwD<0.Therefore,thesecondtermhasadestabi- lizingeffectforthesolid.Formaterialswithlowcvalues,thedamagingderivativetermDe ismoresignificantwhenhL is closetozero. Experimentsontheneckinghaveshownthatthedamage(e.g.thevoidingorthereductionofYoung’smodulus)areneg- ligible.Inequality(42)showsthedamageeffectonthelocalizationconditionisthejointeffectoftheweakeningfactorwand therateofchangeofthedamageaccumulationDeandthatoftheweakeningwD.Evenwhenthedamageinducedweakening isnegligiblew(cid:6)1,theeffectofdamageonthelocalizationmaynotbenegligiblewhenDeandwDaresignificant.Anexample isgiveninSection4.1forductilealuminumalloy2024-T351.Anotherexampleisaluminum–coppercrystal,whencoarseslip bandsappearindicatingachangeinthedamagerate,smallamountofneckingcanoccurwhentheload-elongationcurveis stillrisingandcausinganabruptfallinload[58].Forincreasingdamagerateintroducedbyincreasinginclusionvolumefrac- tion,aloweredFLCisfoundexperimentally[59]. 3.3. Evolutionofmaterialresistance TheyieldsurfaceofthematerialisassumedtobevonMisesatadamagedstate,whichmeanstheyieldsurfacedepends onJ2only.Ontheotherhand,theJ3dependenceonthedamageimpliesthematerialresistancedependsontheJ3.Thiseffect isimportantinpredictingtheFLC.Barlatshowedthattheratioofthemajorstresscomponentattheplanestrainconditionto thatatthebiaxialstretchingconditionplaysanimportantroleintheshapeoftheFLC[60].Themacroscopicyieldstresscan beplottedforaseriesofplasticallydeformedstatetoaconstantplasticstrainlevelatdifferentLodeangles.Inthiscase,the meanstressisfixedsuchthatitdoesnotchangethematerialresistanceatadamagedstate. ThesecondkindofLodeangledependencefunctionreducestoaJ3independentmodelwhenthematerialconstantc¼1. Foraluminumalloy2024-T351,theevolutionoftheyieldstresswithrespecttotheplasticstrainatdifferentLodeanglesare plottedinFig.5.ItshouldbenotedthatthecurvesplottedinFig.5areforproportionalloadingsatdifferentstrainstates, ratherthantheyieldconditionformultiaxialloadingsatadamagedstate.Inallcases,thereductionofthematerialresis- tanceintheplanestrainloadingsissignificantlygreaterthanthoseinthegeneralizedtensionandthegeneralizedcompres- sionconditions.Thisismoresignificantatalaterstageofdeformation.SeeFig.5b. 4. Maximumpowercriterionwithdamageplasticitymodel 4.1. Aluminumalloy2024 Thematerialparametersforaluminumalloy2024-T351arecalibratedinRef.[48]forthedamageplastictheory.Thematrix stress–straincurveisfittedusingtheSwiftrelationshipr ¼r ð1þe =e Þn.ThesematerialparametersarelistedinTable1. M y p 0 Wefirstshowthecorrelationofthelocalizationconditionandthefracturecondition.Usingthedamageplasticitymodel, theforminglimitcurvefortheonsetoflocalizationandthefracturecurveforaluminumalloy2024-T351underplanestress

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.