ebook img

Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition PDF

434 Pages·2014·5.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition

SECOND Statistics EDITION Highly recommended by JASA, Technometrics, and other journals, the first L edition of this bestseller showed how to easily perform complex linear mixed I N model (LMM) analyses via a variety of software programs. Linear Mixed Models: E A Practical Guide Using Statistical Software, Second Edition continues to A lead you step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data R analysts in all fields. It also updates the case studies using the latest versions M of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, I X Stata, R/S-plus, and HLM. E New to the Second Edition D • A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models M • Power analysis methods for longitudinal and clustered study designs, O including software options for power analyses and suggested approaches D to writing simulations E • Use of the lmer() function in the lme4 R package L • New sections on fitting LMMs to complex sample survey data and Bayesian S approaches to making inferences based on LMMs • Updated graphical procedures in the software packages • Substantially revised index to enable more efficient reading and easier location of material on selected topics or software options • More practical recommendations on using the software for analysis W e • A new R package (WWGbook) that contains all of the data sets used in the s t examples , W e Ideal for anyone who uses software for statistical modeling, this book eliminates l c the need to read multiple software-specific texts by covering the most popular h , software programs for fitting LMMs in one handy guide. The authors illustrate the a n models and methods through real-world examples that enable comparisons of d G model-fitting options and results across the software procedures. a ł e c k i K15924 K15924_cover.indd 1 6/13/14 3:30 PM LINEAR MIXED MODELS A Practical Guide Using Statistical Software SECOND EDITION TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk LINEAR MIXED MODELS A Practical Guide Using Statistical Software SECOND EDITION Brady T. West Kathleen B. Welch Andrzej T. Gałecki University of Michigan Ann Arbor, USA with contributions from Brenda W. Gillespie First edition published in 2006. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140326 International Standard Book Number-13: 978-1-4665-6102-1 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro- duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy- right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica- tion and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To Laura and Carter To all of my mentors, advisors, and teachers, especially my parents and grandparents —B.T.W. To Jim, my children, and grandchildren To the memory of Fremont and June —K.B.W. To Viola, my children, and grandchildren To my teachers and mentors In memory of my parents —A.T.G. TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Contents List of Tables xv List of Figures xvii Preface to the Second Edition xix Preface to the First Edition xxi The Authors xxiii Acknowledgments xxv 1 Introduction 1 1.1 What Are Linear Mixed Models (LMMs)? . . . . . . . . . . . . . . . . . . 1 1.1.1 Models with Random Effects for Clustered Data . . . . . . . . . 2 1.1.2 Models for Longitudinal or Repeated-Measures Data . . . . . . 2 1.1.3 The Purpose of This Book . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 Outline of Book Contents . . . . . . . . . . . . . . . . . . . . . . 4 1.2 A Brief History of LMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Key Theoretical Developments . . . . . . . . . . . . . . . . . . . 5 1.2.2 Key Software Developments . . . . . . . . . . . . . . . . . . . . . 7 2 Linear Mixed Models: An Overview 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Types and Structures of Data Sets . . . . . . . . . . . . . . . . . 9 2.1.1.1 ClusteredDatavs.Repeated-MeasuresandLongitudinal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1.2 Levels of Data . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Types of Factors and Their Related Effects in an LMM . . . . . 12 2.1.2.1 Fixed Factors . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2.2 Random Factors . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2.3 Fixed Factors vs. Random Factors . . . . . . . . . . . . 13 2.1.2.4 Fixed Effects vs. Random Effects . . . . . . . . . . . . 13 2.1.2.5 Nestedvs.CrossedFactorsandTheirCorrespondingEf- fects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Specification of LMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 General Specification for an Individual Observation. . . . . . . . 15 2.2.2 General Matrix Specification . . . . . . . . . . . . . . . . . . . . 16 2.2.2.1 Covariance Structures for the D Matrix . . . . . . . . . 19 2.2.2.2 Covariance Structures for the Ri Matrix . . . . . . . . 20 2.2.2.3 Group-Specific Covariance Parameter Values for the D and Ri Matrices . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 Alternative Matrix Specification for All Subjects . . . . . . . . . 21 vii viii Contents 2.2.4 Hierarchical Linear Model (HLM) Specification of the LMM . . 22 2.3 The Marginal Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Specification of the Marginal Model . . . . . . . . . . . . . . . . 23 2.3.2 The Marginal Model Implied by an LMM . . . . . . . . . . . . . 23 2.4 Estimation in LMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Maximum Likelihood (ML) Estimation . . . . . . . . . . . . . . 25 2.4.1.1 Special Case: Assume θ Is Known . . . . . . . . . . . . 26 2.4.1.2 General Case: Assume θ Is Unknown . . . . . . . . . . 26 2.4.2 REML Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.3 REML vs. ML Estimation . . . . . . . . . . . . . . . . . . . . . . 28 2.5 Computational Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.1 Algorithms for Likelihood Function Optimization . . . . . . . . . 29 2.5.2 Computational Problems with Estimation of CovarianceParame- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6 Tools for Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6.1 Basic Concepts in Model Selection . . . . . . . . . . . . . . . . . 34 2.6.1.1 Nested Models . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.1.2 Hypotheses: Specification and Testing . . . . . . . . . . 34 2.6.2 Likelihood Ratio Tests (LRTs) . . . . . . . . . . . . . . . . . . . 34 2.6.2.1 Likelihood Ratio Tests for Fixed-Effect Parameters. . . 35 2.6.2.2 Likelihood Ratio Tests for Covariance Parameters . . . 35 2.6.3 Alternative Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.3.1 Alternative Tests for Fixed-Effect Parameters . . . . . . 36 2.6.3.2 Alternative Tests for Covariance Parameters . . . . . . 38 2.6.4 Information Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 Model-Building Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.7.1 The Top-Down Strategy . . . . . . . . . . . . . . . . . . . . . . . 39 2.7.2 The Step-Up Strategy . . . . . . . . . . . . . . . . . . . . . . . . 40 2.8 Checking Model Assumptions (Diagnostics) . . . . . . . . . . . . . . . . . 41 2.8.1 Residual Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8.1.1 Raw Residuals . . . . . . . . . . . . . . . . . . . . . . . 41 2.8.1.2 Standardized and Studentized Residuals . . . . . . . . . 42 2.8.2 Influence Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.8.3 Diagnostics for Random Effects . . . . . . . . . . . . . . . . . . . 43 2.9 Other Aspects of LMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.9.1 Predicting Random Effects: Best Linear Unbiased Predictors . . 46 2.9.2 Intraclass Correlation Coefficients (ICCs) . . . . . . . . . . . . . 47 2.9.3 Problems with Model Specification (Aliasing) . . . . . . . . . . . 47 2.9.4 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.9.5 Centering Covariates . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.9.6 Fitting Linear Mixed Models to Complex Sample Survey Data . 50 2.9.6.1 Purely Model-Based Approaches . . . . . . . . . . . . . 51 2.9.6.2 Hybrid Design- and Model-Based Approaches . . . . . 52 2.9.7 BayesianAnalysis of Linear Mixed Models . . . . . . . . . . . . 55 2.10 Power Analysis for Linear Mixed Models . . . . . . . . . . . . . . . . . . 56 2.10.1 Direct Power Computations . . . . . . . . . . . . . . . . . . . . 56 2.10.2 Examining Power via Simulation . . . . . . . . . . . . . . . . . . 57 2.11 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Contents ix 3 Two-Level Models for Clustered Data: The Rat Pup Example 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 The Rat Pup Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Study Description . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Data Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3 Overview of the Rat Pup Data Analysis . . . . . . . . . . . . . . . . . . 65 3.3.1 Analysis Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.2.1 General Model Specification . . . . . . . . . . . . . . . 68 3.3.2.2 Hierarchical Model Specification . . . . . . . . . . . . . 69 3.3.3 Hypothesis Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.4 Analysis Steps in the Software Procedures . . . . . . . . . . . . . . . . . 75 3.4.1 SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.4.2 SPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4.3 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.3.1 Analysis Using the lme() Function . . . . . . . . . . . 91 3.4.3.2 Analysis Using the lmer() Function . . . . . . . . . . 96 3.4.4 Stata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.4.5 HLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.4.5.1 Data Set Preparation . . . . . . . . . . . . . . . . . . . 102 3.4.5.2 Preparing the Multivariate Data Matrix (MDM) File . 103 3.5 Results of Hypothesis Tests . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.5.1 Likelihood Ratio Tests for Random Effects . . . . . . . . . . . . 107 3.5.2 Likelihood Ratio Tests for Residual Variance . . . . . . . . . . . 107 3.5.3 F-tests and Likelihood Ratio Tests for Fixed Effects . . . . . . . 108 3.6 Comparing Results across the Software Procedures . . . . . . . . . . . . 109 3.6.1 Comparing Model 3.1 Results . . . . . . . . . . . . . . . . . . . 109 3.6.2 Comparing Model 3.2B Results . . . . . . . . . . . . . . . . . . 114 3.6.3 Comparing Model 3.3 Results . . . . . . . . . . . . . . . . . . . 114 3.7 Interpreting Parameter Estimates in the Final Model . . . . . . . . . . . 115 3.7.1 Fixed-Effect Parameter Estimates . . . . . . . . . . . . . . . . . 115 3.7.2 Covariance Parameter Estimates . . . . . . . . . . . . . . . . . . 118 3.8 Estimating the Intraclass Correlation Coefficients (ICCs) . . . . . . . . . 118 3.9 Calculating Predicted Values . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.9.1 Litter-Specific (Conditional) Predicted Values . . . . . . . . . . 120 3.9.2 Population-Averaged(Unconditional) Predicted Values . . . . . 121 3.10 Diagnostics for the Final Model . . . . . . . . . . . . . . . . . . . . . . . 122 3.10.1 Residual Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . 122 3.10.1.1 Conditional Residuals . . . . . . . . . . . . . . . . . . . 122 3.10.1.2 Conditional Studentized Residuals . . . . . . . . . . . . 124 3.10.2 Influence Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . 126 3.10.2.1 Overall Influence Diagnostics . . . . . . . . . . . . . . 126 3.10.2.2 Influence on Covariance Parameters . . . . . . . . . . . 128 3.10.2.3 Influence on Fixed Effects . . . . . . . . . . . . . . . . 129 3.11 Software Notes and Recommendations . . . . . . . . . . . . . . . . . . . 130 3.11.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.11.2 Syntax vs. Menus . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.11.3 Heterogeneous Residual Variances for Level 2 Groups . . . . . . 130 3.11.4 Display of the Marginal Covariance and Correlation Matrices . . 130 3.11.5 Differences in Model Fit Criteria . . . . . . . . . . . . . . . . . . 131 3.11.6 Differences in Tests for Fixed Effects . . . . . . . . . . . . . . . 131

Description:
Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.