ebook img

Light axial vector mesons PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Light axial vector mesons

Lightaxialvectormesons Kan Chen1,2, Cheng-Qun Pang1,2, Xiang Liu1,2 , and Takayuki Matsuki3,4,1 ∗ † ‡§ ¶ 1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China 2ResearchCenterforHadronandCSRPhysics,LanzhouUniversity&InstituteofModernPhysicsofCAS,Lanzhou730000,China 3Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173-8602, Japan 4Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198, Japan Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vectorstatescanbecategorizedintotheconventional axial-vectormesonfamily. Inthispaperwecarry outananalysisbasedonthemassspectraandtwo-bodyOkubo-Zweig-Iizuka-alloweddecays. Besidestesting the possible axial-vector meson assignments, we also predict abundant information for their decays and the propertiesofsomemissingaxial-vectormesons,whicharevaluableforfurtherexperimentalexplorationofthe 5 observedandpredictedaxial-vectormesons. 1 0 PACSnumbers:14.40.Be,12.38.Lg,13.25.Jx 2 r p I. INTRODUCTION Thispaperis organizedasfollows. In Sec. II, we present A the phenomenologicalanalysis by combiningour theoretical results with the correspondingexperimentaldata; the Regge 8 Among the light unflavored mesons listed in the Particle 1 trajectory analysis is adopted to study mass spectra of the Data Group (PDG) [1], there are abundantlight axial-vector axial-vectormesonfamilyandthequark-paircreation(QPC) mesons with a spin-parityquantum number JP = 1+, which ] modelisappliedtocalculatetheirOZI-allowedstrongdecay h form a P-wave meson family. Usually, we adopt h , b , f , 1 1 1 behavior. Finally,thediscussionandconclusionare givenin p and a to expressthe correspondingstates with the quantum - numb1ers IG(JPC) = 0 (1+ ), 1+(1+ ), 0+(1++), and 1 (1++), Sec. III. p − − − − e respectively. InTableI,wecollecttheexperimentalinforma- h tion on the observed h , b , f , and a states, as well as the 1 1 1 1 [ correspondingresonanceparametersand the observeddecay II. PHENOMENOLOGICALSTUDYOFOBSERVED AXIAL-VECTORSTATES channels. 3 v Facingsomanyaxial-vectorstatesinthePDG,weneedto A Regge trajectory analysis is an effective approach to 6 examinewhetherallofthesestatescanbecategorizedintothe 6 axial-vectormesonfamily,whichiscrucialforrevealingtheir studya meson spectrum[31], especially a light-mesonspec- 7 trum. The masses and radial quantum numbers of light underlyingstructures. We also notice that most axial-vector 7 mesonswiththesamequantumnumbersatisfythefollowing states are either omitted by the PDG or are recent findings 0 relation: . needingconfirmation. Duetotheunclearexperimentalstatus 1 of light axial-vector states, we need to carry out a quantita- 0 M2 = M2+(n 1)µ2, (1) tiveinvestigationofthem,whichwouldbehelpfulforfurther 0 − 5 experimental studies, especially of those axial-vector states 1 where M and M are the masses of the groundstate and the : either omitted by the PDG or unconfirmed by other experi- 0 v correspondingradial excitation with radial quantum number ments. i n, respectively. µ2 denotes the slope of the trajectory with a X Inthis work, we carryouta systematic studyof theaxial- universalµ2 =1.25 0.15GeV2[31]. r vector states by analyzing mass spectra and Okubo-Zweig- InFig.1,weprese±nttheReggetrajectoryanalysis,inwhich a Iizuka(OZI)-allowedtwo-bodystrongdecaybehaviors. Our weconsideralloftheaxial-vectorstateslistedinthePDGas investigationsarebasedonthe assumptionthatalloftheax- showninTableI.Besidestheobservedones,wealsopredict ial mesons can be explainedwithin the conventionalqq¯ pic- some missing states and show them in Fig. 1. Additionally, ture. Comparingournumericalresultswiththeexperimental we notice that there are two possible candidates for the a 1 data,wecanfurthertestthepossibleassignmentsofthestates meson with quantum number n2s+1J = 33P , i.e., a (1930) L 1 1 in the axial-vector meson family. In addition, information anda (2095). Ontheotherhand,both f (1420)and f (1510) 1 1 1 onthepredicteddecaysoftheaxial-vectorstatesobservedor canbeanss¯partnerof f (1285)byanalyzingonlytheRegge 1 stillmissinginexperimentsisvaluabletofurtherexperimental trajectory. Thus,afurtherstudyoftheirstrongdecaybehav- studyofaxial-vectormeson. iors would help to test these possible assignmentsto the ob- servedaxial-vectorstatesandcouldprovidemorepredictions oftheobservedandstill-missingaxial-vectormesons,which arevaluableforthe futureexperimentalexplorationofaxial- ‡Correspondingauthor vectormesons. Electronicaddress:chenk˙[email protected] ∗ To obtain the decay behaviorsof the axial-vectormesons, Electronicaddress:[email protected] † weadopttheQPCmodel,whichwasfirstproposedbyMicu Electronicaddress:[email protected] § Electronicaddress:[email protected] [32]andfurtherdevelopedbytheOrsaygroup[33–37]. This ¶ 2 TABLEI:Resonanceparametersandstrongdecaychannelsoftheaxial-vectorstatescollectedinthePDG[1]. Themassesandwidthsare averagevaluestakenfromthePDG.ThestatesomittedfromthePDGsummarytablearemarkedbyasuperscript♮,whilethestateslistedas furtherstatesinthePDGaremarkedbyasuperscript♭. IG(JPC) State Mass(MeV) Width(MeV) Theobserveddecaychannels a (1260) 1230 40 250 600 3π[2],πρ[3],σπ[4] 1 ± ∼ a (1640)♮ 1647 22 254 27 3π[5],πρ[4,6],σπ[5], f (1270)π[5] 1 ± ± 2 1 (1++) a (1930)♭ 1930+30 155 45 3π0[7] − 1 70 ± − a (2095)♭ 2096 17 121 451 41 81 π+π π [8] 1 ± ± ± ± − − a (2270)♭ 2270+55 305+70 3π0[7] 1 40 40 − − b (1235) 1229.5 3.2 142 9 ωπ[9–11] 1 ± ± 1+(1+ ) b (1960)♭ 1960 35 345 75 ωπ0[12] − 1 ± ± b (2240)♭ 2240 35 320 85 ωπ0[12] 1 ± ± f (1285) 1282.1 0.6 24.2 1.1 ρ0ρ0[13],ηππ[14–16],a π[15–17],KK¯π[15,16,18] 1 ± ± 0 f (1420) 1426.4 0.9 54.9 2.6 KK¯π[19,20],KK¯ (892)+c.c[18–20] 1 ± ± ∗ 0+(1++) f (1510)♮ 1518 5 73 25 KK¯ (892)+c.c[21,22],π+π η[23] 1 ± ± ∗ − ′ f (1970)♭ 1971 15 240 45 ηπ0π0[24] 1 ± ± f (2310)♭ 2310 60 255 70 ηπ0π0[24] 1 ± ± h (1170) 1170 20 360 40 πρ[25–27] 1 ± ± h (1380)♮ 1386 19 91 30 KK¯ (892)+c.c[21,28] 1 ± ± ∗ 0 (1+ ) h (1595)♮ 1594 15+10 384 60+70 ωη[29] − − 1 ± 60 ± 100 − h (1965)♭ 1965 45 345 75 ωη[30] 1 ± ± h (2215)♭ 2215 40 325 55 ωη[30] 1 ± ± modelwaswidelyappliedtostudytheOZI-allowedtwo-body canbetreatedseparately. Inaddition,iand jdenotethecolor strongdecayofhadrons[38–59]. Inthefollowing,webriefly indicesofaqq¯ pair. introducetheQPCmodel. By the Jacob-Wick formula [60], the decay amplitude is ForadecayprocessA B+C,wecanwrite expressedas → hBC|T|Ai=δ3(PB+PC)MMJAMJBMJC, (2) JL(P) = √4π(2L+1) L0;JM J M wherePB(C)isathree-momentumofamesonB(C)intherest M 2JA+1 MXJBMJCh JA| A JAi afrnamorebiotaflammagensoetnicAm. oAmesnutbusmcr.ipTthMetJria(ins=itioAn,Bop,Cer)atdoernoteiss ×hJBMJB;JCMJC|JAMJAiMMJAMJBMJC, (4) T introduced to describe a quark-antiquark pair creation from andthegeneraldecaywidthreads vacuum, which has the quantumnumber JPC = 0++, i.e., T canbeexpressedas π P Γ = | | JL(P)2, (5) 4m2 X|M | A J,L = 3γ 1m;1 m00 dp dp δ3(p +p ) T − Xm h − | iZ 3 4 3 4 wheremA isthemassofaninitialstate A. Weusethesimple p p harmonicoscillatorwavefunctiontodescribethespacewave ×Y1m(cid:18) 3−2 4(cid:19)χ314,−mφ304(cid:16)ω304(cid:17)ijb†3i(p3)d4†j(p4), (3) functionofmesons,whichhasthefollowingexpression: which is constructedin a completelyphenomenologicalway Ψ (R,p)= (R,p) (p), (6) nlm nl lm toreflectthecreationofaquark-antiquarkpairfromvacuum, R Y where the quark and antiquark are denoted by indices 3 and wheretheconcretevaluesoftheparameterRinvolvedinour 4, respectively. As a dimensionlessparameter, γ depicts the calculationaregiveninRef. [61]forthegroundstates. How- strength of the creation of qq¯ from vacuum, where γ = 8.7 ever,itsvalueistobefixedforeachexcitedstate. and 8.7/√3 [51] correspondsto the uu¯/dd¯and ss¯ creations, With the above preparation, we further discuss the OZI- respectively. (p) = pℓY (p)isthesolidharmonic. χ,φ, alloweddecaybehaviorsoftheaxial-vectormesons. The al- ℓm ℓm Y | | andωdenotethespin,flavor,andcolorwavefunctions,which loweddecaymodesarelistedinTablesIIandIII. 3 6 6 a(2270) 1 5 5 a1(2095) b1(2240) 4 4 2GeV) 3 a1(1930) 2GeV) 3 b1(1960) 2M( a1(1640) 2M( b1(1640) 2 2 a(1260) 1−1+ b(1235) 1+1+ 1 1 1 1 0 1 2 3 4 5 0 1 2 3 4 5 n n 6 6 f1(2310) h1(2340) 5 5 f1(2110) f1(2210) h1(2120) h1(2215) 4 4 2GeV) 3 f(1510) f1(1800) f1(1970) 2GeV) 3 h1(1780) h1(1965) 2M( 1 f1(1640) 2M( h(1380) 2 2 1 h(1595) f(1420) 1 1 1 f1(1285) 0+1++ 1 h(1170) 0−1+− 1 0 1 2 3 4 5 0 1 2 3 4 5 n n FIG.1: (Coloronline)Reggetrajectoryanalysisfora ,b , f ,andh withtypicalµ2 =1.30GeV2,1.19GeV2,1.10GeV2,and1.19GeV2, 1 1 1 1 respectively,whichcanbecoveredbyµ2 =1.25 0.15GeV2giveninRef. [31]. Theexperimentalerrorsofdiscussedaxial-vectorstatesare ± given,whicharetakenfromthePDG[1].Here, and denotetheoreticalandexperimentalvalues,respectively. ◦ • A. a states 1 500 40 The Regge trajectory analysis indicates that a (1260) can 1 σπ be regardedasa groundstate. Theobtainedtotalandpartial 30 decay widths of a1(1260) are listed in Fig. 2, which shows 450 CMD−2 thatπρisthedominantchannel. InFig. 2,wegivethepartial decaywidthsofa1(1260) πρfromtheS-waveandD-wave Total Width 20 (πρ) contributions. Here, the →D-wave/S-wave amplitude ratio in D the decay a (1260) πρ is 0.248 with a typical value of 400 1 bRle=w3i.t8h4t6heGBeV85−21 [d6a→1ta]i(n0o.u1r4−calc0u.0la4tion0,.0w7h)ic[4h].isOcuormrpeasrual-t (πρ)S 10 πf0(980) − ± ± alsoshowsthata1(1260) f0πisasubordinatedecaymode 350 with the partial decay wid→th 1.82 MeV, which explains why 3.3 3.6 3.9 4.2 4.5 3.3 3.6 3.9 4.2 4.5 therehasbeennoevidenceofa (1260) f πinexperiments R (GeV−1) R(GeV−1) 1 0 → [3]. AsshowninFig. 2,thecalculatedtotalwidthcanrepro- ducetheCMD2datagiveninRef. [62]. Inaddition,wealso FIG. 2: (Color online) Total and partial decay widths of a (1260) 1 give some typical ratios relevant to the partial decay and to- depending on R. Here, the dot-dashed line with the band is taken talwidthstogetherwiththecorrespondingexperimentaldata fromtheexperimentaldatafromRef.[62].TheS-waveandD-wave contributions to the decay width of a (1260) πρ are also given inTableIV.Insummary,ourresultsarecomparablewiththe 1 → separately.AllresultsareinunitsofMeV. experimentalvaluesandsupporta (1260)asagroundstatein 1 thea mesonfamily. 1 If a (1640) is the first radial excitation of a (1260), its 1 1 decay behavior depending on the R value is shown in Fig. 3. We use the experimental total width [5] and the ratio Γ(f (1270)π)/Γ(σπ)=0.24 0.07[5]togetR=(4.30 4.64) 2 ± ∼ 4 TABLEII:OZI-allowedtwo-bodydecaychannelsfora andh statesmarkedby√. Here,ρ,ω,andηdenoteρ(770),ω(782), andη(548), 1 1 respectively.Theaxial-vectorstatespredictedbytheReggetrajectoryanalysisaremarkedbyasuperscript♮. Channel a1(1260)a1(1640)a1(1930)a1(2095)a1(2270) Channel h1(1170)h1(1380)h1(1595)h♮1(1780)h1(1965)h♮1(2120)h1(2215)h♮1(2340) πρ √ √ √ √ √ πρ √ √ √ √ √ √ √ √ σπ √ √ √ √ √ KK √ √ √ √ √ √ √ ∗ πf √ √ √ √ √ ηω √ √ √ √ √ √ √ 0 πf (1420) √ √ √ √ ωσ √ √ √ √ √ √ 1 πρ(1450) √ √ √ √ KK (1270) √ √ √ √ √ 1 ρω √ √ √ √ ωη(958) √ √ √ √ √ ′ ηa (980) √ √ √ √ ωf √ √ √ √ √ 0 0 KK √ √ √ √ ρa (980) √ √ √ √ √ ∗ 0 πb (1235) √ √ √ √ πρ(1450) √ √ √ √ √ 1 πf (1270) √ √ √ √ KK (1400) √ √ √ √ 2 1 πf (1285) √ √ √ √ KK (1410) √ √ √ √ 1 ∗ ρa (980) √ √ √ KK (1430) √ √ √ √ 0 0∗ KK (1400) √ √ √ KK (1430) √ √ √ √ 1 2∗ ηa (1260) √ √ √ K K √ √ √ √ 1 ∗ ∗ πρ(1700) √ √ √ ηω(1420) √ √ √ √ KK (1270) √ √ √ σh (1170) √ √ √ √ 1 1 KK (1410) √ √ √ πρ(1700) √ √ √ √ ∗ KK (1430) √ √ √ ρa (1320) √ √ √ 0∗ 2 KK (1430) √ √ √ ωf (1270) √ √ √ 2∗ 2 K K √ √ √ σω(1420) √ √ √ ∗ ∗ ηa (1320) √ √ √ ωf (1285) √ √ √ 2 1 σa (1260) √ √ √ ρπ(1300) √ √ √ 1 σa (1320) √ √ √ ρa (1260) √ √ √ 2 1 ρπ(1300) √ √ K K (1270) √ √ ∗ 1 ηa (1450) √ √ f h (1170) √ √ 0 0 1 ωb (1235) √ √ KK (1680) √ √ 1 ∗ ρh (1170) √ √ ωf (1420) √ √ 1 1 ρa (1260) √ √ K K (1400) √ 1 ∗ 1 K K (1270) √ ∗ 1 ρa (1320) √ 2 ρω(1420) √ ρa (1450) √ 0 KK (1680) √ ∗ η(958)a (980) √ ′ 0 GeV 11.Themaindecaymodesofa (1640)areπρ,πρ(1450), TableV. − 1 πf (1270),πf (1285),andρω. Additionally,we providefur- 2 1 Therearetwopossiblecandidatesforthesecondradialex- ther information on the typical ratios of a (1640) decays in 1 citation of a (1260). In the following, we discuss the decay 1 behaviorsof a (1930)anda (2095)by combiningthe corre- 1 1 spondingexperimentaldata. InFigs. 4and5,wepresentthe R dependence of the decay behaviors of these a ’s, respec- 1 1Using the experimental total width [5], we find that overlap exists be- tively.Thatis,theobtainedtotalwidthofa (1930)canbefit- tween ourtheoretical andexperimental results whentakingR = 4.26 1 4.92 GeV−1. Then, we can further constrain the R values by the rati∼o tedwiththedatafromRef. [7]whenR=4.58∼4.92GeV−1, Γ(f2(1270)π)/Γ(σπ)=0.24 0.07[5],wheretheconstrainedR=(4.30 whilethatofa1(2095)canoverlapwiththeexperimentaldata 4.64)GeV−1,whichisadopt±edtopresentothertypicalratiosofa1(1640)∼. [7] when R = (4.78 5.16) GeV−1. Thus, it is difficult to ∼ distinguish which a is more suitable as a candidate for the 1 5 TABLEIII:OZI-allowedtwo-bodydecaychannelsforb and f statesmarkedby√. Here,ρ,ω,andηdenoteρ(770),ω(782),andη(548), 1 1 respectively.Theaxial-vectorstatespredictedbytheReggetrajectoryanalysisaremarkedbyasuperscript♮. Channel b1(1235)b♮1(1640)b1(1960)b1(2240) Channel f1(1285)f1(1420)f1(1510)f1♮(1640)f1♮(1800)f1(1970)f1♮(2110)f1♮(2210)f1(2310) πω √ √ √ √ πa (980) √ √ √ √ √ √ √ √ √ 0 πa (980) √ √ √ √ ση √ √ √ √ √ √ √ √ √ 0 πa (1260) √ √ √ πa (1260) √ √ √ √ √ √ √ √ 1 1 πa (1320) √ √ √ KK √ √ √ √ √ √ √ √ 2 ∗ πω(1420) √ √ √ πa (1320) √ √ √ √ √ √ √ 2 πa (1450) √ √ √ πa (1450) √ √ √ √ √ √ 0 0 ηρ √ √ √ ηf √ √ √ √ √ √ 0 ρρ √ √ √ ρρ √ √ √ √ √ √ KK √ √ √ ωω √ √ √ √ √ √ ∗ σρ √ √ √ ση √ √ √ √ √ √ ′ η(958)ρ √ √ KK (1270) √ √ √ √ √ ′ 1 ρf √ √ K K √ √ √ √ √ 0 ∗ ∗ ωa (980) √ √ ωh (1170) √ √ √ √ 0 1 KK (1270) √ √ η(958)f √ √ √ √ 1 ′ 0 KK (1400) √ √ ηf (1270) √ √ √ √ 1 2 KK (1410) √ √ KK (1400) √ √ √ √ 0∗ 1 KK (1430) √ √ KK (1410) √ √ √ √ 0∗ ∗ KK (1430) √ √ KK (1430) √ √ √ √ 2∗ 0∗ σb (1235) √ √ KK (1430) √ √ √ √ 1 2∗ K K √ √ ηf (1285) √ √ √ √ ∗ ∗ 1 ωa (1320) √ σf (1270) √ √ √ √ 2 2 ωπ(1300) √ σf (1285) √ √ √ √ 1 K K (1270) √ σf (1420) √ √ √ ∗ 1 1 ηρ(1450) √ ρb (1235) √ √ √ 1 KK (1680) √ ηf (1420) √ √ √ ∗ 1 a (980)h (1170) √ ωω(1420) √ √ 0 1 ρf (1270) √ K K (1270) √ √ 2 ∗ 1 ρf (1285) √ KK (1680) √ 1 ∗ ρf (1420) √ f f (1270) √ 1 0 2 ρb (1235) √ f f (1285) √ 1 0 1 ωa (1260) √ a (980)a (1260) √ 1 0 1 a (980)π(1300) √ 0 a (980)a (1320) √ 0 2 η(958)f (1270) √ ′ 2 ρρ(1450) √ η(958)f (1285) √ ′ 1 K K (1400) √ ∗ 1 secondradialexcitationofa (1260)bystudyingonlythetotal whiletheπf (1285)andσπmodesalsohavesizablecontribu- 1 1 decay widths. Besides, we can learn from the Regge trajec- tions. The decays of a (1930) into KK (1430), KK (1430), 1 0∗ 2∗ tory analysis that there is only one state for the 33P state, and K (896)K (896) have tiny decay widths, which are not 1 ∗ ∗ and it is doubtful that both a (1930) and a (2095) exist, as listedinFig. 4. Asfora (2095),itsdominantdecaychannels 1 1 1 mentionedin Ref. [7]. However,thereexistdifferentbehav- areπb (1235),πρ,andπρ(1450)andareshowninFig. 5. The 1 iors of the partial decay widths of these a ’s. The a (1930) other decay channels—like ρa (980), πρ(1700), πf (1285), 1 1 0 1 mainly decaysinto finalstates πρ, πρ(1450),and πb (1235), πf , and σπ—also haveconsiderablecontributionsto the to- 1 0 6 thefollowing,theexperimentalconfirmationofa (1930)and 1 TABLE IV: Some typical ratiosof decay widths of a (1260). The 1 a (2095) will be crucial for identifying the candidate of the Γ(πρ) representtheS(D)-wavedecaywidthofa (1260) πρ. 1 S(D) 1 → 33P1 state in the a1 mesonfamily. If a1(1930)and a1(2095) Ourwork Experimentaldata cannot be established in experiments, we suggest an experi- Γ((πρ) )/Γ 0.86 0.60[3] mentalsearchfora (33P );theresultsfora (33P )predicted S Total 1 1 1 1 Γ((πρ) )/Γ 5.3 10 2 (1.30 0.60 0.22) 10 2 [3] inthisworkwouldbehelpfulforsuchasearch. D Total × − ± ± × − Γ /Γ 8.2 10 2 (18.76 4.29 1.48) 10 2 [3] πσ Total × − ± ± × − Γ /Γ 0.09 0.06 0.05[1] σπ (ρπ)S ± TABLEVI:Typicalratiosfora (1930)anda (2095). TheRranges 1 1 are(4.58 4.92)GeV 1 and(4.78 5.16)GeV 1fora (1930)and ∼ − ∼ − 1 30 a1(2095),respectively. 360 Total width 310 SPEC 25 ρω Ratio a1(1930) a1(2095) 260 20 Γπρ/ΓTotal 0.151∼0.162 0.139∼0.176 210 πρ(1450) 15 Γπb1(1235)/ΓTotal 0.092∼0.1600.206∼0.2542 160 Γ /Γ 0.005 0.0240.039 0.0529 11600 πρ(770) 150 πf2(1270) πf1(1285) Γσπρπ(/17Γ0T0)otalTotal 0.088∼∼0.097 0.058∼∼0.073 Γ /Γ 0.339 0.347 0.189 0.253 10 0 πρ(1450) Total ∼ ∼ Γ /Γ 0.271 0.462 0.348 1.813 πb1(1235) πρ(1450) ∼ ∼ 40 πb1(1235) 1.6 πf(1420) Γηa1(1260)/ΓKK∗(892) 0.629∼0.719 1.141∼1.742 32 1 Γ Γ 0.705 0.850 0.188 0.451 σπ 1.2 ρω πf2(1270) ∼ ∼ 24 KK*(892) Γηa0(980)/Γπρ(1700) 0.317∼0.809 0.239∼0.279 0.8 Γ /Γ 0.508 0.553 1.693 4.846 16 KK1(1400) ηa2(1320) ∼ ∼ 8 πf0(980) 0.4 a0η ΓKK1(1400)/Γρa0(980) − 0.145∼0.184 Γ /Γ 0.206 0.838 ηa0(1450) KK0∗(1430) − ∼ 0 0 4 4.2 4.4 4.6 4.8 5 4 4.2 4.4 4.6 4.8 5 R (GeV−1) R (GeV−1) 300 FIG. 3: (Color online) R dependence of the decay behaviors of 10 Total Width 20 a (1640).Here,thedot-dashedlinewiththebandistheexperimental to1talwidthfromRef.[5].AllresultsareinunitsofMeV. 200 8 KK*(892) 16 π f(1285) SPEC 6 f(1420)π 12 1 100 πρ(1450) 4 1 8 π ρ(170a01)(1260)σ tal decay width. In Table VI, we also list some typical ra- 2 ηa0(980) 4 ρ ω tios relevantto theirdecays. We still needto emphasizeone 0 π b1(1235) 0 0 plioshinetd. iAntepxrpeesreinmt,enat1s(.19T3h0e)aauntdhoar1s(o2f09R5e)f.ar[e7]nointdwicealtleedsttahba-t 12.5 KK*(1410) 0.6 ηa2(1320) 40 a2(1950)anda1(1930)arenotsecurelyidentifiedinmassand 10 0.4 width,thoughsomesuchcontributionsaredefinitelyrequired 7.5 KK1(1400) π ρ σ π [7]. However, when consideringthe Regge trajectory analy- 5 η a1(1260) 0.2 20 sis,onefindsthatthe33P1 stateinthea1 mesonfamilyhasa 2.5 KK(1270) π f0(980) ρa0(980) ma1a(s2s09ar5o)usntadte2s0c0o0ulMdebVe.cTanhdeidtwatoesufnocrotnhfier3m3Ped1sat1a(t1e9i3n0th)eanad1 04.5 4.7π f24(.19270)5.1 04.5 4.7 41.9 5.1 04.5 4.7 4.9 5.1 mesonfamily,sincetheirmassesareclosetothatofthe33P R (GeV−1) R (GeV−1) R (GeV−1) 1 stateinthea mesonfamily. Thus,theexperimentalstudyof 1 FIG. 4: (Color online) R dependence of the calculated partial and thepartialdecaywidthsofa (1930)anda (2095)willhelpto 1 1 total decay widths of thea (1930). Here, thedot-dashed linewith reducethetwopossiblecandidates—a (1930)anda (2095)— 1 1 1 bandistheexperimentaltotalwidthfromRef. [7]. Allresultsarein of the second radial excitation of the a (1260) to one. In 1 unitsofMeV. In Fig. 6, we discuss the decay behavior of a (2270) 1 TABLE V: Typical ratios of the decay widths of a (1640) corre- as the third radial excitation of a (1260). We find that the 1 1 spondingtotheRrange(4.30∼4.64)GeV−1. maindecaymodeincludesthedecaychannelsπb1(1235),πρ, Ratio Value Ratio Value πρ(1450),andπρ(1700). Inaddition,KK∗(1410),ρh1(1170), KK (1680), πσ, and σa (1260) have important contribu- Γ /Γ 0.216 0.227 Γ /Γ 0.473 0.474 ∗ 1 πρ Total ∼ πρ(1450) Total ∼ tions to the total decay width. ρa (1320), η(958)a (980), Γ /Γ 0.014 0.059 Γ /Γ 0.166 0.221 2 ′ 0 πb1(1235) Total ∼ KK∗ σπ ∼ andK K (1270)aresubordinatedecaymodes,whicharenot Γ /Γ 0.523 0.855 Γ /Γ 0.089 0.094 ∗ 1 πf2(1270) ρω ∼ πf1(1420) πf1(1285) ∼ showninFig. 6. InTableVII,wealsolistthetypicalratiosof Γ 0.166 0.221 πf0 ∼ thedecaysofthea1(2270). 7 7 20 800 6 πf(980) Total Width 16 πf(1285) 0 2 5 KK(1270) 1 1 600 4 12 1.5 ηa0(1450) B852 400 3 K*K* 8 σa(1320) 1 KK*(1430) 2 0 2 ηa(1320) KK*(1430) 200 π b1(1235) 1 2 4 0.5 2 πρ KK(1400) 0 0 0 1 0 15 120 ρπ(1300) 70 70 KK*(892) 100 πρ(1450) 60 ρ h(1170) 60 ωb(1235) 12 ηa1(1260) 50 1 50 1 80 πρ(1700) 9 40 40 σa(1260) 4600 σ π 2300 a0(980)ρ 2300 ωρ 1 6πf1(1420) 20 a(1260)ρ 10πf2(1270) 10 KK*(1410) 3 ηa(980) 1 0 0 0 0 0 3.7 4 4.3 4.6 4.9 5.2 5.5 3.7 4 4.3 4.6 4.9 5.2 5.5 3.7 4 4.3 4.6 4.9 5.2 5.5 3.7 4 4.3 4.6 4.9 5.2 5.5 R (GeV−1) R (GeV−1) R (GeV−1) R (GeV−1) FIG.5: (Coloronline)Rdependenceofthecalculatedpartialandtotaldecaywidthsofa (2095). Here,thedot-dashedlinewiththebandis 1 theexperimentaltotalwidthfromRef.[7].AllresultsareinunitsofMeV. 800 30 700 40 25 12 ηa(980) 600 3305 ρπ(1300) 1250 KK*(1410) 8 ηa1(1260) 0 450000 Total Width 2205 ρa1(1260) 150 ρh1(1170) ωb(1235) 4 πf(1420) 300 SPEC 15 0 1 0 1 200 πb1(1235) πρ 10 15 πf0(980) 4 1000 πρ(1450) 05 KK1(1400) 192 πf1(1285) KK*(892) 3 σa2(1320) ηa0(1450) 2 35 120 6 KK0(1430) 30 100 ρω 3 KK(1270) 1 KK2(1430) 0 1 0 25 80 50 1250 ρa(1450π)f2(1270) 60 3400 KK*(1680)σa1(1260) 8 K*K* 150 0 ρω(1420) 2400 πρ(1700) ρa0(980) 1200 πσ 4 ηa2(1320) 0 0 0 0 a0η(958) 4.7 5 5.3 5.6 5.9 4.7 5 5.3 5.6 5.9 4.7 5 5.3 5.6 5.9 4.7 5 5.3 5.6 5.9 R (GeV−1) R (GeV−1) R (GeV−1) R (GeV−1) FIG.6: (Coloronline)Rdependenceofthecalculatedpartialandtotaldecaywidthsofa (2270). Here,thedot-dashedlinewiththebandis 1 theexperimentaltotalwidthfromRef.[7].AllresultsareinunitsofMeV. B. b states tainedtotalwidth overlapswith experimentaldata fromRef. 1 [63]. Since b ωπ occurs via S and D waves, we obtain 1 → the D-wave/S-waveamplituderatiooftheb ωπprocess, The Regge trajectory analysis indicates that b (1235), 1 → 1 whichis0.465inourwork;thisisconsistentwiththeCrystal b (1960),andb (2240)arethegroundstate,secondradialex- 1 1 Barreldata(0.45 0.04)[10]. On the otherhand, the decay citation, and third radial excitation in the b meson family, ± 1 channelπf hasapartialdecaywidththatislessthan1MeV. respectively. Inaddition,we alsopredicta missingb (1640) 0 1 asthe firstradialexcitation. Inthe following,we studytheir decays. Asforb (1235),therearetwoalloweddecaychannels:πω As a predicted b state, b (1640) has the decay behavior 1 1 1 andπa (980). Theresultshownin Fig. 7showsthattheob- listed in Fig. 8, where we take the same R range as that 0 8 300 70 18 TABLEVII:Calculatedratiosofthedecays ofa (2270). Here, all 1 theresultscorrespondtotheRrange(5.12∼5.32)GeV−1. 250 Total Width 60 πω(1420) 15 KK*(892) Ratio Value Ratio Value 50 200 12 Γπρ/ΓTotal 0.164∼0.184 Γπf1(1285)/Γπσ 0.313∼0.435 150 40 a(1320)π ωπ 9 Γ /Γ 0.247 0.264 Γ /Γ 0.313 0.487 2 Γππbρ117(10023/5Γ)TotTalotal 0.052∼∼0.056 ΓKπKf1∗((1849220))/Γηρaa10((1928600)) 0.404∼∼0.469 100 πa0(980) 2300 ηρ 6 πa1(1260) Γ /Γ 0.064 0.070 Γ /Γ 0.532 0.612 Γσπ To/taΓl 0.134∼0.157 ηΓa0(980) π/fΓ2(1270) 0.099∼0.131 50 ρρ 10 3 σρ πa0(1450) πρ(1450) Total ∼ ηa2(1320) πf0 ∼ Γ /Γ 0.789 0.926Γ /Γ 0.236 0.273 0 0 0 ρa1(1260) ωb1(1235) ∼ ηa0(1450) ωb1(1235) ∼ 4 4.3 4.6 4.9 4 4.3 4.6 4.9 4 4.3 4.6 4.9 ΓKK1(1400)/Γρπ1300 0.352∼0.446Γηa1(1260)/ΓKK∗(1680)0.256∼0.297 R(GeV−1) R(GeV−1) R(GeV−1) Γ /Γ 0.573 0.639Γ /Γ 0.633 0.638 ρh1(1170) KK1(1400) ∼ KK∗(1410) σa1(1260) ∼ FIG. 8: (Color online) R dependence of the calculated partial and totaldecaywidthsofb (1640).AllresultsareinunitsofMeV. 1 TABLEVIII:Typicalratiosfordecaysofb (1640)correspondingto 1 R=4.20 4.90GeV 1. − 130 ∼ Ratio Value Ratio Value Γ /Γ 0.352 0.368 Γ /Γ 0.324 0.347 125 πa0(980) Total ∼ KK∗ ωπ ∼ Γ /Γ 0.164 0.263 Γ /Γ 0.565 0.681 ηρ πω(1420) ∼ πa2(1320) ρρ ∼ 120 ToTtoaTtl aowlt aiwdl itwdht ih(dπ(tωπhω)) Assuming that b (1960) is the second radial excitation of 115 1 b (1235),wepresentitstotalandpartialdecaywidthsinFig. 1 AAASSSTTTEEE 9. Ourcalculatedtotalwidthcancovertheexperimentaldata 110 giveninRef.[12].Itsmaindecaychannelsareπa (1450),πω, 0 105 πa0(980),andπω(1420),whilethepartialdecaywidthsofthe decay modes πa (1260), ρη, and πa (1320) are also consid- 1 2 100 erable. Wealsoobtainsomeratiosofpartialdecaywidthsof b (1960),whicharelistedinTableIX. 3 3.4 3.8 4.2 1 R(GeV−1) 60 30 400 FIG. 7: (Color online) R dependence of the calculated total decay Total Width πa0(980) 25 σb1(1235) width of b1(1235). Here, the dot-dashed line with the band is the 300 40 20 experimentaltotalwidthfromRef. [63]. Thetotaldecaywidthisin SPEC 200 15 unitsofMeV. ρη 100 πa0(1450) πω 20 πa1(1260) 150 KK* 0 0 KK*(1410) 0 ρη(958) 0.6 40 0.7 0.6 for a1(1640). 2 Its main decay channel is πa0(980), while 0.4 ρf0(980) 2300 πω(1420) 000...345 KK0*(1K4K310()1270) πa2(1320), ρρ, πω(1420), KK∗, and ωπ also have consider- 0.2 KK(1400) ωa0(980) 10 πa2(1320) ρρ 0.2 K*K* able contributions to the total decay width. The total decay 1 σρ 0.1 0 0 0 width is predicted to be 200 232 MeV. Table VIII shows 4.3 4.6 4.9 5.2 5.5 4.3 4.6 4.9 5.2 5.5 4.3 4.6 4.9 5.2 5.5 someratiosthatarerelevantto∼thedecaysofb (1640),which R(GeV−1) R (GeV−1) R (GeV−1) 1 is valuable for further experimental searches for this axial- vectorstate. FIG. 9: (Color online) R dependence of the calculated partial and total decay widths of b (1960). Here, the dot-dashed linewiththe 1 bandistheexperimentaltotalwidthfromRef. [12].Sincethewidth of the KK mode is tiny, we do not list its contribution here. All 2∗ resultsareinunitsofMeV. 2Sinceb1(1640)isapredicted state, wetakethesameRrangeasthatof a1(1640)topredictthedecaybehaviorofb1(1640). Thistreatmentisdue In Fig. 10, we show the decay behavior of b (2240) as tothefact thatb1(1640)isthe isospinpartner ofa1(1640), whichhas a 1 similarRrange. thethirdradialexcitationofb1(1235). Additionally,itsmain 9 In addition, there exist relations among f (1970), the pre- 1 TABLEIX:Obtainedratiosfordecaysofb (1960). Allresultscor- 1 dicted f (2110)and f (2210),and f (2310),i.e., respondtoR=4.66 5.16GeV 1. 1 1 1 − ∼ Ratio Value Ratio Value f (1970) cosφ sinφ nn¯ | 1 i = 2 − 2 | i , (9) ΓΓππaω01(492800/)Γ/ΓToTtoatlal 00..108868∼∼00..213057 ΓΓωρρπ//ΓΓTToottaall 00..002787∼∼00..013612 |f1(2110)i  sinφ2 cosφ2  |ss¯i  Γ /Γ 0.572 0.624 Γ /Γ 0.648 0.736 and ρρ πa2(1320) ∼ KK∗(892) ηρ ∼ Γ /Γ 0.029 0.030 Γ /Γ 0.249 0.316 ρf0 πa1(1260) ∼ KK1(1400) KK1(1270) ∼ f (2210) cosφ sinφ nn¯ | 1 i = 3 − 3 | i , (10)  f (2310)   sinφ cosφ  ss¯  decay modes are ωπ, πω(1420), πa0(980), and πa0(1450). | 1 i  3 3  | i  Of course, the decay modes ρρ, ρb1(1235), πa2(1320), and Here,themixinganglesφi (i = 1,2,3)cannotbeconstrained πa (1260)also have obviouscontributionsto the total decay byouranalysis.Inthefollowingdiscussions,wetakeatypical 1 width. For the convenience of further experimental studies valueφi =φ=24◦togivethequantitativeresults. of this state, we provide informationon typical ratios of the Asfor f1(1285),weshowitspartialandtotaldecaywidths partialwidthofb (2240)inTableX. inFig. 11,wherethecalculatedtotaldecaywidthisinagree- 1 ment with the experimental data from Ref. [67]. However, wenoticethatthecalculatedbranchingratioforΓ /Γ = πa0 total TABLE X: Calculated ratios for b1(2240) corresponding to R = 0.67 0.68, corresponding to R = (3.00 4.00) GeV−1, 5.20 5.54GeV−1. which∼is a little bit larger than (36 7)% lis∼ted in the PDG ∼ ± Ratio Value Ratio Value [1]. The PDG data also shows that the branching ratio of Γ /Γ 0.097 0.128 Γ /Γ 0.131 0.232 its decay ηππ can reach up to (52.4+1.9)% [1], which is the πa0(980) Total ∼ πa0(1450) Total ∼ 2.2 ΓΓπω1420/Γ/TΓotal 00..006785∼00..017012 ΓΓωπ/ΓTotal 00..107597∼00..109696 mwoarink,cownetrsibtuudtiyonthteotphreoctoetsaslesdefc1a(y12w8−i5d)thofηf1σ(1285)η.πIπnathnids πa2(1320) Total ∼ πa1(1260) ∼ f (1285) πa (980) ηππ,whichcan→becalcu→latedusing Γηρ(1450)/ΓTotal 0.055∼0.064 Γηρ/ΓTotal 0.050∼0.062 th1eQPCm→odel0. Thus,→thedecaywidthof f (1285) ησ ΓKK∗(1680)/ΓTotal 0.042∼0.057Γρf1(1285)/Γωa1(1260)0.678∼0.819 ηππcanbewrittenas[44] 1 → → Γ /Γ 0.112 0.173Γ /Γ 0.254 0.317 ρf0 ρb1(1235) ∼ ρf2(1270) KK1(1400) ∼ ΓΓKK1(1270)//ΓΓKK0∗(1430)00..293033∼00..398530ΓΓρη′(958)//ΓΓKK∗(1410) 00..316548∼00..328014 Γ(f1 →η+σ→η+ππ) KK∗(1410) KK∗(892) ∼ ωa0(980) ωa1(1260) ∼ = 1 (mf1−mη)2dr√rΓf1→η+σ(r)·Γσ→ππ(r), (11) πZ (r m2)2+(m Γ )2 4m2π − σ σ σ wheretheinteractionofσwithtwopionscanbedescribedby C. f1states theeffectiveLagrangian Whendiscussing f1 states,weneedtoconsidertheadmix- Lσππ =gσσ(2π+π−+π0π0). (12) turesoftheflavorwavefunctions nn¯ =(uu¯ + dd¯ )/√2and | i | i | i Thecouplingconstantg = 2.12 2.81GeV is determined |ss¯i. f1(1285)and f1(1420)/f1(1510)satisfy by the total width Γ =σ400 70∼0 MeV [1], and the decay σ ∼ widthreadsas f (1285) cosφ sinφ nn¯ | 1 i = − | i , (7) |f1(1420)/f1(1510)i  sinφ cosφ  |ss¯i  Γσ→ππ(r)= g82σπλr2[(r−(22m√πr)2)r]1/2, (13) where both f (1420) and f (1510) are partners of f (1285). 1 1 1 (Wepresenttheirdecaybehaviorsbelow.)φdenotesamixing whereλ= √2and1forπ+π andπ0π0,respectively. − angle. This mixing angle was determined in a phenomeno- Theprocess f (1285) πa (980) ηππiscalculatedina logical way [64] and is given by φ = (20 30) , which is 1 → 0 → consistentwithφ = (24+3.2) reportedbythe−LHC◦bCollabo- similarway,andtheequationisgivenby 2.7 ◦ ration [65] and φ = (21− 5) from the updatedlattice QCD ◦ Γ(f a +π η+ππ) ± 1 0 analysis [66]. When calculating the decays of f (1285) and → → f1(1420)/f1(1510),wetaketheLHCbvalueφ=214◦. = 1 (mf1−mπ)2dr√rΓf1→π+a0(r)·Γa0→ηπ(r), (14) In Fig. 1, we have predicted that f1(1640) is the first ra- πZ(mπ+mη)2 (r−m2a0)2+(ma0Γa0)2 dial excitation of f (1285) and that f (1800) is a partner of 1 1 f1(1640);thesetwopredictedaxial-vectormesonsarerelated wherethedecaywidthfora0(980)→ηπis by Γ (r) a0(980)→ηπ f (1640) cosφ sinφ nn¯ g2 [(r (m +m )2)(r (m m ))2]1/2 | 1 i = 1 − 1 | i , (8) = a0 − η π − η− π , (15) |f1(1800)i  sinφ1 cosφ1  |ss¯i  8πr 2√r 10 800 60 100 2.5 KK*(1430) 2 600 Total Width 45 πa(980) 80 πa2(1320) 2 0 60 πa0(1450) 1.5 ρf0(980) 400 30 SPEC πω(1420) 40 1 ρf(1420) 200 ωπ 15 ρb(1235) ωπ(1300) 20 σb1(1235)0.5 ρf2(1270) 1 ρρ 1 π a(1260) 0 0 0 1 0 4 18 ωa1(1260) 50 20 15 40 ρη 3 KK*0(1430) KK1(1400) 12 30 15 2 KK1(1270) 69 KK*(1410)a0h1(1170) 20 KK*(1680) ηρ(1450) 10 σρ KK*(892) 01 K*K* 03 ωa2(1320)100 ρη(958) 05 ρf1(1ω2a805()980) 4.8 5.1 5.4 5.7 6 4.8 5.1 5.4 5.7 6 4.8 5.1 5.4 5.7 6 4.8 5.1 5.4 5.7 6 R (GeV−1) R (GeV−1) R (GeV−1) R (GeV−1) FIG.10: (Coloronline)Rdependenceofthecalculatedpartialandtotaldecaywidthsofb (2240). Here,thedot-dashedlinewiththebandis 1 theexperimentaltotalwidthfromRef. [12]. WedonotpresenttheK K (1270)contributionsincethisdecayhasatinywidth. Allresultsare ∗ 1 inunitsofMeV. 45 25 f1(1420) and f1(1510) as partners of f1(1285). As for f (1420),theobtainedtotaldecaywidthcanoverlapwiththe 1 36 Total width 20 DM2result[68],asshowninFig. 12. Itsmaindecaychannel is KK . Thus, the present study of decay of f (1420) sup- ∗ 1 27 MPS2 15 portsthepredictionthat f1(1420)isapartnerof f1(1285). As for f (1510), its partial and total decay widths are listed in 1 Fig.13, whichshowsthatthecalculatedtotaldecaywidthis 18 πa (980) 10 ηππ(total) 0 larger than the experimentaldata [68]. Thus, the possibility that f (1510)isapartnerof f (1285)canbeexcluded. 9 5 ηππ(ησ) 1 1 ησ 0 0 350 0.5 3 3.4 3.8 4.2 3 3.4 3.8 4.2 R (GeV−1) R (GeV−1) 300 Total Width 0.4 250 FIG.11: (Coloronline)Rdependenceofthetotalandpartialdecay widthsof f (1285). Wealsopresentthedecaywidthof f (1285) 200 KK* 0.3 1 1 → aηnπdπovnialythfreominttehremiendtieartmeecdhiaanteneclhsanηnσelanηdσπ(pai0n(k98b0a)n(dg)r.eeHnerbea,ntdh)e, 150 LASS 0.2 ση experimentaltotalwidthfromRef.[67]isdenotedbythedot-dashed 100 linewiththeband.AllresultsareinunitsofMeV. 0.1 πa (1260) 50 πa 1 0 0 0 wishedreeterthmeinceodupblyingthceontosttaanltwgiad0th=of1.a26(2980∼) (2Γ.524 GeV= 2 2.4R (G2e.8V−13).2 3.6 2 2.4R (G2e.8V−13).2 3.6 0 a0(980) 50 100 MeV). The final result of the width of ∼ f (1285) πa (980) ηππincludesthecontributionsfrom FIG.12: (Coloronline)Rdependenceofthetotalandpartialdecay 1 0 bothηπ0π→0andηπ+π .→ widths of f (1420). Here, the experimental total width from Ref. − 1 Thedecaywidthof f (1285) ηππviaboththeinterme- [68]isshownbythedot-dashedlinewiththeband.Allresultsarein 1 diateησandπa (980)channelsa→ndonlytheintermediateησ unitsofMeV. 0 channel are shown in Fig. 11. In addition, the decay width of f (1285) ηππ from the intermediate πa (980) chan- In Figs. 14 and 15, we further illustrate the decay prop- 1 0 → nel is comparable with the corresponding experimental data erties of the two predicted states f (1640) and f (1800). In 1 1 [(16 7)%]inthePDG[1]. addition, we also list some of their typical ratios, which are ± In the following, we discuss the decay behaviors of weakly dependent on the R value (see Table XI), where we

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.