Lightaxialvectormesons Kan Chen1,2, Cheng-Qun Pang1,2, Xiang Liu1,2 , and Takayuki Matsuki3,4,1 ∗ † ‡§ ¶ 1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China 2ResearchCenterforHadronandCSRPhysics,LanzhouUniversity&InstituteofModernPhysicsofCAS,Lanzhou730000,China 3Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173-8602, Japan 4Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198, Japan Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vectorstatescanbecategorizedintotheconventional axial-vectormesonfamily. Inthispaperwecarry outananalysisbasedonthemassspectraandtwo-bodyOkubo-Zweig-Iizuka-alloweddecays. Besidestesting the possible axial-vector meson assignments, we also predict abundant information for their decays and the propertiesofsomemissingaxial-vectormesons,whicharevaluableforfurtherexperimentalexplorationofthe 5 observedandpredictedaxial-vectormesons. 1 0 PACSnumbers:14.40.Be,12.38.Lg,13.25.Jx 2 r p I. INTRODUCTION Thispaperis organizedasfollows. In Sec. II, we present A the phenomenologicalanalysis by combiningour theoretical results with the correspondingexperimentaldata; the Regge 8 Among the light unflavored mesons listed in the Particle 1 trajectory analysis is adopted to study mass spectra of the Data Group (PDG) [1], there are abundantlight axial-vector axial-vectormesonfamilyandthequark-paircreation(QPC) mesons with a spin-parityquantum number JP = 1+, which ] modelisappliedtocalculatetheirOZI-allowedstrongdecay h form a P-wave meson family. Usually, we adopt h , b , f , 1 1 1 behavior. Finally,thediscussionandconclusionare givenin p and a to expressthe correspondingstates with the quantum - numb1ers IG(JPC) = 0 (1+ ), 1+(1+ ), 0+(1++), and 1 (1++), Sec. III. p − − − − e respectively. InTableI,wecollecttheexperimentalinforma- h tion on the observed h , b , f , and a states, as well as the 1 1 1 1 [ correspondingresonanceparametersand the observeddecay II. PHENOMENOLOGICALSTUDYOFOBSERVED AXIAL-VECTORSTATES channels. 3 v Facingsomanyaxial-vectorstatesinthePDG,weneedto A Regge trajectory analysis is an effective approach to 6 examinewhetherallofthesestatescanbecategorizedintothe 6 axial-vectormesonfamily,whichiscrucialforrevealingtheir studya meson spectrum[31], especially a light-mesonspec- 7 trum. The masses and radial quantum numbers of light underlyingstructures. We also notice that most axial-vector 7 mesonswiththesamequantumnumbersatisfythefollowing states are either omitted by the PDG or are recent findings 0 relation: . needingconfirmation. Duetotheunclearexperimentalstatus 1 of light axial-vector states, we need to carry out a quantita- 0 M2 = M2+(n 1)µ2, (1) tiveinvestigationofthem,whichwouldbehelpfulforfurther 0 − 5 experimental studies, especially of those axial-vector states 1 where M and M are the masses of the groundstate and the : either omitted by the PDG or unconfirmed by other experi- 0 v correspondingradial excitation with radial quantum number ments. i n, respectively. µ2 denotes the slope of the trajectory with a X Inthis work, we carryouta systematic studyof theaxial- universalµ2 =1.25 0.15GeV2[31]. r vector states by analyzing mass spectra and Okubo-Zweig- InFig.1,weprese±nttheReggetrajectoryanalysis,inwhich a Iizuka(OZI)-allowedtwo-bodystrongdecaybehaviors. Our weconsideralloftheaxial-vectorstateslistedinthePDGas investigationsarebasedonthe assumptionthatalloftheax- showninTableI.Besidestheobservedones,wealsopredict ial mesons can be explainedwithin the conventionalqq¯ pic- some missing states and show them in Fig. 1. Additionally, ture. Comparingournumericalresultswiththeexperimental we notice that there are two possible candidates for the a 1 data,wecanfurthertestthepossibleassignmentsofthestates meson with quantum number n2s+1J = 33P , i.e., a (1930) L 1 1 in the axial-vector meson family. In addition, information anda (2095). Ontheotherhand,both f (1420)and f (1510) 1 1 1 onthepredicteddecaysoftheaxial-vectorstatesobservedor canbeanss¯partnerof f (1285)byanalyzingonlytheRegge 1 stillmissinginexperimentsisvaluabletofurtherexperimental trajectory. Thus,afurtherstudyoftheirstrongdecaybehav- studyofaxial-vectormeson. iors would help to test these possible assignmentsto the ob- servedaxial-vectorstatesandcouldprovidemorepredictions oftheobservedandstill-missingaxial-vectormesons,which arevaluableforthe futureexperimentalexplorationofaxial- ‡Correspondingauthor vectormesons. Electronicaddress:chenk˙[email protected] ∗ To obtain the decay behaviorsof the axial-vectormesons, Electronicaddress:[email protected] † weadopttheQPCmodel,whichwasfirstproposedbyMicu Electronicaddress:[email protected] § Electronicaddress:[email protected] [32]andfurtherdevelopedbytheOrsaygroup[33–37]. This ¶ 2 TABLEI:Resonanceparametersandstrongdecaychannelsoftheaxial-vectorstatescollectedinthePDG[1]. Themassesandwidthsare averagevaluestakenfromthePDG.ThestatesomittedfromthePDGsummarytablearemarkedbyasuperscript♮,whilethestateslistedas furtherstatesinthePDGaremarkedbyasuperscript♭. IG(JPC) State Mass(MeV) Width(MeV) Theobserveddecaychannels a (1260) 1230 40 250 600 3π[2],πρ[3],σπ[4] 1 ± ∼ a (1640)♮ 1647 22 254 27 3π[5],πρ[4,6],σπ[5], f (1270)π[5] 1 ± ± 2 1 (1++) a (1930)♭ 1930+30 155 45 3π0[7] − 1 70 ± − a (2095)♭ 2096 17 121 451 41 81 π+π π [8] 1 ± ± ± ± − − a (2270)♭ 2270+55 305+70 3π0[7] 1 40 40 − − b (1235) 1229.5 3.2 142 9 ωπ[9–11] 1 ± ± 1+(1+ ) b (1960)♭ 1960 35 345 75 ωπ0[12] − 1 ± ± b (2240)♭ 2240 35 320 85 ωπ0[12] 1 ± ± f (1285) 1282.1 0.6 24.2 1.1 ρ0ρ0[13],ηππ[14–16],a π[15–17],KK¯π[15,16,18] 1 ± ± 0 f (1420) 1426.4 0.9 54.9 2.6 KK¯π[19,20],KK¯ (892)+c.c[18–20] 1 ± ± ∗ 0+(1++) f (1510)♮ 1518 5 73 25 KK¯ (892)+c.c[21,22],π+π η[23] 1 ± ± ∗ − ′ f (1970)♭ 1971 15 240 45 ηπ0π0[24] 1 ± ± f (2310)♭ 2310 60 255 70 ηπ0π0[24] 1 ± ± h (1170) 1170 20 360 40 πρ[25–27] 1 ± ± h (1380)♮ 1386 19 91 30 KK¯ (892)+c.c[21,28] 1 ± ± ∗ 0 (1+ ) h (1595)♮ 1594 15+10 384 60+70 ωη[29] − − 1 ± 60 ± 100 − h (1965)♭ 1965 45 345 75 ωη[30] 1 ± ± h (2215)♭ 2215 40 325 55 ωη[30] 1 ± ± modelwaswidelyappliedtostudytheOZI-allowedtwo-body canbetreatedseparately. Inaddition,iand jdenotethecolor strongdecayofhadrons[38–59]. Inthefollowing,webriefly indicesofaqq¯ pair. introducetheQPCmodel. By the Jacob-Wick formula [60], the decay amplitude is ForadecayprocessA B+C,wecanwrite expressedas → hBC|T|Ai=δ3(PB+PC)MMJAMJBMJC, (2) JL(P) = √4π(2L+1) L0;JM J M wherePB(C)isathree-momentumofamesonB(C)intherest M 2JA+1 MXJBMJCh JA| A JAi afrnamorebiotaflammagensoetnicAm. oAmesnutbusmcr.ipTthMetJria(ins=itioAn,Bop,Cer)atdoernoteiss ×hJBMJB;JCMJC|JAMJAiMMJAMJBMJC, (4) T introduced to describe a quark-antiquark pair creation from andthegeneraldecaywidthreads vacuum, which has the quantumnumber JPC = 0++, i.e., T canbeexpressedas π P Γ = | | JL(P)2, (5) 4m2 X|M | A J,L = 3γ 1m;1 m00 dp dp δ3(p +p ) T − Xm h − | iZ 3 4 3 4 wheremA isthemassofaninitialstate A. Weusethesimple p p harmonicoscillatorwavefunctiontodescribethespacewave ×Y1m(cid:18) 3−2 4(cid:19)χ314,−mφ304(cid:16)ω304(cid:17)ijb†3i(p3)d4†j(p4), (3) functionofmesons,whichhasthefollowingexpression: which is constructedin a completelyphenomenologicalway Ψ (R,p)= (R,p) (p), (6) nlm nl lm toreflectthecreationofaquark-antiquarkpairfromvacuum, R Y where the quark and antiquark are denoted by indices 3 and wheretheconcretevaluesoftheparameterRinvolvedinour 4, respectively. As a dimensionlessparameter, γ depicts the calculationaregiveninRef. [61]forthegroundstates. How- strength of the creation of qq¯ from vacuum, where γ = 8.7 ever,itsvalueistobefixedforeachexcitedstate. and 8.7/√3 [51] correspondsto the uu¯/dd¯and ss¯ creations, With the above preparation, we further discuss the OZI- respectively. (p) = pℓY (p)isthesolidharmonic. χ,φ, alloweddecaybehaviorsoftheaxial-vectormesons. The al- ℓm ℓm Y | | andωdenotethespin,flavor,andcolorwavefunctions,which loweddecaymodesarelistedinTablesIIandIII. 3 6 6 a(2270) 1 5 5 a1(2095) b1(2240) 4 4 2GeV) 3 a1(1930) 2GeV) 3 b1(1960) 2M( a1(1640) 2M( b1(1640) 2 2 a(1260) 1−1+ b(1235) 1+1+ 1 1 1 1 0 1 2 3 4 5 0 1 2 3 4 5 n n 6 6 f1(2310) h1(2340) 5 5 f1(2110) f1(2210) h1(2120) h1(2215) 4 4 2GeV) 3 f(1510) f1(1800) f1(1970) 2GeV) 3 h1(1780) h1(1965) 2M( 1 f1(1640) 2M( h(1380) 2 2 1 h(1595) f(1420) 1 1 1 f1(1285) 0+1++ 1 h(1170) 0−1+− 1 0 1 2 3 4 5 0 1 2 3 4 5 n n FIG.1: (Coloronline)Reggetrajectoryanalysisfora ,b , f ,andh withtypicalµ2 =1.30GeV2,1.19GeV2,1.10GeV2,and1.19GeV2, 1 1 1 1 respectively,whichcanbecoveredbyµ2 =1.25 0.15GeV2giveninRef. [31]. Theexperimentalerrorsofdiscussedaxial-vectorstatesare ± given,whicharetakenfromthePDG[1].Here, and denotetheoreticalandexperimentalvalues,respectively. ◦ • A. a states 1 500 40 The Regge trajectory analysis indicates that a (1260) can 1 σπ be regardedasa groundstate. Theobtainedtotalandpartial 30 decay widths of a1(1260) are listed in Fig. 2, which shows 450 CMD−2 thatπρisthedominantchannel. InFig. 2,wegivethepartial decaywidthsofa1(1260) πρfromtheS-waveandD-wave Total Width 20 (πρ) contributions. Here, the →D-wave/S-wave amplitude ratio in D the decay a (1260) πρ is 0.248 with a typical value of 400 1 bRle=w3i.t8h4t6heGBeV85−21 [d6a→1ta]i(n0o.u1r4−calc0u.0la4tion0,.0w7h)ic[4h].isOcuormrpeasrual-t (πρ)S 10 πf0(980) − ± ± alsoshowsthata1(1260) f0πisasubordinatedecaymode 350 with the partial decay wid→th 1.82 MeV, which explains why 3.3 3.6 3.9 4.2 4.5 3.3 3.6 3.9 4.2 4.5 therehasbeennoevidenceofa (1260) f πinexperiments R (GeV−1) R(GeV−1) 1 0 → [3]. AsshowninFig. 2,thecalculatedtotalwidthcanrepro- ducetheCMD2datagiveninRef. [62]. Inaddition,wealso FIG. 2: (Color online) Total and partial decay widths of a (1260) 1 give some typical ratios relevant to the partial decay and to- depending on R. Here, the dot-dashed line with the band is taken talwidthstogetherwiththecorrespondingexperimentaldata fromtheexperimentaldatafromRef.[62].TheS-waveandD-wave contributions to the decay width of a (1260) πρ are also given inTableIV.Insummary,ourresultsarecomparablewiththe 1 → separately.AllresultsareinunitsofMeV. experimentalvaluesandsupporta (1260)asagroundstatein 1 thea mesonfamily. 1 If a (1640) is the first radial excitation of a (1260), its 1 1 decay behavior depending on the R value is shown in Fig. 3. We use the experimental total width [5] and the ratio Γ(f (1270)π)/Γ(σπ)=0.24 0.07[5]togetR=(4.30 4.64) 2 ± ∼ 4 TABLEII:OZI-allowedtwo-bodydecaychannelsfora andh statesmarkedby√. Here,ρ,ω,andηdenoteρ(770),ω(782), andη(548), 1 1 respectively.Theaxial-vectorstatespredictedbytheReggetrajectoryanalysisaremarkedbyasuperscript♮. Channel a1(1260)a1(1640)a1(1930)a1(2095)a1(2270) Channel h1(1170)h1(1380)h1(1595)h♮1(1780)h1(1965)h♮1(2120)h1(2215)h♮1(2340) πρ √ √ √ √ √ πρ √ √ √ √ √ √ √ √ σπ √ √ √ √ √ KK √ √ √ √ √ √ √ ∗ πf √ √ √ √ √ ηω √ √ √ √ √ √ √ 0 πf (1420) √ √ √ √ ωσ √ √ √ √ √ √ 1 πρ(1450) √ √ √ √ KK (1270) √ √ √ √ √ 1 ρω √ √ √ √ ωη(958) √ √ √ √ √ ′ ηa (980) √ √ √ √ ωf √ √ √ √ √ 0 0 KK √ √ √ √ ρa (980) √ √ √ √ √ ∗ 0 πb (1235) √ √ √ √ πρ(1450) √ √ √ √ √ 1 πf (1270) √ √ √ √ KK (1400) √ √ √ √ 2 1 πf (1285) √ √ √ √ KK (1410) √ √ √ √ 1 ∗ ρa (980) √ √ √ KK (1430) √ √ √ √ 0 0∗ KK (1400) √ √ √ KK (1430) √ √ √ √ 1 2∗ ηa (1260) √ √ √ K K √ √ √ √ 1 ∗ ∗ πρ(1700) √ √ √ ηω(1420) √ √ √ √ KK (1270) √ √ √ σh (1170) √ √ √ √ 1 1 KK (1410) √ √ √ πρ(1700) √ √ √ √ ∗ KK (1430) √ √ √ ρa (1320) √ √ √ 0∗ 2 KK (1430) √ √ √ ωf (1270) √ √ √ 2∗ 2 K K √ √ √ σω(1420) √ √ √ ∗ ∗ ηa (1320) √ √ √ ωf (1285) √ √ √ 2 1 σa (1260) √ √ √ ρπ(1300) √ √ √ 1 σa (1320) √ √ √ ρa (1260) √ √ √ 2 1 ρπ(1300) √ √ K K (1270) √ √ ∗ 1 ηa (1450) √ √ f h (1170) √ √ 0 0 1 ωb (1235) √ √ KK (1680) √ √ 1 ∗ ρh (1170) √ √ ωf (1420) √ √ 1 1 ρa (1260) √ √ K K (1400) √ 1 ∗ 1 K K (1270) √ ∗ 1 ρa (1320) √ 2 ρω(1420) √ ρa (1450) √ 0 KK (1680) √ ∗ η(958)a (980) √ ′ 0 GeV 11.Themaindecaymodesofa (1640)areπρ,πρ(1450), TableV. − 1 πf (1270),πf (1285),andρω. Additionally,we providefur- 2 1 Therearetwopossiblecandidatesforthesecondradialex- ther information on the typical ratios of a (1640) decays in 1 citation of a (1260). In the following, we discuss the decay 1 behaviorsof a (1930)anda (2095)by combiningthe corre- 1 1 spondingexperimentaldata. InFigs. 4and5,wepresentthe R dependence of the decay behaviors of these a ’s, respec- 1 1Using the experimental total width [5], we find that overlap exists be- tively.Thatis,theobtainedtotalwidthofa (1930)canbefit- tween ourtheoretical andexperimental results whentakingR = 4.26 1 4.92 GeV−1. Then, we can further constrain the R values by the rati∼o tedwiththedatafromRef. [7]whenR=4.58∼4.92GeV−1, Γ(f2(1270)π)/Γ(σπ)=0.24 0.07[5],wheretheconstrainedR=(4.30 whilethatofa1(2095)canoverlapwiththeexperimentaldata 4.64)GeV−1,whichisadopt±edtopresentothertypicalratiosofa1(1640)∼. [7] when R = (4.78 5.16) GeV−1. Thus, it is difficult to ∼ distinguish which a is more suitable as a candidate for the 1 5 TABLEIII:OZI-allowedtwo-bodydecaychannelsforb and f statesmarkedby√. Here,ρ,ω,andηdenoteρ(770),ω(782),andη(548), 1 1 respectively.Theaxial-vectorstatespredictedbytheReggetrajectoryanalysisaremarkedbyasuperscript♮. Channel b1(1235)b♮1(1640)b1(1960)b1(2240) Channel f1(1285)f1(1420)f1(1510)f1♮(1640)f1♮(1800)f1(1970)f1♮(2110)f1♮(2210)f1(2310) πω √ √ √ √ πa (980) √ √ √ √ √ √ √ √ √ 0 πa (980) √ √ √ √ ση √ √ √ √ √ √ √ √ √ 0 πa (1260) √ √ √ πa (1260) √ √ √ √ √ √ √ √ 1 1 πa (1320) √ √ √ KK √ √ √ √ √ √ √ √ 2 ∗ πω(1420) √ √ √ πa (1320) √ √ √ √ √ √ √ 2 πa (1450) √ √ √ πa (1450) √ √ √ √ √ √ 0 0 ηρ √ √ √ ηf √ √ √ √ √ √ 0 ρρ √ √ √ ρρ √ √ √ √ √ √ KK √ √ √ ωω √ √ √ √ √ √ ∗ σρ √ √ √ ση √ √ √ √ √ √ ′ η(958)ρ √ √ KK (1270) √ √ √ √ √ ′ 1 ρf √ √ K K √ √ √ √ √ 0 ∗ ∗ ωa (980) √ √ ωh (1170) √ √ √ √ 0 1 KK (1270) √ √ η(958)f √ √ √ √ 1 ′ 0 KK (1400) √ √ ηf (1270) √ √ √ √ 1 2 KK (1410) √ √ KK (1400) √ √ √ √ 0∗ 1 KK (1430) √ √ KK (1410) √ √ √ √ 0∗ ∗ KK (1430) √ √ KK (1430) √ √ √ √ 2∗ 0∗ σb (1235) √ √ KK (1430) √ √ √ √ 1 2∗ K K √ √ ηf (1285) √ √ √ √ ∗ ∗ 1 ωa (1320) √ σf (1270) √ √ √ √ 2 2 ωπ(1300) √ σf (1285) √ √ √ √ 1 K K (1270) √ σf (1420) √ √ √ ∗ 1 1 ηρ(1450) √ ρb (1235) √ √ √ 1 KK (1680) √ ηf (1420) √ √ √ ∗ 1 a (980)h (1170) √ ωω(1420) √ √ 0 1 ρf (1270) √ K K (1270) √ √ 2 ∗ 1 ρf (1285) √ KK (1680) √ 1 ∗ ρf (1420) √ f f (1270) √ 1 0 2 ρb (1235) √ f f (1285) √ 1 0 1 ωa (1260) √ a (980)a (1260) √ 1 0 1 a (980)π(1300) √ 0 a (980)a (1320) √ 0 2 η(958)f (1270) √ ′ 2 ρρ(1450) √ η(958)f (1285) √ ′ 1 K K (1400) √ ∗ 1 secondradialexcitationofa (1260)bystudyingonlythetotal whiletheπf (1285)andσπmodesalsohavesizablecontribu- 1 1 decay widths. Besides, we can learn from the Regge trajec- tions. The decays of a (1930) into KK (1430), KK (1430), 1 0∗ 2∗ tory analysis that there is only one state for the 33P state, and K (896)K (896) have tiny decay widths, which are not 1 ∗ ∗ and it is doubtful that both a (1930) and a (2095) exist, as listedinFig. 4. Asfora (2095),itsdominantdecaychannels 1 1 1 mentionedin Ref. [7]. However,thereexistdifferentbehav- areπb (1235),πρ,andπρ(1450)andareshowninFig. 5. The 1 iors of the partial decay widths of these a ’s. The a (1930) other decay channels—like ρa (980), πρ(1700), πf (1285), 1 1 0 1 mainly decaysinto finalstates πρ, πρ(1450),and πb (1235), πf , and σπ—also haveconsiderablecontributionsto the to- 1 0 6 thefollowing,theexperimentalconfirmationofa (1930)and 1 TABLE IV: Some typical ratiosof decay widths of a (1260). The 1 a (2095) will be crucial for identifying the candidate of the Γ(πρ) representtheS(D)-wavedecaywidthofa (1260) πρ. 1 S(D) 1 → 33P1 state in the a1 mesonfamily. If a1(1930)and a1(2095) Ourwork Experimentaldata cannot be established in experiments, we suggest an experi- Γ((πρ) )/Γ 0.86 0.60[3] mentalsearchfora (33P );theresultsfora (33P )predicted S Total 1 1 1 1 Γ((πρ) )/Γ 5.3 10 2 (1.30 0.60 0.22) 10 2 [3] inthisworkwouldbehelpfulforsuchasearch. D Total × − ± ± × − Γ /Γ 8.2 10 2 (18.76 4.29 1.48) 10 2 [3] πσ Total × − ± ± × − Γ /Γ 0.09 0.06 0.05[1] σπ (ρπ)S ± TABLEVI:Typicalratiosfora (1930)anda (2095). TheRranges 1 1 are(4.58 4.92)GeV 1 and(4.78 5.16)GeV 1fora (1930)and ∼ − ∼ − 1 30 a1(2095),respectively. 360 Total width 310 SPEC 25 ρω Ratio a1(1930) a1(2095) 260 20 Γπρ/ΓTotal 0.151∼0.162 0.139∼0.176 210 πρ(1450) 15 Γπb1(1235)/ΓTotal 0.092∼0.1600.206∼0.2542 160 Γ /Γ 0.005 0.0240.039 0.0529 11600 πρ(770) 150 πf2(1270) πf1(1285) Γσπρπ(/17Γ0T0)otalTotal 0.088∼∼0.097 0.058∼∼0.073 Γ /Γ 0.339 0.347 0.189 0.253 10 0 πρ(1450) Total ∼ ∼ Γ /Γ 0.271 0.462 0.348 1.813 πb1(1235) πρ(1450) ∼ ∼ 40 πb1(1235) 1.6 πf(1420) Γηa1(1260)/ΓKK∗(892) 0.629∼0.719 1.141∼1.742 32 1 Γ Γ 0.705 0.850 0.188 0.451 σπ 1.2 ρω πf2(1270) ∼ ∼ 24 KK*(892) Γηa0(980)/Γπρ(1700) 0.317∼0.809 0.239∼0.279 0.8 Γ /Γ 0.508 0.553 1.693 4.846 16 KK1(1400) ηa2(1320) ∼ ∼ 8 πf0(980) 0.4 a0η ΓKK1(1400)/Γρa0(980) − 0.145∼0.184 Γ /Γ 0.206 0.838 ηa0(1450) KK0∗(1430) − ∼ 0 0 4 4.2 4.4 4.6 4.8 5 4 4.2 4.4 4.6 4.8 5 R (GeV−1) R (GeV−1) 300 FIG. 3: (Color online) R dependence of the decay behaviors of 10 Total Width 20 a (1640).Here,thedot-dashedlinewiththebandistheexperimental to1talwidthfromRef.[5].AllresultsareinunitsofMeV. 200 8 KK*(892) 16 π f(1285) SPEC 6 f(1420)π 12 1 100 πρ(1450) 4 1 8 π ρ(170a01)(1260)σ tal decay width. In Table VI, we also list some typical ra- 2 ηa0(980) 4 ρ ω tios relevantto theirdecays. We still needto emphasizeone 0 π b1(1235) 0 0 plioshinetd. iAntepxrpeesreinmt,enat1s(.19T3h0e)aauntdhoar1s(o2f09R5e)f.ar[e7]nointdwicealtleedsttahba-t 12.5 KK*(1410) 0.6 ηa2(1320) 40 a2(1950)anda1(1930)arenotsecurelyidentifiedinmassand 10 0.4 width,thoughsomesuchcontributionsaredefinitelyrequired 7.5 KK1(1400) π ρ σ π [7]. However, when consideringthe Regge trajectory analy- 5 η a1(1260) 0.2 20 sis,onefindsthatthe33P1 stateinthea1 mesonfamilyhasa 2.5 KK(1270) π f0(980) ρa0(980) ma1a(s2s09ar5o)usntadte2s0c0o0ulMdebVe.cTanhdeidtwatoesufnocrotnhfier3m3Ped1sat1a(t1e9i3n0th)eanad1 04.5 4.7π f24(.19270)5.1 04.5 4.7 41.9 5.1 04.5 4.7 4.9 5.1 mesonfamily,sincetheirmassesareclosetothatofthe33P R (GeV−1) R (GeV−1) R (GeV−1) 1 stateinthea mesonfamily. Thus,theexperimentalstudyof 1 FIG. 4: (Color online) R dependence of the calculated partial and thepartialdecaywidthsofa (1930)anda (2095)willhelpto 1 1 total decay widths of thea (1930). Here, thedot-dashed linewith reducethetwopossiblecandidates—a (1930)anda (2095)— 1 1 1 bandistheexperimentaltotalwidthfromRef. [7]. Allresultsarein of the second radial excitation of the a (1260) to one. In 1 unitsofMeV. In Fig. 6, we discuss the decay behavior of a (2270) 1 TABLE V: Typical ratios of the decay widths of a (1640) corre- as the third radial excitation of a (1260). We find that the 1 1 spondingtotheRrange(4.30∼4.64)GeV−1. maindecaymodeincludesthedecaychannelsπb1(1235),πρ, Ratio Value Ratio Value πρ(1450),andπρ(1700). Inaddition,KK∗(1410),ρh1(1170), KK (1680), πσ, and σa (1260) have important contribu- Γ /Γ 0.216 0.227 Γ /Γ 0.473 0.474 ∗ 1 πρ Total ∼ πρ(1450) Total ∼ tions to the total decay width. ρa (1320), η(958)a (980), Γ /Γ 0.014 0.059 Γ /Γ 0.166 0.221 2 ′ 0 πb1(1235) Total ∼ KK∗ σπ ∼ andK K (1270)aresubordinatedecaymodes,whicharenot Γ /Γ 0.523 0.855 Γ /Γ 0.089 0.094 ∗ 1 πf2(1270) ρω ∼ πf1(1420) πf1(1285) ∼ showninFig. 6. InTableVII,wealsolistthetypicalratiosof Γ 0.166 0.221 πf0 ∼ thedecaysofthea1(2270). 7 7 20 800 6 πf(980) Total Width 16 πf(1285) 0 2 5 KK(1270) 1 1 600 4 12 1.5 ηa0(1450) B852 400 3 K*K* 8 σa(1320) 1 KK*(1430) 2 0 2 ηa(1320) KK*(1430) 200 π b1(1235) 1 2 4 0.5 2 πρ KK(1400) 0 0 0 1 0 15 120 ρπ(1300) 70 70 KK*(892) 100 πρ(1450) 60 ρ h(1170) 60 ωb(1235) 12 ηa1(1260) 50 1 50 1 80 πρ(1700) 9 40 40 σa(1260) 4600 σ π 2300 a0(980)ρ 2300 ωρ 1 6πf1(1420) 20 a(1260)ρ 10πf2(1270) 10 KK*(1410) 3 ηa(980) 1 0 0 0 0 0 3.7 4 4.3 4.6 4.9 5.2 5.5 3.7 4 4.3 4.6 4.9 5.2 5.5 3.7 4 4.3 4.6 4.9 5.2 5.5 3.7 4 4.3 4.6 4.9 5.2 5.5 R (GeV−1) R (GeV−1) R (GeV−1) R (GeV−1) FIG.5: (Coloronline)Rdependenceofthecalculatedpartialandtotaldecaywidthsofa (2095). Here,thedot-dashedlinewiththebandis 1 theexperimentaltotalwidthfromRef.[7].AllresultsareinunitsofMeV. 800 30 700 40 25 12 ηa(980) 600 3305 ρπ(1300) 1250 KK*(1410) 8 ηa1(1260) 0 450000 Total Width 2205 ρa1(1260) 150 ρh1(1170) ωb(1235) 4 πf(1420) 300 SPEC 15 0 1 0 1 200 πb1(1235) πρ 10 15 πf0(980) 4 1000 πρ(1450) 05 KK1(1400) 192 πf1(1285) KK*(892) 3 σa2(1320) ηa0(1450) 2 35 120 6 KK0(1430) 30 100 ρω 3 KK(1270) 1 KK2(1430) 0 1 0 25 80 50 1250 ρa(1450π)f2(1270) 60 3400 KK*(1680)σa1(1260) 8 K*K* 150 0 ρω(1420) 2400 πρ(1700) ρa0(980) 1200 πσ 4 ηa2(1320) 0 0 0 0 a0η(958) 4.7 5 5.3 5.6 5.9 4.7 5 5.3 5.6 5.9 4.7 5 5.3 5.6 5.9 4.7 5 5.3 5.6 5.9 R (GeV−1) R (GeV−1) R (GeV−1) R (GeV−1) FIG.6: (Coloronline)Rdependenceofthecalculatedpartialandtotaldecaywidthsofa (2270). Here,thedot-dashedlinewiththebandis 1 theexperimentaltotalwidthfromRef.[7].AllresultsareinunitsofMeV. B. b states tainedtotalwidth overlapswith experimentaldata fromRef. 1 [63]. Since b ωπ occurs via S and D waves, we obtain 1 → the D-wave/S-waveamplituderatiooftheb ωπprocess, The Regge trajectory analysis indicates that b (1235), 1 → 1 whichis0.465inourwork;thisisconsistentwiththeCrystal b (1960),andb (2240)arethegroundstate,secondradialex- 1 1 Barreldata(0.45 0.04)[10]. On the otherhand, the decay citation, and third radial excitation in the b meson family, ± 1 channelπf hasapartialdecaywidththatislessthan1MeV. respectively. Inaddition,we alsopredicta missingb (1640) 0 1 asthe firstradialexcitation. Inthe following,we studytheir decays. Asforb (1235),therearetwoalloweddecaychannels:πω As a predicted b state, b (1640) has the decay behavior 1 1 1 andπa (980). Theresultshownin Fig. 7showsthattheob- listed in Fig. 8, where we take the same R range as that 0 8 300 70 18 TABLEVII:Calculatedratiosofthedecays ofa (2270). Here, all 1 theresultscorrespondtotheRrange(5.12∼5.32)GeV−1. 250 Total Width 60 πω(1420) 15 KK*(892) Ratio Value Ratio Value 50 200 12 Γπρ/ΓTotal 0.164∼0.184 Γπf1(1285)/Γπσ 0.313∼0.435 150 40 a(1320)π ωπ 9 Γ /Γ 0.247 0.264 Γ /Γ 0.313 0.487 2 Γππbρ117(10023/5Γ)TotTalotal 0.052∼∼0.056 ΓKπKf1∗((1849220))/Γηρaa10((1928600)) 0.404∼∼0.469 100 πa0(980) 2300 ηρ 6 πa1(1260) Γ /Γ 0.064 0.070 Γ /Γ 0.532 0.612 Γσπ To/taΓl 0.134∼0.157 ηΓa0(980) π/fΓ2(1270) 0.099∼0.131 50 ρρ 10 3 σρ πa0(1450) πρ(1450) Total ∼ ηa2(1320) πf0 ∼ Γ /Γ 0.789 0.926Γ /Γ 0.236 0.273 0 0 0 ρa1(1260) ωb1(1235) ∼ ηa0(1450) ωb1(1235) ∼ 4 4.3 4.6 4.9 4 4.3 4.6 4.9 4 4.3 4.6 4.9 ΓKK1(1400)/Γρπ1300 0.352∼0.446Γηa1(1260)/ΓKK∗(1680)0.256∼0.297 R(GeV−1) R(GeV−1) R(GeV−1) Γ /Γ 0.573 0.639Γ /Γ 0.633 0.638 ρh1(1170) KK1(1400) ∼ KK∗(1410) σa1(1260) ∼ FIG. 8: (Color online) R dependence of the calculated partial and totaldecaywidthsofb (1640).AllresultsareinunitsofMeV. 1 TABLEVIII:Typicalratiosfordecaysofb (1640)correspondingto 1 R=4.20 4.90GeV 1. − 130 ∼ Ratio Value Ratio Value Γ /Γ 0.352 0.368 Γ /Γ 0.324 0.347 125 πa0(980) Total ∼ KK∗ ωπ ∼ Γ /Γ 0.164 0.263 Γ /Γ 0.565 0.681 ηρ πω(1420) ∼ πa2(1320) ρρ ∼ 120 ToTtoaTtl aowlt aiwdl itwdht ih(dπ(tωπhω)) Assuming that b (1960) is the second radial excitation of 115 1 b (1235),wepresentitstotalandpartialdecaywidthsinFig. 1 AAASSSTTTEEE 9. Ourcalculatedtotalwidthcancovertheexperimentaldata 110 giveninRef.[12].Itsmaindecaychannelsareπa (1450),πω, 0 105 πa0(980),andπω(1420),whilethepartialdecaywidthsofthe decay modes πa (1260), ρη, and πa (1320) are also consid- 1 2 100 erable. Wealsoobtainsomeratiosofpartialdecaywidthsof b (1960),whicharelistedinTableIX. 3 3.4 3.8 4.2 1 R(GeV−1) 60 30 400 FIG. 7: (Color online) R dependence of the calculated total decay Total Width πa0(980) 25 σb1(1235) width of b1(1235). Here, the dot-dashed line with the band is the 300 40 20 experimentaltotalwidthfromRef. [63]. Thetotaldecaywidthisin SPEC 200 15 unitsofMeV. ρη 100 πa0(1450) πω 20 πa1(1260) 150 KK* 0 0 KK*(1410) 0 ρη(958) 0.6 40 0.7 0.6 for a1(1640). 2 Its main decay channel is πa0(980), while 0.4 ρf0(980) 2300 πω(1420) 000...345 KK0*(1K4K310()1270) πa2(1320), ρρ, πω(1420), KK∗, and ωπ also have consider- 0.2 KK(1400) ωa0(980) 10 πa2(1320) ρρ 0.2 K*K* able contributions to the total decay width. The total decay 1 σρ 0.1 0 0 0 width is predicted to be 200 232 MeV. Table VIII shows 4.3 4.6 4.9 5.2 5.5 4.3 4.6 4.9 5.2 5.5 4.3 4.6 4.9 5.2 5.5 someratiosthatarerelevantto∼thedecaysofb (1640),which R(GeV−1) R (GeV−1) R (GeV−1) 1 is valuable for further experimental searches for this axial- vectorstate. FIG. 9: (Color online) R dependence of the calculated partial and total decay widths of b (1960). Here, the dot-dashed linewiththe 1 bandistheexperimentaltotalwidthfromRef. [12].Sincethewidth of the KK mode is tiny, we do not list its contribution here. All 2∗ resultsareinunitsofMeV. 2Sinceb1(1640)isapredicted state, wetakethesameRrangeasthatof a1(1640)topredictthedecaybehaviorofb1(1640). Thistreatmentisdue In Fig. 10, we show the decay behavior of b (2240) as tothefact thatb1(1640)isthe isospinpartner ofa1(1640), whichhas a 1 similarRrange. thethirdradialexcitationofb1(1235). Additionally,itsmain 9 In addition, there exist relations among f (1970), the pre- 1 TABLEIX:Obtainedratiosfordecaysofb (1960). Allresultscor- 1 dicted f (2110)and f (2210),and f (2310),i.e., respondtoR=4.66 5.16GeV 1. 1 1 1 − ∼ Ratio Value Ratio Value f (1970) cosφ sinφ nn¯ | 1 i = 2 − 2 | i , (9) ΓΓππaω01(492800/)Γ/ΓToTtoatlal 00..108868∼∼00..213057 ΓΓωρρπ//ΓΓTToottaall 00..002787∼∼00..013612 |f1(2110)i sinφ2 cosφ2 |ss¯i Γ /Γ 0.572 0.624 Γ /Γ 0.648 0.736 and ρρ πa2(1320) ∼ KK∗(892) ηρ ∼ Γ /Γ 0.029 0.030 Γ /Γ 0.249 0.316 ρf0 πa1(1260) ∼ KK1(1400) KK1(1270) ∼ f (2210) cosφ sinφ nn¯ | 1 i = 3 − 3 | i , (10) f (2310) sinφ cosφ ss¯ decay modes are ωπ, πω(1420), πa0(980), and πa0(1450). | 1 i 3 3 | i Of course, the decay modes ρρ, ρb1(1235), πa2(1320), and Here,themixinganglesφi (i = 1,2,3)cannotbeconstrained πa (1260)also have obviouscontributionsto the total decay byouranalysis.Inthefollowingdiscussions,wetakeatypical 1 width. For the convenience of further experimental studies valueφi =φ=24◦togivethequantitativeresults. of this state, we provide informationon typical ratios of the Asfor f1(1285),weshowitspartialandtotaldecaywidths partialwidthofb (2240)inTableX. inFig. 11,wherethecalculatedtotaldecaywidthisinagree- 1 ment with the experimental data from Ref. [67]. However, wenoticethatthecalculatedbranchingratioforΓ /Γ = πa0 total TABLE X: Calculated ratios for b1(2240) corresponding to R = 0.67 0.68, corresponding to R = (3.00 4.00) GeV−1, 5.20 5.54GeV−1. which∼is a little bit larger than (36 7)% lis∼ted in the PDG ∼ ± Ratio Value Ratio Value [1]. The PDG data also shows that the branching ratio of Γ /Γ 0.097 0.128 Γ /Γ 0.131 0.232 its decay ηππ can reach up to (52.4+1.9)% [1], which is the πa0(980) Total ∼ πa0(1450) Total ∼ 2.2 ΓΓπω1420/Γ/TΓotal 00..006785∼00..017012 ΓΓωπ/ΓTotal 00..107597∼00..109696 mwoarink,cownetrsibtuudtiyonthteotphreoctoetsaslesdefc1a(y12w8−i5d)thofηf1σ(1285)η.πIπnathnids πa2(1320) Total ∼ πa1(1260) ∼ f (1285) πa (980) ηππ,whichcan→becalcu→latedusing Γηρ(1450)/ΓTotal 0.055∼0.064 Γηρ/ΓTotal 0.050∼0.062 th1eQPCm→odel0. Thus,→thedecaywidthof f (1285) ησ ΓKK∗(1680)/ΓTotal 0.042∼0.057Γρf1(1285)/Γωa1(1260)0.678∼0.819 ηππcanbewrittenas[44] 1 → → Γ /Γ 0.112 0.173Γ /Γ 0.254 0.317 ρf0 ρb1(1235) ∼ ρf2(1270) KK1(1400) ∼ ΓΓKK1(1270)//ΓΓKK0∗(1430)00..293033∼00..398530ΓΓρη′(958)//ΓΓKK∗(1410) 00..316548∼00..328014 Γ(f1 →η+σ→η+ππ) KK∗(1410) KK∗(892) ∼ ωa0(980) ωa1(1260) ∼ = 1 (mf1−mη)2dr√rΓf1→η+σ(r)·Γσ→ππ(r), (11) πZ (r m2)2+(m Γ )2 4m2π − σ σ σ wheretheinteractionofσwithtwopionscanbedescribedby C. f1states theeffectiveLagrangian Whendiscussing f1 states,weneedtoconsidertheadmix- Lσππ =gσσ(2π+π−+π0π0). (12) turesoftheflavorwavefunctions nn¯ =(uu¯ + dd¯ )/√2and | i | i | i Thecouplingconstantg = 2.12 2.81GeV is determined |ss¯i. f1(1285)and f1(1420)/f1(1510)satisfy by the total width Γ =σ400 70∼0 MeV [1], and the decay σ ∼ widthreadsas f (1285) cosφ sinφ nn¯ | 1 i = − | i , (7) |f1(1420)/f1(1510)i sinφ cosφ |ss¯i Γσ→ππ(r)= g82σπλr2[(r−(22m√πr)2)r]1/2, (13) where both f (1420) and f (1510) are partners of f (1285). 1 1 1 (Wepresenttheirdecaybehaviorsbelow.)φdenotesamixing whereλ= √2and1forπ+π andπ0π0,respectively. − angle. This mixing angle was determined in a phenomeno- Theprocess f (1285) πa (980) ηππiscalculatedina logical way [64] and is given by φ = (20 30) , which is 1 → 0 → consistentwithφ = (24+3.2) reportedbythe−LHC◦bCollabo- similarway,andtheequationisgivenby 2.7 ◦ ration [65] and φ = (21− 5) from the updatedlattice QCD ◦ Γ(f a +π η+ππ) ± 1 0 analysis [66]. When calculating the decays of f (1285) and → → f1(1420)/f1(1510),wetaketheLHCbvalueφ=214◦. = 1 (mf1−mπ)2dr√rΓf1→π+a0(r)·Γa0→ηπ(r), (14) In Fig. 1, we have predicted that f1(1640) is the first ra- πZ(mπ+mη)2 (r−m2a0)2+(ma0Γa0)2 dial excitation of f (1285) and that f (1800) is a partner of 1 1 f1(1640);thesetwopredictedaxial-vectormesonsarerelated wherethedecaywidthfora0(980)→ηπis by Γ (r) a0(980)→ηπ f (1640) cosφ sinφ nn¯ g2 [(r (m +m )2)(r (m m ))2]1/2 | 1 i = 1 − 1 | i , (8) = a0 − η π − η− π , (15) |f1(1800)i sinφ1 cosφ1 |ss¯i 8πr 2√r 10 800 60 100 2.5 KK*(1430) 2 600 Total Width 45 πa(980) 80 πa2(1320) 2 0 60 πa0(1450) 1.5 ρf0(980) 400 30 SPEC πω(1420) 40 1 ρf(1420) 200 ωπ 15 ρb(1235) ωπ(1300) 20 σb1(1235)0.5 ρf2(1270) 1 ρρ 1 π a(1260) 0 0 0 1 0 4 18 ωa1(1260) 50 20 15 40 ρη 3 KK*0(1430) KK1(1400) 12 30 15 2 KK1(1270) 69 KK*(1410)a0h1(1170) 20 KK*(1680) ηρ(1450) 10 σρ KK*(892) 01 K*K* 03 ωa2(1320)100 ρη(958) 05 ρf1(1ω2a805()980) 4.8 5.1 5.4 5.7 6 4.8 5.1 5.4 5.7 6 4.8 5.1 5.4 5.7 6 4.8 5.1 5.4 5.7 6 R (GeV−1) R (GeV−1) R (GeV−1) R (GeV−1) FIG.10: (Coloronline)Rdependenceofthecalculatedpartialandtotaldecaywidthsofb (2240). Here,thedot-dashedlinewiththebandis 1 theexperimentaltotalwidthfromRef. [12]. WedonotpresenttheK K (1270)contributionsincethisdecayhasatinywidth. Allresultsare ∗ 1 inunitsofMeV. 45 25 f1(1420) and f1(1510) as partners of f1(1285). As for f (1420),theobtainedtotaldecaywidthcanoverlapwiththe 1 36 Total width 20 DM2result[68],asshowninFig. 12. Itsmaindecaychannel is KK . Thus, the present study of decay of f (1420) sup- ∗ 1 27 MPS2 15 portsthepredictionthat f1(1420)isapartnerof f1(1285). As for f (1510), its partial and total decay widths are listed in 1 Fig.13, whichshowsthatthecalculatedtotaldecaywidthis 18 πa (980) 10 ηππ(total) 0 larger than the experimentaldata [68]. Thus, the possibility that f (1510)isapartnerof f (1285)canbeexcluded. 9 5 ηππ(ησ) 1 1 ησ 0 0 350 0.5 3 3.4 3.8 4.2 3 3.4 3.8 4.2 R (GeV−1) R (GeV−1) 300 Total Width 0.4 250 FIG.11: (Coloronline)Rdependenceofthetotalandpartialdecay widthsof f (1285). Wealsopresentthedecaywidthof f (1285) 200 KK* 0.3 1 1 → aηnπdπovnialythfreominttehremiendtieartmeecdhiaanteneclhsanηnσelanηdσπ(pai0n(k98b0a)n(dg)r.eeHnerbea,ntdh)e, 150 LASS 0.2 ση experimentaltotalwidthfromRef.[67]isdenotedbythedot-dashed 100 linewiththeband.AllresultsareinunitsofMeV. 0.1 πa (1260) 50 πa 1 0 0 0 wishedreeterthmeinceodupblyingthceontosttaanltwgiad0th=of1.a26(2980∼) (2Γ.524 GeV= 2 2.4R (G2e.8V−13).2 3.6 2 2.4R (G2e.8V−13).2 3.6 0 a0(980) 50 100 MeV). The final result of the width of ∼ f (1285) πa (980) ηππincludesthecontributionsfrom FIG.12: (Coloronline)Rdependenceofthetotalandpartialdecay 1 0 bothηπ0π→0andηπ+π .→ widths of f (1420). Here, the experimental total width from Ref. − 1 Thedecaywidthof f (1285) ηππviaboththeinterme- [68]isshownbythedot-dashedlinewiththeband.Allresultsarein 1 diateησandπa (980)channelsa→ndonlytheintermediateησ unitsofMeV. 0 channel are shown in Fig. 11. In addition, the decay width of f (1285) ηππ from the intermediate πa (980) chan- In Figs. 14 and 15, we further illustrate the decay prop- 1 0 → nel is comparable with the corresponding experimental data erties of the two predicted states f (1640) and f (1800). In 1 1 [(16 7)%]inthePDG[1]. addition, we also list some of their typical ratios, which are ± In the following, we discuss the decay behaviors of weakly dependent on the R value (see Table XI), where we