ebook img

Leveraging Additive Manufacturing to Improve Design and Production of Class G Unmanned Aerial ... PDF

159 Pages·2015·54.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Leveraging Additive Manufacturing to Improve Design and Production of Class G Unmanned Aerial ...

Leveraging Additive Manufacturing to Improve Design and Production of Class G Unmanned Aerial Vehicles Stanford ME317B - NASA Team: Christian D. Norberg Saul A. Lopez Michael V. Szewczyk Prepared for: Kevin Reynolds, Dual Mechanical/Aeronautical Engineer - NASA ME317B Teaching Staff - Stanford University 6/9/15 (cid:55)(cid:82)(cid:80)(cid:82)(cid:85)(cid:85)(cid:82)(cid:90)(cid:10)(cid:86)(cid:3)(cid:86)(cid:88)(cid:83)(cid:83)(cid:79)(cid:92)(cid:3)(cid:70)(cid:75)(cid:68)(cid:76)(cid:81)(cid:86)(cid:3)(cid:68)(cid:85)(cid:72)(cid:3)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:17)(cid:3)(cid:48)(cid:36)(cid:48)(cid:48)(cid:3) (cid:72)(cid:81)(cid:68)(cid:69)(cid:79)(cid:72)(cid:86)(cid:3)(cid:87)(cid:85)(cid:82)(cid:82)(cid:83)(cid:86)(cid:3)(cid:87)(cid:82)(cid:3)(cid:80)(cid:68)(cid:81)(cid:88)(cid:73)(cid:68)(cid:70)(cid:87)(cid:88)(cid:85)(cid:72)(cid:3)(cid:86)(cid:83)(cid:68)(cid:85)(cid:72)(cid:3)(cid:83)(cid:68)(cid:85)(cid:87)(cid:86)(cid:3)(cid:82)(cid:81)(cid:16) (cid:86)(cid:76)(cid:87)(cid:72)(cid:3)(cid:76)(cid:81)(cid:3)(cid:85)(cid:72)(cid:68)(cid:79)(cid:16)(cid:87)(cid:76)(cid:80)(cid:72)(cid:17)(cid:3)(cid:58)(cid:72)(cid:3)(cid:71)(cid:72)(cid:79)(cid:76)(cid:89)(cid:72)(cid:85)(cid:3)(cid:72)(cid:91)(cid:83)(cid:72)(cid:85)(cid:87)(cid:76)(cid:86)(cid:72)(cid:3)(cid:76)(cid:81)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3) (cid:73)(cid:76)(cid:72)(cid:79)(cid:71)(cid:3)(cid:82)(cid:73)(cid:3)(cid:79)(cid:72)(cid:89)(cid:72)(cid:85)(cid:68)(cid:74)(cid:76)(cid:81)(cid:74)(cid:3)(cid:36)(cid:71)(cid:71)(cid:76)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:48)(cid:68)(cid:81)(cid:88)(cid:73)(cid:68)(cid:70)(cid:87)(cid:88)(cid:85)(cid:76)(cid:81)(cid:74)(cid:3)(cid:87)(cid:82)(cid:3) (cid:80)(cid:72)(cid:72)(cid:87)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:86)(cid:68)(cid:80)(cid:72)(cid:3)(cid:86)(cid:83)(cid:72)(cid:70)(cid:3)(cid:68)(cid:86)(cid:3)(cid:82)(cid:73)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:86)(cid:75)(cid:72)(cid:79)(cid:73)(cid:3)(cid:83)(cid:68)(cid:85)(cid:87)(cid:86)(cid:17)(cid:3) (cid:38)(cid:68)(cid:79)(cid:79)(cid:3)(cid:88)(cid:86)(cid:3)(cid:68)(cid:87)(cid:3)(cid:11)(cid:25)(cid:24)(cid:19)(cid:12)(cid:3)(cid:23)(cid:27)(cid:24)(cid:3)(cid:19)(cid:22)(cid:19)(cid:20)(cid:3)(cid:82)(cid:85)(cid:3)(cid:89)(cid:76)(cid:86)(cid:76)(cid:87)(cid:3)(cid:90)(cid:90)(cid:90)(cid:17)(cid:80)(cid:68)(cid:80)(cid:80)(cid:17) (cid:70)(cid:82)(cid:80)(cid:3)(cid:87)(cid:82)(cid:3)(cid:79)(cid:72)(cid:68)(cid:85)(cid:81)(cid:3)(cid:80)(cid:82)(cid:85)(cid:72)(cid:17)(cid:3) ME317B  NASA  Team   Executive Summary   In  summer  2014,  a  project  led  by  Kevin  Reynolds  at  NASA  Ames  Research  Center  demonstrated  that  the   development  time  for  small  science-­mission  Unmanned  Aerial  Vehicles  (UAVs)  could  be  reduced  to   weeks  rather  than  months  or  years  by  using  a  combination  of  3D  printing  and  modular  repurposed   systems.  Using  3D  printed  components  with  an  internal  truss-­based  design,  they  qualified  and  flew  a   UAV  that  would  traditionally  be  manufactured  using  carbon  fiber,  saving  weeks  in  production  time.     In  Q1  of  317A  Design  Methods:  Product  Definition,  the  Team  established  that  the  real  value  3D  printing   provides  in  UAV  development  is  not  in  manufacturing  cost  savings,  but  time  savings  and  specifically,   producing  flight-­worthy  parts  while  shortening  the  entire  development  cycle  from  conceptual   development  to  manufacturing  and  testing.  The  Team  conducted  various  tests  to  determine  the  relative   stiffness  of  3D  printed  components  using  different  processes  and  in  varying  orientations.       In  Q2  of  317B  Design  Methods:  Quality  by  Design,  a  concept  exploration  was  conducted  using   Morphological  Diagrams  in  attempts  to  produce  parts  with  a  high  stiffness  to  weight  ratio  that  would   prove  to  be  a  worthy  alternative  to  manufacturing  UAV  parts  with  carbon  fiber,  glassfiber,  or  Kevlar,  with   added  time  and  cost  savings.       Thirty-­six  different  test  samples  were  created  with  18  different  manufacturing  techniques  and  post   processing  methods.  Testing  results  showed  that  the  stiffness-­to-­weight  ratio  of  3D  printed  components   could  be  improved  by  up  to  3.2x  using  inexpensive,  mass  manufactured,  and  easily  obtainable  inserts  of   stiffer  materials  such  as  aluminum  or  carbon  fiber  rods.  Using  plating  as  a  post-­processing  technique   showed  an  increase  in  performance  of  up  to  2.6x  compared  to  the  part  before  post-­processing.  The   expected  performance  using  corrugated  carbon  fiber  with  dissolvable  3D  printed  cores  was  not  observed   due  to  lack  of  experience  in  carbon  fiber  layup  and  trouble  dissolving  the  3D  printed  material.     The  stiffness  to  weight  of  the  same  benchmark  structure  made  out  of  aluminum  is  about  6.5x  higher  than   the  best  post-­processed  3D  printed  part.  The  Team,  however,  recommends  that  industry  and  academia   explore  this  area  with  more  resources  as  there  is  still  much  room  for  improvement  and  this  initial   exploratory  study  confirms  the  opportunity  for  a  combination  of  3D  printing  and  post  processing  to   produce  flight-­worthy  UAV  components.       Monte  Carlo  simulations  were  used  to  assess  the  viability  of  the  other  two  metrics  of  interest:   manufacturing  time  and  cost.  The  simulations  show  that  in  the  worst  case  scenario,  it  is  possible  to   manufacture  the  parts  with  a  25%  decrease  in  cost  and  14%  in  time.  The  Team  strongly  believes  that  these   numbers  can  improve  as  the  worst  case  scenarios  assumed  the  entire  UAV  would  be  printed  using  a  small   consumer  grade  desktop  printer.  Using  a  production  printer  for  example,  would  drastically  improve  those   metrics.       Three  potential  markets  have  been  identified  as  likely  profitable  business  models  for  this  technology:   hobbyists,  government  or  industry  development,  and  defense.  The  chosen  business  model  focuses  on  the   opportunity  in  the  defense  sector  with  a  Modified  Additive  Manufacturing  Method  (MAMM).  The   MAMM  system  would  consist  of  a  digital  supply  chain  and  lean  microfactory  equipped  with  3D  printing   technology  for  on-­demand  engineering  components  in  critical  situations.  A  military  unit  equipped  with   this  mobile  factory  and  3D  CAD  database  will  have  unparalleled  reaction  time,  reduced  inventory  costs,   and  invite  soldiers  to  take  a  direct  role  in  innovating  solutions  to  problems  in  their  environments  in  a   matter  of  hours.  With  a  $10M  seed  investment,  MAMM  is  expected  (in  a  mid  case  scenario)  to  break   even  as  early  as  in  Q2,  2018,  and  reach  $59.2M  in  annual  revenue  by  the  end  of  year  2021.   3 ME317B NASA Team Acknowledgements We would like to acknowledge and express our gratitude to a few important people and companies that have been both generous and kind to provide numerous insights and resources for this project: ● Kurt Beiter, Stanford DfM Lecturer, for inspiring lectures, sharing his insights and motivating the team towards success ● Edith Wilson, Stanford DfM Lecturer, for sharing her wisdom and industry experience ● Kevin Reynolds, NASA Ames, the team's mentor and sparring partner ● Alexandra Tataru, Stanford TA, for her patience and constructive feedback ● Vik Mehta, Omnicell for his generous help with manufacturing multiple test samples ● Sean Wise, RePliForm, advisor on metal plating post processing ● Prof. Ligang Liu, USTC, for willingness to share resources on skin frame optimization ● Drew, GoEngineer, general advisor on post processing and printing technologies ● Erin, Autodesk, sharing insights on and providing access to Within optimization software ● Magda, Within Enhance, The Team's trainer on using Within Enhance and support ● Bendik Sagsveen, FFI, provided key research insights and benchmark wingset ● Prof. Sheri Sheppard, Stanford, analysis insights ● Stanford Unmanned Aerial Vehicle Enthusiasts (SUAVE), UAV guidance and resources The team would also thank the following companies for providing printing resources and/or expert advice: ● Thermo Fisher Scientific ● Google, ATAP ● Techshop, SJ & SF ● Orbit One, Monolith Studios These people and companies have been critical to the success of this project and we simply could not have done it without their help. 4 ME317B NASA Team Table of Contents Executive Summary…………………………………………………………………………..2 One Page Ad………………………………………………………………………………..…3 Acknowledgements……………………….………………………………………………..…4 Table of Contents…………………………………………………………………………..…5 List of Figures……………………………….…………………………………………..…7 List of tables……………………………………..………………………………………..10 1. Background…………………………………………...…………………………………...12 2. Project Definition……………………………………..………………………………..…14 2.1 Problem Description…………………………………...…………………………...…18 2.2 Goal statement - To_By_Using……………………………..……………………..….19 2.3 Deliverables………………………………………………………………………..….19 2.4 Measures of Success…………………………………………………...…………...…20 2.5 Project Timeline……………………………………………………………..……..…20 3. Concept Development………………………………………………………………….....25 3.1 Morph Key Background: VOC……………………………………………...……..…25 3.2 Morph Key Background: EMs……………………………………………...……..….25 3.3 Concept Generation………………………………………………………….…….…26 3.3.1 Generating Alternatives: Morphological Analysis…………………………..…26 3.3.2 Design Concepts and Concept Sketches…………………………………….….35 3.4 Pugh Criterias…………………………………………………………….…………..41 3.5 Concept Selection…………………………………………………………...………..44 3.6 Concept Analysis……………………………………………………………………..46 3.6.1 Strengths and Weaknesses……………………………………………….……..46 4. Design Recommendation………………………………………………………..………..47 4.1 Prototyping efforts……………………………………………………………..……..47 4.1.1 Concepts: Design, Manufacturing and Future Considerations………………....48 4.2 Testing…………………………………………………………………….……….…85 4.2.1 Test setup……………………………………………………………...…….….85 4.3 Data Analysis and Results…………………………………………………..…….….87 5. Competitive Analysis…………………………………………………………………..…91 5.1 Metric #1: Cost……………………………………………………………...………..91 5.1.1 Refined Scorecarding……………………………………………….....……..…91 5.1.2 Devised Transfer Functions……………………………………………...……..92 5.1.3 90% Confidence Intervals………………………………………………..……..93 5.1.4 Monte Carlo Simulations……………………………………………...……..…94 5 ME317B NASA Team 5.1.5 Reducing Variation in the Response…………………………………..…....…..95 5.2 Metric #2: Manufacturing Variation Impacts to Stiffness to Weight Ratio………......95 5.2.1 Refined Scorecarding………………………………………………...……...….96 5.2.2 Devise Transfer Functions……………………………………………...…...….96 5.2.3 90% Confidence Intervals…………………………………………………...….97 5.2.4 Monte Carlo Simulations……………………………………………….…...….98 5.2.5 Reducing Variation in the Response………………………………………......101 5.3 Metric #3: Cycle Time……………………………………………………..……......101 5.3.1 Refined Scorecarding………………………………………………...………..101 5.3.2 Devise Transfer Functions……………………………………………...……..102 5.3.3 90% Confidence Intervals………………………………………………..…....103 5.3.4 Monte Carlo Simulations…………………………………………………...…103 5.3.5 Reducing Variation in the Response…………………………………..…....…104 5.4 Risk Analysis - Reality Test…………………………………………..………….…105 6. Conclusions and Recommendations………………………………………….……...…108 6.1 Commercializing the Modified Additive Manufacturing Method……….……….…108 6.2 Graphical Representation of MAMM Financial Models……………….……….…..108 6.2.1 Scenario 1: MAMM for hobbyists - “CADdify”………………….…….…….108 6.2.2 Scenario 2: MAMM as development Process - for Government and Industrial organizations…………………………………………………….……..………....…110 6.2.3 Scenario 3: MAMM leveraged as a digital supply chain - US Department of Defense…………………………………………………………….…..………….…111 6.3 Financials……………………………………………..……………..…………….…113 6.3.1 #Full Time Employees…………………………….………..……………....…113 6.3.2 Development Time…………………………………...…..………………....…115 6.3.3 Cash Flow Based Profitability Analysis - Scenario 3…..…..……………....…116 6.3.4 Monte Carlo Analysis: Cash Flow Analysis…………..…………………....…116 6.4 Chosen Business Plan - Scenario 3: MAMM leveraged as a digital supply chain for the US Department of Defense……………………………….………….………….…....…117 7. Discussion…………………………………………..………………….……………...…118 7.1 Tools Roadmap…………………………………..………….…….……………...…118 7.2 Comments On 317 Methods……………………………………..……………….....121 7.2.1 Applicability……………………………………………...….…….……….…121 7.2.3 Effectiveness…………………………………………….……..……...….…...122 7.2.4 Suggested Changes……………………………………..……………....……..122 Appendix………………………………………………………………………….……...…124 A. Pugh Matrixes……………………………………………………………..……...….124 B. MAMM Business Plan…………………………………………………..………...…125 C. Raw Testing Data: Stiffness/Weight…………………………………..…...……..…125 D. Raw Testing Data: Stiffness/Weight/Cost……………………………………...……127 6 ME317B NASA Team E. Project Production Cost Data……………………………………………………....…128 F. Business Model Budget………………………………………………………….……128 G. Monte Carlo………………………………………………………………………..…128 H. MAMM Identified Business Opportunities………………………………………..…131 H.1 Scenario 1: MAMM for Hobbyists - “CADdify” …………………………....…131 H.2 Scenario 2: MAMM as a development process - Aerospace…………………...134 H.3 Scenario 3: MAMM leveraged as a digital supply chain - US Department of Defense………………………………………………………………………...…….136 List of Figures Figure 1.1: UAV parts made by ME317A/B NASA team, 2014………………….…….…..……12 Figure 1.2: Concepts developed for NASA Ames Research Center`s “FrankenEye” project…....13 Figure 2.1: Project Tools Roadmap………………………………………………………..……...14 Figure 2.2: Project Priority Matrix………………………………………………………...……...15 Figure 2.3: Pareto analysis current manufacturing costs……………………………….….…...…16 Figure 2.4: Pareto analysis labor time………………………………………………….…………17 Figure 2.5: Stiffness graph for 24 unique types of test specimen……………………………...…18 Figure 2.6: MAMM Project Gantt chart for Q2, 2015………………………………………....…23 Figure 3.1: KJ/Affinity Diagram to cluster the VOC attributes for the NASA Project…………..25 Figure 3.2 : Process concept: dissolvable 3D printed mold core wrapped with pre-impregnated carbon fiber skin………………………………………………………………………………..…35 Figure 3.3: Process concept: dissolvable core using pre-impregnated carbon fiber to create a corrugated structure…………………………………………………………………………….…35 Figure 3.4: Process concept: carbon fiber skin using a dissolvable mold core filled with off-the- shelf foam…..……………………………………………………………………………..36 Figure 3.5: Process concept: optimized wing topology using Within Enhance software and filled with foam………………………..………………………………………………………………...36 Figure 3.6: Process concept: optimized wing topology using Within Enhance software and metal plated…………………………………………………………………………………………...…37 Figure 3.7: Process concept: optimized wing topology using Within Enhance software eliminating the outer structure, electroplated, then wrapped with a film………………………...……………37 Figure 3.8: Process concept: using existing CAD and then metal plated…………………………38 Figure 3.9: Process concept: using a software to approximate the shape with a truss structure then vapor polishing it and wrapping it in a film……………………………………………....………38 Figure 3.10: Process concept: using a software to approximate the shape with a truss structure, then vapor polishing it, metal plating it, and wrapping it in a film……………………….………39 Figure 3.11: Process concept: using existing CAD with a cavity to be filled with tessellated wire by pausing the print to inserting it, then vapor polishing it for layer adhesion………………...…39 7 ME317B NASA Team Figure 3.12: Process concept: optimized wing topology using Within Enhance software with cavities for inserted off-the-shelf aluminum tubes, and vapor polished for adhesion………...….40 Figure 3.13: Process concept: optimized wing topology using Within Enhance software with cavities for balsa wood inserts (inspired by a plant cell wall) …………………………………....40 Figure 3.14: Process concept: optimized wing topology using Within Enhance software without a shell, then wrapping it in a low cost film…………………………………………………………41 Figure 3.15: Weighted net score from the Pugh Matrix……………………………..……………45 Figure 4.1: Picture showing the outer wing section of a RQ-20, Puma UAV…………….......….47 Figure 4.2: 3D CAD model of the dissolvable core for carbon fiber concept…………....………49 Figure 4.3: 3D CAD model of the dissolvable core for carbon fiber concept with rod for improved wrapping…………………………………………………………………………………..………49 Figure 4.4: Illustration of process flow for dissolvable core for carbon fiber concept…………...50 Figure 4.5: Finalized test sample of carbon fiber skin concept…………………………...………51 Figure 4.6: Finalized test sample of carbon fiber - foam filled concept………………….………52 Figure 4.7: 3D CAD designs for the 7 dissolvable parts as well as the alignment fixture for the corrugated carbon fiber concept……………………………………………………………..……53 Figure 4.8: Finalized test sample of corrugated carbon fiber concept with 2 layers of internal corrugation and 2 external layers…………………………………………………....……………54 Figure 4.9: Finalized test sample of corrugated carbon fiber concept with 1 layer of internal corrugation and 2 external layers……………………………………………………………...….54 Figure 4.10: Simulation conducted using Within Enhance with built-in NASTRAN……....……55 Figure 4.11: Within Enhance optimized design (top, lattice only; bottom, cross-section)…...….56 Figure 4.12: Within Enhance optimization scheme…………………………………………....…57 Figure 4.13: Illustration of failed prints (left: Shrinkage/Warping, middle: Cracking, right: Flaring defects)…………………………………………………………………………………….…...…58 Figure 4.14: Illustration of some drawbacks of SLA printing (left: material sinking under its own weight, right: support structures left over from a failed print)…………………………………...58 Figure 4.15: Attempts at curing test specimens in different orientations………………………...59 Figure 4.16: Finalized test sample of Regular Within concept (SLA Resin via the Form 1+)..…60 Figure 4.17: Finalized test sample of Regular Within concept (Fiber-Filled Nylon powder via 3D Systems SLS)..……………………………………………………………………………….…...60 Figure 4.18: Illustration of process flow for Regular Within + Plated concept…………….….....61 Figure 4.19: Finalized test sample of Regular Within + Plated………………………...…….…..62 Figure 4.20: Finalized test sample of Saran Enhanced……………………………………..….…63 Figure 4.21: Geometry of wing structure with locations to install 0.25 inch diameter inserts…...64 Figure 4.22: Finalized test sample of SLA Inserts without any inserts……………………….......64 Figure 4.23: Finalized test sample of SLA Inserts with bass wood inserts……………………….65 Figure 4.24: Finalized test sample of SLA Inserts with carbon fiber inserts……………………..65 Figure 4.25: Geometry of wing structure with locations to install 0.25-inch diameter inserts…...66 8 ME317B NASA Team Figure 4.26: Finalized test sample of FDM Inserts without any inserts………………………......66 Figure 4.27: Finalized test sample of FDM Inserts with aluminum inserts…………………....…67 Figure 4.28: Finalized test sample of FDM Inserts with carbon fiber inserts……………..……...67 Figure 4.29: CAD Model of the finalized FDM Enhanced concept……………………………...68 Figure 4.30: Finalized test sample of FDM Enhanced………………..……………..……………69 Figure 4.31: An example of a solid part being converted to a mesh frame using software developed at the Hasso Plattner Institute at the University of Potsdam in Germany……………..70 Figure 4.32: CAD design of the WirePrint - UV Curable Resin concept….……………………..71 Figure 4.33: WirePrint part in Form 1+ software; support structures are hard to remove and wasteful……………………..……………..……………..……………..……………………...…71 Figure 4.34: Finalized test sample of WirePrint - UV Curable Resin, printed at an angle……….72 Figure 4.35: Finalized test sample of WirePrint - UV Curable Resin, printed vertically………...73 Figure 4.36: Finalized test sample of WirePrint - SLS Fiber-Filled Nylon……………………....74 Figure 4.37: Illustration of process flow for Wire Print Plated Concept………………………....74 Figure 4.38: Finalized test sample of WirePrint - UV Curable Resin + Copper Plated, printed vertically…………..……………..……………..……………..……………..…………………....75 Figure 4.39: CAD design of WirePrint Hybrid….……………..……………..……………..……76 Figure 4.40: Finalized test sample of WirePrint Hybrid - SLS Fiber-Filled Nylon……………....76 Figure 4.41: CAD design of Chicken Wire Pause Print Concept….…………….……………….77 Figure 4.42: Finalized test sample of Chicken Wire Pause Print………………..………………..78 Figure 4.43: Test sample of Single Layer Print Shell (1 shell)….……………..……………..…..79 Figure 4.44: Test sample of Single Layer Print Shell (2 shells)……….……………..…………...79 Figure 4.45: CAD design of Thick Hollow Shell Concept…..……………..……………..……...80 Figure 4.46: Test sample of Thick Hollow Shell………………..……………..…...………….....80 Figure 4.47: Test sample of Rebar Foam – Aluminum………………..……………..…………...81 Figure 4.48: CAD design of the Regular FDM concept………………..……………..…………..82 Figure 4.49: Test sample of Regular FDM – PLA………………..……………..………………..82 Figure 4.50: Illustration of a failed print (top: edge warping due to environmental conditions, bottom: same print showing how support structures failed to adhere to build plate)…………….83 Figure 4.51: Test sample of Regular FDM + Plated, ABS………………………..……………...84 Figure 4.52: Illustration of the test-setup concept…..……………..……………..……………….85 Figure 4.53: Actual test jig used…………………..……………..……………..………………....86 Figure 4.54: Testing fixture and load setup….……………..……………..……………..………..86 Figure 4.55: Part showing failure at location of max tensile stress………………..……………...87 Figure 4.56: Stiffness/weight results comparison for top six concepts….……………..…………88 Figure 4.57: Performance increase compared to same test specimen without post process….…..89 Figure 4.58: Stiffness/Weight results divided by material and labor cost…………………….......90 Figure 5.1: Wing set manufacturing cost scorecarding framework………………………....……92 Figure 5.2: Result of wing set manufacturing cost Monte Carlo simulation…………………..…94 9 ME317B NASA Team Figure 5.3: Transfer function for test specimen stiffness/weight ratio………………………....…96 Figure 5.4: Result of stiffness/weight Monte Carlo simulation for ABS……………………..…..98 Figure 5.5: Result of stiffness/weight Monte Carlo simulation for PLA………………………..100 Figure 5.6: Wing set manufacturing cycle time scorecarding framework……………………....102 Figure 5.7: Result of wing set manufacturing cycle time Monte Carlo simulation…………..…103 Figure 6.1: MAMM for hobbyists - CADdify…………………………………………………...110 Figure 6.2: MAMM as a development process……………………………………………….…111 Figure 6.3: MAMM leveraged as a digital supply chain - Military……………………………..113 Figure 6.4: Total Development Full Time Employees for Y0 - Concept development…………114 Figure 6.5: Total Development Time Y0 - MAMM Concept Development………………....…116 Figure 6.6: Best Case - NPV Monte Carlo Analysis for Scenario 3……………………....……117 Figure 7.1: Intermediate Tools Roadmap during Q2. …………………………...………….......119 Figure 7.2: Q2 Tools Roadmap. Q2 Starts with the yellow “Morph Keys” tool……………......120 List of figures - Appendix: Figure H.1: MAMM ad targeted at hobbyist………………………………………………….…132 Figure H.2: Early Makerbot ad campaign…………………………………………………….…133 Figure H.3: 3D print filament ad campaign………………………………………………..……133 Figure H.4: MAMM Aerospace advertisement campaign…………………………………....…135 Figure H.5: Goengineer ad focused towards the B2B market………………………………...…135 Figure H.6: RePliForm ad focused towards both the B2B and B2C market……………….……136 Figure H.7: MAMM Defense advertising campaign………………………………………...….138 Figure H.8: Parker Aerospace ad campaign……………………………………………….…….139 List of tables Table 3.1: Morphological Diagram using VOCs as keys………………....……………………....27 Table 3.2: Morphological Diagram using EMs as keys………………………………..……...….28 Table 3.3: Morphological Diagram using functions as keys…………………………….………..31 Table 3.4: Morphological Diagram using stronger 3D printed parts as keys…………....……..…32 Table 3.5: Morphological Diagram using the risk ledger as keys……………………………...…34 Table 3.6: Pugh selection criteria, weight, and target value………………………………….…...41 Table 4.1: Concept overview……………………………………………………………….….….48 Table 5.1: Transfer function for wing set manufacturing cost………………………………...….92 Table 5.2: Monte Carlo Results and BM Comparison………………………………………...….95 Table 5.3: Transfer function for test specimen stiffness/weight ratio…………………………….97 Table 5.4: Monte Carlo results, ABS……………………………………………………………..98 Table 5.5: Monte Carlo Results and Comparison, ABS……………………………………..…....99 Table 5.6: Monte Carlo Results and Comparison, PLA………………………………………....100 Table 5.7: Transfer function for wing set manufacturing cycle time…...…………………….....102 10

Description:
prove to be a worthy alternative to manufacturing UAV parts with carbon Using a production printer for example, would drastically improve those.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.