ebook img

Les Houches Lectures on Effective Field Theories and Gravitational Radiation PDF

0.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Les Houches Lectures on Effective Field Theories and Gravitational Radiation

7 0 0 2 LES HOUCHESLECTURES ON EFFECTIVE FIELD n THEORIESAND GRAVITATIONALRADIATION a J 6 1 Walter D.Goldberger 1 DepartmentofPhysics,YaleUniversity,NewHaven,CT06520 v 9 2 1 1 0 7 0 / h p - p e h : v i X r a 1 Contents 1. LectureI 3 1.1. Introductionandmotivation 3 1.2. Effectivefieldtheories:areview 6 1.2.1. Matching 10 1.2.2. Correctionstothematchingcoefficients 11 1.2.3. Powercounting 16 2. LectureII 18 2.1. ThebinaryinspiralasanEFTcalculation 18 2.2. TheEFTforisolatedcompactobjects 20 2.3. Calculatingobservables 23 2.4. Integratingouttheorbitalscale 29 2.5. Radiation 34 2.6. Finitesizeeffects 38 3. Conclusions 40 4. Acknowledgments 41 AppendixA. Redundantoperators 41 References 43 2 Abstract These lectures give an overview of the uses of effective field theories in de- scribinggravitationalradiationsourcesforLIGOorLISA.Thefirstlecturereviews someofthestandardideasofeffectivefieldtheory(decoupling, matching,power counting)mostlyinthecontextofasimpletoymodel. Thesecondlecturesetsup theproblemofcalculatinggravitationalwaveemissionfromnon-relativisticbinary starsbyconstructingatowerofeffectivetheoriesthatseparatelydescribeeachscale intheproblem: theinternalsizeofeachbinaryconstituent,theorbitalseparation, andthewavelengthofradiatedgravitons. 1. LectureI 1.1. Introductionandmotivation Theselecturesdescribetheusesofeffectivefieldtheory(EFT)methodstosolve problemsingravitationalwavephysics. Manyofthesignalsrelevanttogravita- tionalwaveexperimentssuchasLIGO[1],VIRGO[2]andtheplannedLISA[3] correspond to astrophysical sources whose evolution involve a number of dis- tinctlyseparatedlengthscales. Inordertocomputesignaltemplatesthatcapture thephysicsaccurately,itisimportanttosystematicallyaccountforeffectsarising atallthesedifferentscales. Itisexactlythissortofproblemthatisbesttreated by EFT methods, analogous to the EFTs constructed to unravel multiple scale problemsinhighenergyphysicsorcondensedmatter. Forthesakeofconcreteness,IwillfocusintheselecturesontheEFTformu- lationoftheslow“inspiral”phaseofcompactbinarystars(thatis,withneutron star (NS) or black hole (BH) constituents). A more comprehensive review of gravitationalwave sourcesandphenomenologycan be foundin the lecturesby A.Buonnanoatthisschool(alsosee, e.g.,ref.[4]). Theinspiralphaseplaysan importantroleingravitationalwavephysics,andcorrespondstotheperiodinthe evolution of the binary in which the system is non-relativistic, the bound orbit slowlydecayingduetotheemissionofgravitationalradiation. An appealingfeatureofthe binaryinspiralphaseis that, theoretically,itisa verytractableproblem. Inprinciple,thedynamicsiscalculableasaperturbative 3 4 W.D.Goldberger expansion of the Einstein equations in the parameter v 1, a typical three- ≪ velocity.1 To get a handle on the scales involved, it is worthwhile to calculate someofthefeaturesofthebinaryinspiralattheorderofmagnitudelevel. Let’s consider inspiral events seen by LIGO, which for illustration we will assume operatesinthefrequencybandbetween10Hzand1kHz. Atsuchfrequencies, the relevant inspiral sources correspond to neutron star binaries, with m NS ∼ 1.4m ,(m isthesolarmass)orperhapsblackholeswithtypicalmassm BH 10m⊙. Sinc⊙ethetimeevolutionisnon-relativistic,itistoagoodapproximatio∼n treate⊙d in terms of Newtonian gravity. In particular, the orbital parameters are relatedby G m r v2 N s, (1.1) ∼ r ≡ 2r where r is the orbitalradius, and we have introducedthe Schwarzschild radius r = 2G m. The frequency of the radiation emitted during this phase is of s N order the orbital frequency 2πν v/r, so for a binary inspiral that scans the ∼ LIGOband,thetypicalorbitalradiusismeasuredinkilometers 1/3 1/3 m m r(10Hz) 300km r(1kHz) 14km , (1.2) ∼ m → ∼ m (cid:18) ⊙(cid:19) (cid:18) ⊙(cid:19) which is therefore well separated from the size of the compact objects, r s ∼ 1kmm/m . Theexpansionparameterv alsoevolvesasthebinarysweepsthe detectorfre⊙quencyband: 1/3 1/3 m m v(10Hz) 0.06 v(1kHz) 0.3 , (1.3) ∼ m → ∼ m (cid:18) ⊙(cid:19) (cid:18) ⊙(cid:19) indicatingthatthevelocityisagoodexpansionparameteruptothelastfewcycles oforbitseenbythedetector.Asv 1,theinspiralphaseends,andtheevolution → mustbetreatedbynumericalsimulations. Duringtheinspiralphase,theboundorbitisunstabletotheemissionofgravi- tationalradiation.Thepoweremittedingravitationalwavesiswellapproximated bythe quadrupoleradiationformula. Takingthe orbitto be circular, the power radiatedis dE 32 dt = 5 G−N1v10. (1.4) 1Eventhoughwewillbedoingclassicalphysicsformostoftheselectures,Iuseparticlephysics unitsc=¯h=1throughout. LesHouchesLecturesonEffectiveFieldTheoriesandGravitationalRadiation 5 ThemechanicalenergyofthebinaryisjustE = 1mv2 toleadingorderinv, −2 sobyconservationofenergy d 1 32 dt −2mv2 =− 5 G−N1v10, (1.5) (cid:18) (cid:19) weobtainanestimateforthedurationoftheinspiraleventseenbyLIGO 8/3 5 1 1 m − ∆t= r 5min. , (1.6) 512 s"vi8 − vf8#∼ (cid:18)m⊙(cid:19) andthenumberoforbitalcyclesasthesignalsweepsthedetectorband N tf ω(t)dt= 1 1 1 4 104 m −5/3 radians, (1.7) ∼Zti 32"vi5 − vf5#∼ × (cid:18)m⊙(cid:19) withωtheorbitalangularfrequency. Eqs. (1.2), (1.3), (1.6) give an estimate for the typical length, velocity, and duration of an inspiral event that sweeps the LIGO frequency band. Inspiral events seen by LISA follow the same dynamics. However, because LISA will operate in a frequencyrange complementaryto LIGO, 10 5Hz < ν < 1Hz, − thesourcescorrespondtoobjectsofmuchlargemass(e.g.,BH/BHbinarieswith m 105 8m orBH/NSsystemswithm 105 7). BH − BH − ∼ ⊙ ∼ For either LIGO or LISA, the numberof orbitalcyclesspent in the detector frequencyband is quite large, see e.g. Eq. (1.7). Thus even a slight deviation betweentheoreticalcalculationsof the gravitationalwave phase (the waveform “templates”) and the data will become amplified over the large number of cy- clesofevolution.Consequently,inspiralwavesignalscarrydetailedinformation aboutgravitationaldynamics. Infact,ithasbeendeterminedthatLIGOwillbe sensitive to corrections that are order v6 in the velocity expansion beyond the leadingorderquadrupoleradiationpredictions[5]. Theprocedureforcomputingcorrectionsto themotionofthebinarysystem inthenon-relativisticlimitbyaniteratedexpansionoftheEinsteinequationsis called the post-Newtonianexpansionof generalrelativity [6]. What makes the calculationsdifficult(andinteresting)isthatthereisaproliferationofphysically relevanteffectsoccurringatdifferentlengthscales, r = sizeofcompactobjects, s r = orbitalradius, λ = wavelengthofemittedradiation, 6 W.D.Goldberger allcontrolledbythesameexpansionparameterv: r s v2 r v, (1.8) r ∼ λ ∼ wherethefirstestimatefollowsfromKepler’slawandthesecondfromthemulti- poleexpansionoftheradiationfieldcoupledtonon-relativisticsources. Thusto dosystematiccalculationsathighordersinv,itisnecessarytodealwithphysics atmanydifferentscales. Aconvenientwayofdoingthisistoconstructachain ofEFTsthatcapturetherelevantphysicsateachscaleseparately. Thegoaloftheselecturesistorecasttheproblemofcomputinggravitational waveobservablesfornon-relativisticsourcesintermsofEFTs. Inthenextsec- tionwebrieflyreviewtheEFTlogic,usingastandardparticlephysicsexample, the low energy dynamics of Goldstone bosons in a theory with spontaneously brokenglobalsymmetry,toillustratethemainideas.Insec.2,weturntotheEFT formulationofthebinaryinspiralproblem. Thepresentationfollows[7],which isbasedonsimilarEFTsfornon-relativisticboundstatesinQEDandQCD[8]. However,thefocushereisnotondetailedcalculations,butindescribinghowto “integrateout”physicsateachofthescalesr ,andrtoobtainatheorywithwell s definedrulesforcalculatinggravitationalwaveobservables(atthescaleλ)asan expansioninv. Possibleextensionsoftheideaspresentedheretootherproblems ingravitationalwavephysicsarediscussedintheconclusions,sec.3. 1.2. Effectivefieldtheories: areview EFTsareindispensablefortreatingproblemsthatsimultaneouslyinvolvetwoor morewidelyseparatedscales. Asatypicalapplication,supposeoneisinterested incalculatingtheeffectsofsomesortofshortdistancephysics,characterizedby ascaleΛ,onthedynamicsatalowenergyscaleω Λ. IntheEFTdescription ≪ of such a problem, the effects of Λ on the low energy physics become simple, making it possible to construct a systematic expansion in the ratio ω/Λ 1. ≪ Herewebrieflyreviewthebasicideasthatgointotheconstructionandapplica- tionsofEFTs. Moredetailedreviewscanbefoundinrefs.[9,10,11,12]. The key insight that makes EFTs possible is the following: consider for in- stanceafieldtheorywithlightdegreesoffreedomcollectivelydenotedbyφ(e.g, asetofmasslessfields)andsomeheavyfieldsΦwithmassneartheUVscaleΛ. TheinteractionsofthesefieldsaredescribedbysomeactionfunctionalS[φ,Φ]. Supposealsothatweareonlyinterestedindescribingexperimentalobservables involvingonlythelightmodesφ. Thenitmakessensetointegrateoutthemodes Φ to obtain an effectiveaction that describesthe interactionsof the light fields amongeachother eiSeff[φ] = DΦ(x)eiS[φ,Φ]. (1.9) Z LesHouchesLecturesonEffectiveFieldTheoriesandGravitationalRadiation 7 Itturnsoutthatingeneral,S [φ]canbeexpressedasalocalfunctionalofthe eff fieldsφ(x), S [φ]= c d4x (x), (1.10) eff i i O i Z X for(ingeneralaninfinitenumber)localoperators (x). Thecoefficientsc are i i O usually referred to as “Wilson coefficients”. If (x) has mass dimension ∆ , i i O thenthe Wilson coefficients, evaluatedata renormalizationpointµof orderΛ, scaleaspowersofΛ α c (µ=Λ)= i , (1.11) i Λ∆i−4 with α (1). From this observation we conclude that the short distance i ∼ O physicscanhavetwotypesofeffectsonthedynamicsatenergiesω Λ: ≪ Renormalizationofthecoefficientsofoperatorswithmassdimension∆ 4. • ≤ Generation of an infinite tower of irrelevant (i.e. ∆ > 4) operators with • coefficientsscalingasinEq.(1.11). This result regarding the structure of the low energy dynamics encoded in S [φ]isusuallyreferredtoasdecoupling.Thisconcepthasitsrootsinthework eff ofK.Wilsonontherenormalizationgroup[13]. Decouplingasusedbypractic- ingfieldtheoristswas firstmaderigorousin [14]. Theideaisusefulbecauseit statesthatthedependenceofthelowenergyphysicsonthescaleΛisextremely simple. All UV dependenceappearsdirectlyin the coefficientsof the effective Lagrangian, and determining the Λ dependence of an observable follows from powercounting(essentiallyageneralizedformofdimensionalanalysis). Effec- tiveLagrangiansaretypicallyusedinoneoftwoways: 1. The “full theory” S[φ,Φ] is known: In this case, integrating out the heavy modesgivesasimplewayofsystematicallyanalyzingtheeffectsoftheheavy physics on low energy observables. Because only the low energy scale ap- pearsexplicitlyintheFeynmandiagramsoftheEFT,amplitudesareeasierto calculateandtopowercountthaninthefulltheory. Examples: IntegratingouttheW,Z bosonsfromtheSU(2) U(1) Elec- L Y × troweak Lagrangian at energies E m results in the Fermi theory of W,Z ≪ weakdecayspluscorrectionssuppressedbypowersofE2/m2 . Itiseasier W,Z to analyze electromagnetic or QCD corrections to weak decays in the four- FermitheorythaninthefullElectroweakLagrangian,asthegraphsofFig.1 indicate. See,e.g.,ref.[15]. AnotherexampleistheuseofEFTstocalculate heavyparticlethresholdcorrectionstolowenergygaugecouplings[16].This hasapplications,forinstance,inGrandUnifiedTheoriesandinQCD. 8 W.D.Goldberger 2. The full theory is unknown (or known but strongly coupled): Whatever the physics at the scale Λ is, by decoupling it must manifest itself at low ener- giesasaneffectiveLagrangianoftheformEq.(1.10). Ifthesymmetries(eg. Poincare,gauge,global)thatsurviveatlowenergiesareknown,thentheop- erators (x) appearinginS [φ]mustrespectthosesymmetries. Thusby i eff O writingdownaneffectiveLagrangiancontainingthe mostgeneralsetofop- eratorsconsistentwiththesymmetries,wearenecessarilyaccountingforthe UVphysicsinacompletelymodelindependentway. Examples: TheQCDchiralLagrangianbelowthescaleΛ ofSU(3) χSB L × SU(3) SU(3) chiral symmetry breaking [17, 18]. Here the full the- R V → ory,QCD,isknown,butbecauseΛ isoforderthescaleΛ 1GeV χSB QCD ∼ wheretheQCDcouplingisstrong,itisimpossibletoperformthefunctional integralin Eq. (2.16) analytically. Another exampleis generalrelativity be- low the scale m 1019GeV. This theory can be used to calculate, e.g., Pl ∼ graviton-graviton scattering at energies E m . Above those energies, Pl ≪ however,scatteringamplitudescalculatedin generalrelativitystartviolating unitaritybounds,andtheeffectivefieldtheorynecessarilybreaksdown.Thus general relativity is an effective Lagrangian for quantum gravity below the strong coupling scale m . The EFT interpretation of general relativity is Pl reviewedinmoredetailinrefs.[19,20] Finally,itisbelievedthattheStandardModelitselfisaneffectivefieldtheory belowscalesoforderΛ = 1TeVorso(seelecturesbyH.Murayamaatthis school).Thisscalemanifestsitselfindirectly,intheformofSU(2) U(1) L Y × gauge invariant operators of dimension ∆ > 4 constructed from Standard Modelfields[21],certainlinearcombinationsofwhichhavebeenconstrained experimentally using collider data from the LEP experiments at CERN and from SLD at SLAC (see [22] for a recent analysis of precision electroweak constraintsusingeffectiveLagrangians). Ifthereisindeednewphysicsatthe TeVscale,itwillbeseendirectly,attheCERNLHCwhichisduetocomeon lineinthenextfewyears. In eitherofthese two classes ofexamples, integratingouttheheavyphysics asinEq.(2.16)resultsinaaneffectiveLagrangianthatcontains,ingeneral,an infinitenumberofoperators (x). However,because i O 1. Anoperator (x)with[ ]=∆ >4contributestoanobservableatrelative order O O O ω ∆O 4 − 1, (1.12) Λ ≪ (cid:16) (cid:17) 2. Agivenobservablecanonlybedetermineduptoafiniteexperimentalresolu- tionǫ 1, ≪ LesHouchesLecturesonEffectiveFieldTheoriesandGravitationalRadiation 9 onemaytypicallytruncatetheseriesinEq.(1.10)afterafinitenumberofopera- tors,thosewithmassdimension∆ N +4,where ≤ ω N ǫ=expt.error= . (1.13) Λ (cid:16) (cid:17) ThereforeS [φ]ispredictiveaslongastherearemoreobservablesthanoper- eff atorswithmassdimension∆ N +4. ≤ Tomakethesegeneralremarksmoreconcrete,itisworthstudyingatoyexam- pleinsomedetail. We’llconsiderthequantumfieldtheoryofasinglecomplex scalarfieldφ(x)withLagrangian(the“fulltheory”) = ∂ φ2 V(φ), (1.14) µ L | | − where V(φ)= λ φ2 v2/2 2. (1.15) 2 | | − (cid:0) (cid:1) ThistheoryisinvariantundertheglobalU(1)symmetry U(1):φ(x) eiαφ(x), (1.16) → forsomeconstantphaseα,aswellasadiscretechargeconjugationsymmetry C :φ(x) φ∗(x). (1.17) → Classically, the ground state of this theory is determined by the minimum of V(φ). Because of the U(1) symmetry the ground state is degenerate, and the vacuum manifold is the circle φ2 = v2/2 in the complex φ plane. To study | | fluctuationsaboutthevacuum,weexpandthefieldsaboutanyofthese(equiva- lent)vacuua,forinstancethepoint v φ = . (1.18) h i √2 Expandingaboutthis pointspontaneouslybreaksthe U(1)symmetry,resulting inoneGoldstoneboson.Itisconvenienttowritetheoriginalfieldφ(x)as 1 φ(x)= (v+ρ(x))eiπ(x)/v. (1.19) √2 Undertheoriginalsymmetries,thenewfieldstransformas ρ(x) ρ(x), U(1): → (1.20) π(x)/v π(x)/v+α, (cid:26) → 10 W.D.Goldberger and ρ(x) ρ(x), C : → (1.21) π(x) π(x). (cid:26) →− TheLagrangianintermsofthenewfieldsisgivenby 1 1 ρ 2 λ = (∂ ρ)2+ 1+ (∂ π)2 (vρ+ρ2/2)2, (1.22) µ µ L 2 2 v − 2 (cid:16) (cid:17) so the spectrum of excitations about the vacuum consists of a “modulus” field ρ(x) with tree level mass given by m2 = λv2 and the Goldstone boson π(x) ρ withm =0. (Wetakeλ 1sothataperturbativetreatmentisvalid). π ≪ Supposethatweareinterestedinworkingoutthepredictionsofthistheoryat energiesω m . Atsuchscales,onlythedynamicsofthemasslessfieldπ(x) ρ ≪ is non-trivial, and following our general discussion it is convenientto write an effectiveLagrangian. The generalstructure of this effective Lagrangianis dic- tated by the symmetries of the originaltheory. In particular the U(1), realized non-linearlyastheshiftsymmetryπ(x)/v π(x)/v+α,restrictstheeffective → Lagrangiantobeafunctionof∂ πonly.Thereforethesymmetriesofthelowen- µ ergytheoryaloneexplainanumberofconsequencesofthelowenergydynamics, forinstance The field π(x) must be massless, since a mass term would break the shift • symmetry.ThisisjustthestatementofGoldstone’stheoreminthecontextofthe lowenergyEFT. The field π(x) is derivatively self-coupled. This implies in particular that • scatteringamplitudesare“soft”, vanishingaspowersofthetypicalenergyω in thelimitω 0. → Inadditiontotheconstraintsfromthenon-linearlyrealizedU(1),thereisalsoa constraintfromthe chargeconjugationsymmetryπ π whichsays thatthe → − EFT must be even in π. Thus the effective Lagrangian must be of the general form 1 c = (∂ π)2+ 8 (∂ π∂µπ)2+ , (1.23) LEFT 2 µ 4Λ4 µ ··· whereonlytheleadingoperatorswithtwoandfourπ’shavebeendisplayed. In thisequationΛ m andc issomedimensionlessconstantoforderλ. ρ 8 ∼ 1.2.1. Matching Sinceweknowthefulltheory,Eq.(1.14),itispossibletoexplicitlyperformthe functionalintegralofEq.(1.9)inordertoobtaintheEFTparameterslikeΛand c intermsofthecouplingsλ,vappearinginthefulltheoryLagrangian. Rather 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.