ebook img

Lensing and Supernovae: Quantifying The Bias on the Dark Energy Equation of State PDF

0.22 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lensing and Supernovae: Quantifying The Bias on the Dark Energy Equation of State

DRAFTVERSIONFEBRUARY2,2008 PreprinttypesetusingLATEXstyleemulateapjv.10/09/06 LENSINGANDSUPERNOVAE:QUANTIFYINGTHEBIASONTHEDARKENERGYEQUATIONOFSTATE DEVDEEPSARKAR1,ALEXANDREAMBLARD1,DANIELE.HOLZ2,3,ANDASANTHACOORAY1 1DepartmentofPhysicsandAstronomy,UniversityofCalifornia,Irvine,CA92617 2TheoreticalDivision,LosAlamosNationalLaboratory,LosAlamos,NM87545 3KavliInstituteforCosmologicalPhysicsandDepartmentofAstronomyandAstrophysics,UniversityofChicago,Chicago,IL60637 DraftversionFebruary2,2008 ABSTRACT ThegravitationalmagnificationanddemagnificationofTypeIasupernovae(SNe)modifytheirpositionson 8 theHubblediagram,shiftingthedistanceestimatesfromtheunderlyingluminosity-distancerelation.Thiscan 0 introducea systematic uncertaintyin the darkenergyequationof state (EOS) estimated from SNe, although 0 thissystematicisexpectedtoaverageawayforsufficientlylargedatasets. UsingmockSN samplesoverthe 2 redshiftrange0<z≤1.7wequantifythelensingbias. We findthatthebiasonthedarkenergyEOSisless n thanhalfa percentforlargedatasets(&2,000SNe). However,ifhighlymagnifiedevents(SNedeviatingby a more than 2.5σ) are systematically removedfrom the analysis, the bias increasesto ∼ 0.8%. Given thatthe J EOS parametersmeasured from such a sample have a 1σ uncertainty of 10%, the systematic bias related to 0 lensinginSNdataouttoz∼1.7canbesafelyignoredinfuturecosmologicalmeasurements. 3 Subjectheadings: cosmology: observations—cosmology: theory—supernova—parameterestimation— gravitationallensing ] h p - 1. INTRODUCTION wide-area(>5deg2) searchesforSNe (inlieu ofsmall-area o pencil-beamsurveys). Since the discovery of the accelerating expansion of the r InadditiontothestatisticalcovarianceofSNdistanceesti- t universe(Riessetal.1998;Perlmutteretal.1999;Knopetal. s mates,gravitationallensingalsointroducessystematicuncer- a 2003; Riessetal. 2004), the quest to understandthe physics taintiesintheHubblediagrambyintroducinganon-Gaussian [ responsible for this acceleration has been one of the major dispersionintheobservedluminositiesofdistantSNe. Since challenges of cosmology. At present the dominant expla- 2 lensing conserves the total number of photons, this system- nation entails an additional energy density to the universe v atic bias averagesaway if sufficiently large numbersof SNe called dark energy. The physics of dark energy is gener- 3 per redshift bin are observed. In this case the average flux allydescribedintermsofitsequationofstate(EOS),thera- 4 of the many magnified and demagnified SNe converges on tio of its pressure to density. In some models this quantity 1 theunlensedvalue(Holz&Linder2005). Nonetheless,even 4 can varywith redshift. While thereexist a variety of probes with thousandsof SNe in the total sample it is possible that . to explore the nature of dark energy, one of the most com- 0 the averaging remains insufficient, given that one may need pellingentailstheuseoftypeIasupernovaetomaptheHub- 1 to bin the Hubblediagramat verysmall redshiftintervalsto ble diagram, and thereby directly determine the expansion 7 improve sensitivity to the EOS. Furthermore, SNe at higher historyoftheuniverse.Withincreasingsamplesizes,SNdis- 0 redshifts are more likely to be significantly lensed. If “ob- tancescanpotentiallyprovidemultipleindependentestimates : vious” outliersto the Hubble diagramare removedfromthe v oftheEOSwhenbinnedinredshift(Huterer&Cooray2005; i Sullivan,Cooray,&Holz2007;Sullivanetal.2007). Several sample,thisintroducesanimportantbiasincosmologicalpa- X rameterdetermination,andcanleadtosystematicerrorsinthe present and future SN surveys, such as SNLS (Astieretal. r determinationofthedarkenergyEOS. 2006)andtheJointDarkEnergyMission(JDEM),areaimed a In this paper we quantify the bias introduced in the es- atconstrainingthevalueofthedarkenergyEOStobetterthan timation of the dark energy EOS due to weak lensing 10%. of supernova flux. We consider the effects due to the Although SNe have been shown to be good standardiz- non-Gaussian nature of the lensing magnification distri- able candles, the distance estimate to a given SN is de- butions (Wang,Holz,&Munshi 2002), performing Monte- gradedduetogravitationallensingofitsflux(Frieman1997; CarlosimulationsbycreatingmockdatasetsforfutureJDEM- Wambsganssetal. 1997; Holz&Wald 1998). The lensing like surveys. The paper is organizedas follows: In §2.1 we becomes more prominent as we observe SNe out to higher discussourparameterizationofthedarkenergyEOS,§2.2dis- redshift,withtheextradispersioninducedbylensingbecom- cussesgravitationallensing,and§3isanin-depthdescription ing comparable to the intrinsic dispersion (of ∼0.1 magni- ofourmethodology.Wepresentourresultsin§4. tudes)atz&1.2(Holz&Linder2005).Inadditiontothisdis- persion,whichleadstoanincreaseintheerrorassociatedwith 2. BACKGROUND distance estimate to each individual supernova, lensing also 2.1. ParameterEstimationUsingSNeIa correlatesdistanceestimatesofnearbySNeonthesky,since the lines-of-sight pass through correlated foreground large- ForaSNwithintrinsicluminosityL,thedistancemodulus scalestructure(Cooray,Huterer,&Holz2006;Hui&Greene isgivenby 2006). Althoughthiscorrelationerrorcannotbe statistically L/4πd 2 d eliminatedbyincreasingthenumberofSNeintheHubbledi- m- M=- 2.5log L =5log L +25, agram,theerrorscanbecontrolledbyconductingsufficiently 10"L/4π(10pc)2# 10(cid:18)Mpc(cid:19) (1) 2 LENSINGANDSUPERNOVAE where, in the framework of FRW cosmologies, the lumi- nosity distance d is a function of the cosmological pa- L rameters and the redshift. We consider the two-parameter, time-varying dark energy EOS (Chevalier&Polarski 2001; Linder 2003)adoptedbytheDarkEnergyTaskForce(DETF) (Albrechtetal. 2006). We take a flat universe describedby the cosmologicalparametersΘ={h,Ω ,w ,w }, with h the m 0 a dimensionlessHubbleconstant,Ω thedimensionlessmatter m density,andw andw theparametersdescribingthedarken- 0 a ergyEOSw(z)=w +w (1- a).Onecanthenexpressd as 0 a L z cdz′ d (z)=(1+z) , (2) L H(z′) Z0 whereH(z)istheHubbleparameteratredshiftz: H(z)=H0 Ωm(1+z)3+(1- Ωm)(1+z)3(1+w0+wa)e- 3(1w+azz) 1/2. h i (3) FIG. 1.—Top panel: The Hubble diagram with a linear redshift scale 2.2. WeakLensingofSupernovaFlux showingthedistancemoduluswithredshiftofasubsetofa2000SNmock dataset.Bottompanel:Theresidualsofthedatarelativetothefiducialmodel Light from a distant SN passes through the intervening ofaflatuniversewithΩm=0.3,w0=- 1,wa=0,andh=0.732. large-scale structure of the universe. This causes a modifi- cationoftheobservedfluxduetogravitationallensing: at a given redshift, to the probability distribution for the Fobs,lensed(z,nˆ)=µ(z,nˆ)Fobs,true, (4) reduced convergence, η, through P(µ)=P(η)/(2|κmin|) (see Wang,Holz,&Munshi (2002); Eq. (6)), where κ is the whereµ(z,nˆ)isthelensinginducedmagnificationatredshift min minimum convergence. The free parameter in normalizing zinthe directionofthe SN onthe sky,nˆ, andFobs,true is the P(η), and hence, P(µ), is η , the maximum value for the fluxthatwouldhavebeenobservedintheabsenceoflensing. max reducedconvergence.Wedeterminetheuniquevalueofη Themagnificationµcanbeeithergreaterthan(magnified)or max which yields both P(µ)dµ= 1 and hµi = µP(µ)dµ= 1 lessthan(demagnified)one,withµ=1correspondingtothe (to better than 10- 6). Since the mode is not equal to the (unlensed)pureFRWscenario. R R mean, the distribution is manifestly non-Gaussian. The This magnification (or demagnification) of the observed majority of distant supernovaeare slightly demagnified, and flux leads to an errorin the distance modulus, which can be theinferredluminositydistancesareskewedtohighervalues. expressedas The SN redshifts, on the other hand, remain unaffected, Fobs,lensed since gravitational lensing is achromatic. Although lensing [∆(m- M)] =- 2.5log =- 2.5log (µ), lensing 10 Fobs,true 10 magnification is insignificant at low redshifts, at redshifts (cid:18) (cid:19) (5) above one both weak and strong lensing become more wherewehavewrittenµ(z,nˆ)asµforbrevity. prominent. ForsmallSN samplestheoverallbiasistowards Evenintheabsenceoflensingthemeasureddistancemod- a larger cosmologicalacceleration (e.g., too large a value of ulustoaTypeIaSNsuffersanintrinsicerror,sincethesuper- ΩΛ for ΛCDM models). The lensing also addsa systematic novaearenotperfectstandardcandles. Thiserroristypically biasto estimates of the darkenergyEOS, shiftingto a more takentobeaGaussiandistributionineitherfluxormagnitude, negativevalueoftheEOS(e.g.,lessthan- 1.0forauniverse with a redshift-independent standard deviation of σ . On withacosmologicalconstant). Alongwithalargefractionof int theotherhand,aslensingintrinsicallydependsontheoptical demagnifiedSNe,lensingproducesasmallnumberofhighly depth,whichincreaseswithredshift,thescatter(orvariance) magnifiedsources. Ifthishigh-magnificationtailcanbewell due to lensing also increases with redshift (Holz&Linder sampled, the average of the lensing distribution is expected 2005). The probabilitydistribution function (PDF) for lens- toconvergeonthetruemean,andthebiascanbeeliminated ingmagnification,P(µ,z),ofabackgroundsourceatredshift (Wang2000;Holz&Linder2005). z, dependsonboththeunderlyingcosmologyandonthena- ture of the foregroundstructure responsible for lensing. We 3. METHODOLOGY makeuseofananalyticformforP(µ)thatwascalibratedwith We generate mock SN samples, and quantify the bias in numericalsimulations(Wang,Holz,&Munshi2002), which the estimation of the dark energy EOS due to gravitational isvalidforeventsthatarenotstronglylensed(µislessthana lensing. We pick as our fiducial cosmology a flat universe few). with Ω =0.3, w =- 1, w =0, and h=0.732with a Gaus- m 0 a The generic gravitational lensing PDF peaks sian prior of σ(h)=0.032. We consider a range of possible at a demagnified value, with a long tail to upcomingsurveys, and Monte-Carlo SN samples of varying high magnification (Wang,Holz,&Munshi 2002; sizesdistributeduniformlyintheredshiftrange0.1<z<1.7. Sereno,Piedipalumbo,&Sazhin 2002). However, since If the SN intrinsic errorsare Gaussian in flux, then it makes thetotalnumberofphotonsisconservedbylensing,alllens- sensetoanalyzethedataviafluxaveraging. Inthiscaseboth ing distributions preserve the mean: hµi = µP(µ)dµ= 1. the intrinsic errors and the lensing errors will average away To ensure that this criterion is met (to an accuracy of one for sufficiently large SN samples. However, if the intrinsic part in a million), we re-normalize the magRnification PDF errorsare Gaussian in magnitude,thena magnitudeanalysis in a slightly different way than what was originally sug- maybemoreappropriate,althoughthiswillleadtoabiasdue gested in Wang,Holz,&Munshi (2002). P(µ) is related, tolensing(whichisonlybias-freeforfluxanalysis). Inwhat SARKARETAL. 3 FIG. 2.—Leftpanel: Histogramsshowingthedistribution(after10,000realizations)ofthevaluesobtainedforw0usingthemagnitudeanalysis(§3.1),after marginalizingoverwaandh,forthreedifferentsamplesizes. Theun-filledhistogramdepictsthecaseofthe300SNsample,theshadedhistogramshowsthe distributionforasamplesizeof2000,andthehatchedhistogramshowsthecasefor10,000SNsample.Theverticallinesat-1.0095(dashedanddotted),-1.003 (dashed), and-1.002(solid)showtheaveragew0 valuesforthe300SN,2000SN,and10,000SNcases,respectively. Thewidthofthedistributions isdue primarilytotheintrinsicnoiseoftheSNe,whiletheshiftedmodeisduetofinitesamplingofthegravitationallensingPDF.Rightpanel: Histogramsshowing thedistribution(after10,000realizations)ofthevaluesobtainedforw0usingtheflux-averagingtechnique(§3.2),aftermarginalizingoverwaandh,forthree differentsamplesizes.Theun-filledhistogramdepictsthecaseofthe300SNsample,theshadedhistogramshowsthedistributionforasamplesizeof2000,and thehatchedhistogramshowsthecasefor10,000SNsample. Theverticallinesat-1.007(dashedanddotted),-1.0025(dashed),and-1.001(solid)showthew0 valuesthatwereobtainedafteraveragingover10,000realizationsforthe300,2000,and10,000samplesizes,respectively. followsweperformbothanalyses. tooneinflux,butnotinmagnitude.Wethusalsoanalyzethe mockdata sets in flux. The flux averagingis donesuch that 3.1. MagnitudeAnalysis foreachsupernovawefirstuseEq.(2)tocalculatethevalue For each SN at a redshift z we draw a value of µ at ran- ofdL(z),andthenevaluatethefiducialfluxusing dom from the re-normalized lensing PDF, P(µ,z), obtained L fromWang,Holz,&Munshi(2002),anduseEq.(5)toevalu- Ffid(z)= , (8) ate[∆(m- M)] . Tomodeltheintrinsicscatterwedrawa 4π[dLfid(z)]2 lensing numberatrandomfromaGaussiandistributionofzeromean where we can take any a priori fixed value of L. We take and standard deviation given by σint =0.1 mag (Astieretal. the lensing PDF, P(µ), and convolveit with a Gaussian dis- (2006) find a scatter at the level of 0.13 mag). We combine tribution having zero mean and dispersion 0.1 (this corre- theintrinsicandlensingnoisewiththe“true”underlyingdis- sponds to ∼ 5% error in distance estimates). We then ran- tancemodulustogettheobserveddistancemodulus: domlydrawfromtheconvolveddistribution,andmultiplythis (m- M)data(z)=(m- M)fid(z)+[∆(m- M)] +[∆(m- M)] . numberbyFfid(z)togettheobservedfluxforagivensuper- int lensing nova. WerepeatthisprocessforeachoftheN SNetoobtain (6) amockdataset. We thenfollowthefluxaveragingrecipeof By repeating the above procedure for each of the SNe in a Wang&Mukherjee (2004) and perform the likelihood anal- sample, we generate a mock Hubble diagram. We create ysis to quantify the bias. As before we perform the above mocksurveyswithdifferentnumbersofSNe: N=300,2000, & 10,000; and then for each fixed number of SNe we gen- simulationalarge(∼10,000)numberoftimestogetadistri- butionforthebiasinparameterestimation. erate at least 10,000 independent mock samples to properly We further assume that our SNe samples are complete in samplethedistributions. InFigure1weshowanexampleof the sense that there is no Malmquist bias or any bias due to onesuchdatasetwithaSNesamplesizeof2000. Theupper detectioneffectsovertheredshiftrangeconsidered. Thisisa panelshows the Hubble diagram and the lower panel shows reasonableassumptionsinceweconsiderSNeouttoaredshift theresidualsofthedistancemodulirelativetothatofthefidu- of1.7andsuchacompletecatalogisexpectedfromthenear- cialcosmologicalmodel. infraredimagingcapabilitiesoftheJDEMprogram. ForeachmockHubblediagramwecomputethelikelihood ofaparametersetpbyevaluatingtheχ2-statistic: 4. RESULTSANDDISCUSSION χ2(p)= N (m- M)data(zi)- (m- M)fid(zi) 2, (7) We first presentour results for the magnitudecase, as de- σ2(z) scribedin§3.1. TheleftpanelofFigure2showshistograms Xi=1 (cid:2) i (cid:3) of the best-fit values of w0 from the likelihood analysis, af- whereσ(zi)istheerrorbarforthedistancemodulusoftheith termarginalizingoverwaandh. Theemptyhistogram,which supernova,takentobe0.1magthroughout.Theprojectedbias peaksat-1.009(markedwithaverticaldot-dashedline),isfor intheestimationofw0cannowbecomputedbymarginalizing the model with 300 SNe. The shaded histogram, represent- overwaandh(keepingΩm fixed). ingthe2,000SNcase,peaksat-1.003(verticaldashedline), whilethehatchedhistogramrepresentingthe10,000SNcase 3.2. Flux-AveragingAnalysis hasitspeakat-1.002(verticalsolidline). Thesedistributions Wang(2000)arguesthataveragingtheflux,asopposedto have1σwidthsof0.016,0.006,and0.003,respectively.This themagnitudes,ofobservedSNenaturallyremovesthelens- scatterisprimarilyduetotheintrinsicuncertaintyassociated ingbias,sincethemeanofthelensingdistributionsareequal with absolute calibration, and is not dominated by lensing. 4 LENSINGANDSUPERNOVAE some SNe to be highly magnified, and it is conceivablethat these “obvious” outliers are subsequently removed from the analysis. In thiscase the mean of the samplewill be shifted away from the true underlying Hubble diagram, and a bias willbeintroducedinthebest-fitparameters. Toquantifythis effect,weremoveSNewhichdeviatefromtheexpectedmean luminosity-distancerelation in the Hubble diagram by more than 25% (corresponding roughly to a 2.5σ outlier). The SN scatter is a result of the convolution of the intrinsic er- ror(Gaussianinflux ofwidth0.1)andthelensingPDF, and the outlier cutoff leads to a removalof ∼ 50 SNe out of the 2,000 SNe. These outliers are preferentially magnified, due to the strong lensing tail of the magnification distributions. The demagnification tail is cut off by the empty-beam lens- inglimit, and thereforeisn’tas prominent. The hatchedhis- togram in Figure 3 shows the distribution when events with convolvederrorgreaterthan 2.5σ are removed. The vertical FIG. 3.—Histogramsshowingthedistributionofthevaluesobtainedfor dot-dashedlineat-1.0075showstheaveragevalueofw0 ob- w0aftermarginalizingoverwaandhforthe2,000SNcase(usingtheflux- tained in this case, representing a bias in the estimate of w0 averagingtechnique). Theshadedhistogramassumesthatthefullsampleof roughlythree times larger than when the full 2,000 SNe are 2,000SNeisusedforparameterestimation.Thehatchedhistogramshowsthe analyzed(shownby shaded histogram). Thisbias is a result shiftwhenoutliers(SNethatareshiftedaboveorbelowtheHubblediagram bymorethan25%oneitherside)areremovedfromthesample. Thebiasin of cutting off the high magnification tail of the distribution, thedistributionisduetotheremovalofhighly-magnifiedlensingeventsfrom andthusshiftingthedatatowardsanetdimmingofobserved thesample. SNe,leadingtoamorenegativevalueofw . 0 We also apply a cutoff at 3σ, in addition to the 2.5σ dis- Without the inclusion of lensing, however, the distributions cussedabove.Thisresultsinaremovalof∼20SNeonaver- peakatexactly-1,andshownobias. Theshiftedmodegives age,foreach2,000SNsample,andleadstoabiasof∼0.6%. us a rough idea of the bias to be expected, on average, due Any arbitrary cut on the (non-Gaussian) convolved (lensing tolensing. Wefindthat68%ofthetimearandomsampleof +intrinsic)sampleleadstoanetbiasinthedistancerelation, 300SNewillhaveanestimatedvalueforw within3%ofits andevenforlargeoutliersandlargeSNsamples,thiscanlead 0 fiducialvalue, andthisdropsto 0.5%whena samplesize of topercent-levelbiasinthebest-fitvaluesforw . 0 10,000SNeisconsidered. Tosummarize,wehavequantifiedtheeffectofweakgrav- TherightpanelofFigure2showsthesamedistributionsas itationallensing on the estimation of darkenergyEOSfrom theleftpanel,butthistimeusingtheflux-averagingtechnique type Ia supernova observations. With generated mock sam- instead of averaging over magnitudes. The empty, shaded, ples of 2,000 SNe distributed uniformly in redshift up to and hatched histograms peak at -1.007, -1.003, and -1.001, z∼1.7 (as expected in future surveys like JDEM), we have respectively, showing the mean bias for the 300, 2,000 and shown that the bias in parameter estimation due to lensing 10,000SNcases(markedwithdot-dashed,dashed,andsolid is less than 1% (whichis well within the 1σ uncertaintyex- vertical lines). With flux-averaging, we expect that 68% of pectedforthesemissions).Analyzingthedatainfluxormag- the time a random sample of 300 SNe will yield a value of nitudedoesnotalterthisresult. Iflensedsupernovaethatare w within 2.5% of the fiducial value, and within 0.5% for a highlymagnified(suchthattheconvolvederrorismorethan 0 sampleof10,000SNe. 25%fromtheunderlyingHubblediagram)aresystematically The 1σ parameteruncertaintyon w rangesfromthe 20% removedfromthesample,wefindthatthebiasincreasesbya 0 level(for300SNe)tolessthan5%(for10,000SNe),dwarf- factorofalmostthree. Thus,solongasallobservedSNeare ingthebiasduetolensing. Thus, weneednotbeconcerned used in the Hubble diagram, including ones that are highly about lensing degradation of dark energy parameter estima- magnified,thebiasduetolensingintheestimateofthedark tion for future JDEM-like surveys. We note, however, that energyEOSwillbesignificantlylessthanthe1σuncertainty. ourestimatedbiasontheEOSislargerthanthelensingbias Evenforapost-JDEMprogramwith10,000SNe,lensingbias ofw<0.001quotedinTable7ofWood-Vaseyetal. (2007). canbesafelyignored. Thisisnotsurprising,giventheiruseofthesimpleGaussian approximationto lensingfromHolz&Linder(2005), which islesseffectiveforlowstatistics. Nonetheless,weagreewith theirconclusionthatlensingisnegligible. Asimilar conclu- We thank Yun Wang for usefuldiscussions. AC acknowl- sionwasalsoreachedbyMartel&Premadi (2007)whoused edges support from NSF CAREER AST-0645427. DEH acompilationof230TypeIaSNe (Tonryetal. 2003)in the acknowledges a Richard P. Feynman Fellowship from Los redshiftrange0<z<1.8toshowthatthelensingerrorsare Alamos National Laboratory. DS, AC, and DEH are par- smallcomparedtotheintrinsicSNeerrors. tiallysupportedbytheDOEatLANLandUCIrvinethrough We now discuss the bias which arises if anomalous SNe IGPPGrantAstro-1603-07.AAacknowledgesaMcCueFel- are removed from the sample. Gravitational lensing causes lowshipatUCIrvine. REFERENCES Aldering,G.etal.2004,PASP,submitted(astro-ph/0405232) Cooray,A.,Huterer,D.,Holz,D.2006,PRL,96,021301 Astier,P.etal., 2006,A&A,447,31 Frieman,J.A.1997,CommentsAstrophys.,18,323 M.ChevallierandD.Polarski,Int.J.Mod.Phys.D10,213(2001). Albrecht,A.etal.2006,arXiv:astro-ph/0609591 SARKARETAL. 5 Holz,D.E.&Linder,E.V. 2005,ApJ,631,678 Sullivan,S.,Cooray,A.,&Holz,D.E. 2007,JCAP,09,004 Holz,D.E.&Wald,R.M.1998,PRD,58,063501 Sarkar,D.,Sullivan,S.,Joudaki,S.,Amblard,A.,Holz,D.E.,&Cooray,A. Hui,L.&Greene,P.B. 2006,PRD,73,123526 2007,arXiv:astro-ph/0709.1150 Huterer,D.&Cooray,A.2005,PRD,71,023506 Tonry,J.L.etal. 2003,ApJ,594,1 Knop,R.A.etal.2003,ApJ,598,102 Wambsganss,J.,Cen,R.,Xu,G.,&Ostriker,J.P. 1997,ApJ,475,L81 Linder,E. 2003,PRL,90,091301 Wang,Y.2000,ApJ,536,531 Martel,H.&Premadi,P. 2007,arXiv:0710.5452 Wang,Y.,Holz,D.E.,Munshi,D.2002,ApJ,572,L15 Perlmutter,S.,etal. 1999,ApJ,517,565 Wang,Y.&Mukherjee,P.2004,ApJ,606,654 Riess,A.G.etal.1998,AJ,116,1009 W.M.Wood-Vaseyetal.,arXiv:astro-ph/0701041. Riess,A.G.etal.2004,ApJ,607,665 Sereno,M.,Piedipalumbo,E.,Sazhin,M.V. 2002,MNRAS,335,1061

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.