LEFM Analysis of a Center Cracked Specimen Fergyanto E. Gunawan Department of Mechanical Engineering Toyohashi University of Technology Objectives: Using (cid:12)nite element analysis for computing the stress intensity factor. (cid:15) Using singular element (cid:15) Learn ANSYS/APDL programming (cid:15) LEFM Analysis of a Center Cracked Specimen Model Description Figure1showsacentercrackedtensionspecimen. ForthedatagiveninTable1,computethestressintensity of the opening mode. Figure 1: A center cracked tension specimen Table 1: Data of the center cracked tension specimen. Parameter Value crack length (2a) 8.0 in plate width (2W) 20.0 in plate length (2L) 20.0 in thickness (t) 0.1 in Young’s modulus 1000.0 psi Poisson’s ratio 0.3 Applied force 1.0 lb References [1] D. R. J. Owen and A. J. Fawkes. Engineering Fracture Mechanics: Numerical Methods and Appli- cations. Pineridge Press Ltd., 1983. [2] T. L. Anderson. Fracture Mechanics: Fundamentals and Applications. CRC Press, second edition, 1995. E FG 2 LEFM Analysis of a Center Cracked Specimen Introduction of the Fracture Mechanics In the classical strength material approach to the structural design, the largest stress in the structure is compared to the material strength via a failure theory for determining the structural safety. However, when a (cid:13)aw/crack exists, the engineering structure may also fail at a stress lower than the material strength. Therefore, a new approach that considering the (cid:13)aw is required. The fracture mechanics is a branch in the solid mechanics that takes into account the in(cid:13)uence of the (cid:13)aw to the material strength. Unlike the strength material approach that utilizes the material strength, the fracture mechanics approaches utilizing the fracture toughness in determining the safety of a structure. Figure 2 provides a schematic comparison of the strength material approach to the fracture mechanics approach. Applied stress Material Strength (a) The strength of materials Applied stress Flaw size Fracture tougness (b) The fracture mechanics approach Figure2: Comparisonofthefracturemechanicsapproachtodesignwiththetraditionalstrengthofmaterial approach. Now, we consider an in(cid:12)nite size two-dimensional plate having a crack as depicted in Fig. 3. At the Figure 3: The stresses ahead of the crack tip [1]. E FG 3 LEFM Analysis of a Center Cracked Specimen vicinity of the crack tip, the stresses and displacements can be expressed as K (cid:18) 3(cid:18) (cid:18) I (cid:27) = 1 sin sin cos (1) x p2(cid:25)r (cid:18) (cid:0) 2 2 (cid:19) 2 K (cid:18) 3(cid:18) (cid:18) I (cid:27) = 1+sin sin cos (2) y p2(cid:25)r (cid:18) 2 2 (cid:19) 2 and K r (cid:18) 3(cid:18) I u = (2(cid:20) 1)cos cos (3) 4(cid:22)r2(cid:25) (cid:18) (cid:0) 2 (cid:0) 2 (cid:19) K r (cid:18) 3(cid:18) I v = (2(cid:20)+1)sin sin ; (4) 4(cid:22)r2(cid:25) (cid:18) 2 (cid:0) 2 (cid:19) where K is the opening mode of fracture, and is the main parameter in the fracture mechanics analysis of I linear elastic materials; the parameter (cid:22) is E=(2(1+(cid:23))) and the parameter (cid:20) is obtained by (3 (cid:23))=(1+(cid:23)) for the plane stress (cid:20)=8 (cid:0) : (5) >>< 3 4(cid:23) for the plane strain (cid:0) >>: Our focus: To compute the stress intensity factor, K I Equations (1){(4) show that K can be expressed in (cid:27) , (cid:27) , u, or v; therefore, once we have the data of I x y (cid:27) , (cid:27) , u, or v, we may infer the stress intensity factor. As you have seen in (cid:12)ve previous modules, those x y data even for a complex structure can be easily obtained by means of the (cid:12)nite element analysis. However, Eqs. (1) and (2) reveals that the cracked structure possess a singular stress (cid:12)eld that propor- tional to 1=pr; in plain English, the stress gradient at the vicinity of the crack tip is extremely high. Without any special consideration, deliberately use the (cid:12)nite element method for such a problem would not lead you to accurate data of (cid:27) , (cid:27) , u, or v. x y The problem of the high stress gradient can be addressed by two approaches. You have used the (cid:12)rst approach when dealing with the stress concentration on the plate with hole where the high stress gradient problem exists on the stress distribution along the ligament. The normal stress, as can be seen in Fig. 4, graduallyincreasesasthelocationapproachingtheholeedge. Ontheholeedge,thecomputedstressislower than that given by Peterson. However, when the mesh size is reduced as depicted in Fig. 5, the computed normal stress steeply increases to a plateau near the exact solution. Therefore, itisclearthattoaccuratelysimulatethestresssingularity, avery(cid:12)nemeshisrequiredinthe region near to the crack tip. In addition, one also may use a special element so called the singular element E FG 4 LEFM Analysis of a Center Cracked Specimen 2 1.5 n) xis (i 1 A − Y 0.5 FEM Peterson 0 0 2 4 6 8 SX (psi) Figure 4: The normal stress along the ligament of the plate with hole. 4.36 4.34 4.32 si) 4.3 p SX (4.28 4.26 4.24 FE Solution Exact Solution 4.22 0 50 100 150 Number of elements (NOE) Figure 5: The e(cid:11)ect of mesh-size to the largest normal stress on the plate with hole. that designed to capture the singular stress (cid:12)eld. The aim of the text is to present the most applicable numerical techniques employed by engineers for the solution of practical fracture problems and their implementation using the ANSYS Parametric Design Language (APDL). The Singular Element Thesingularelementisanelementthatpossessthestrainsingularityof1=pr. Thisbehaviorcanbeachieved byuseaquadraticelementwherethreeoftheirnodesarejoined|Nodes1,7,and9forthecasethatdepicted in Fig. 6|and the mid-side nodes are moved to the quarter point adjacent to the crack tip node. Whenthesingularelementisbeingused,thestressintensityfactorsforthetensionandshearmodescan be directly obtained by solving Eq. (6) and (7): K 8(2(cid:20)(cid:0)1)cos2(cid:18) (cid:0)cos32(cid:18)9=4(cid:22) 2(cid:25) 84u2(cid:0)u3(cid:0)3u19; (6) I><(2(cid:20)+1)sin2(cid:18) sin32(cid:18)>= r L ><4v2 v3 3v1>= (cid:0) (cid:0) (cid:0) >: >; >: >; E FG 5 LEFM Analysis of a Center Cracked Specimen Figure 6: The singular element. and K 8(cid:0)(2(cid:20)+3)sin2(cid:18) (cid:0)sin32(cid:18)9=4(cid:22) 2(cid:25) 84u2(cid:0)u3(cid:0)3u19; (7) II><(2(cid:20) 3)cos2(cid:18) cos32(cid:18) >= r L ><4v2 v3 3v1>= (cid:0) (cid:0) (cid:0) (cid:0) >: >; >: >; where u and v is the displacements in x and y directions, respectively, of node i. The index i is 1, 2, or 3. i i The best practice for meshing the region surrounding the crack tip in the LEFM is by use a spider-mesh such as that shown in Fig. 7. For the elasto-plastic analysis, the singular element is not required. nthet = 6 rrat delr = L npt Figure 7: Singular elements around the crack-tip. E FG 6 LEFM Analysis of a Center Cracked Specimen ANSYS Implementation of the Singular Element In ANSYS, the singular element can be generated via by issuing the crack tip location before the mesh is generated: ANSYS Main Menu: Preprocessor (cid:66) Meshing (cid:66) Size Cntrls (cid:66) Concentrat KPs (cid:66) Create In addition, the element is always accessible via a command line: kscon, npt, delr, kctip, nthet, rrat where npt is the keypoint number at concentration, delr is L in Eqs. (6) and (7) (see also Fig. 7), kctip = 1,nthetisnumberofelementsincircumferentialdirection,andrratisratioof2ndrowelementsizetodelr. E FG 7 LEFM Analysis of a Center Cracked Specimen Exact Solution of the Center Cracked Tension Specimen Reference [2] provides the exact solution of the stress intensity factor as: P a K = f ; (8) I BpW (cid:1) (cid:16)W(cid:17) where P is the applied load, B is the specimen thickness, and f(a=W) is given by a (cid:25)a (cid:25)a a 2 a 4 f = sec 1 0:025 +0:06 : (9) (cid:16)W(cid:17) r4W (cid:1) (cid:16)2W(cid:17)(cid:20) (cid:0) (cid:16)W(cid:17) (cid:16)W(cid:17) (cid:21) E FG 8 LEFM Analysis of a Center Cracked Specimen Finite Element Simulation of the Center Cracked Tension Specimen Pre-Processing Phase 1. De(cid:12)ne some parameters: ANSYS Pulldown Menu Parameters (cid:66) Scalar Parameters Selection: L = 10.0 Accept Selection: W = 10.0 Accept Selection: a = 4.0 Accept Selection: thick = 0.1 Accept Selection: singularRadius = 0.4*0.1*a Accept Selection: young = 1000.0 Accept Selection: nu = 0.3 Accept Selection: appliedStress = 1.0 Accept Close 2. Turn on the keypoint number, the area numbers and the line numbers: ANSYS Pulldown Menu PlotCtrls (cid:66) Numbering KEYPOINT Keypoint numbers (cid:2) On AREA Area Numbers (cid:2) On E FG 9 LEFM Analysis of a Center Cracked Specimen LINE Line numbers (cid:2) On OK 3. Select an element type: ANSYS Main Menu Preprocessor (cid:66) Element Type (cid:66) Add/Edit/Delete Add Solid 8node 183 OK Options Element behavior K3 : Plane strs w/thk OK Close 4. De(cid:12)ne the plate thickness: ANSYS Main Menu Preprocessor (cid:66) Real Constants (cid:66) Add/Edit/Delete Add Type 1 PLANE183 OK Thickness THK thick OK Close 5. De(cid:12)ne material properties: ANSYS Main Menu Preprocessor (cid:66) Material Props (cid:66) Material Models Structural (cid:66) Linear (cid:66) Elastic (cid:66) Isotropic EX young E FG 10
Description: