ebook img

Large-area, flexible imaging arrays constructed by light-charge organic memories. PDF

1.4 MB·English
by  ZhangLei
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Large-area, flexible imaging arrays constructed by light-charge organic memories.

Large-area, flexible imaging arrays constructed by light-charge organic SUBJECTAREAS: memories ELECTRONICDEVICES ELECTRONICMATERIALS LeiZhang,TiWu,YunlongGuo,YanZhao,XiangnanSun,YugengWen,GuiYu&YunqiLiu MICRO-OPTICS MOLECULARSELF-ASSEMBLY KeyLaboratoryofOrganicSolids,BeijingNationalLaboratoryforMolecularSciences,InstituteofChemistry,ChineseAcademyof Sciences,Beijing100190,China. Received 26September2012 Existingorganicimagingcircuits,whichofferattractivebenefitsoflightweight,lowcostandflexibility,are Accepted exclusivelybasedonphototransistororphotodiodearrays.Oneshortcomingofthesephoto-sensorsisthat 3January2013 thelightsignalshouldkeepinvariantthroughoutthewholepixel-addressingandreadingprocess.Asa feasiblesolution,wesynthesizedanewchargestoragemoleculeandembeddeditintoadevice,whichwecall Published light-chargeorganicmemory(LCOM).InLCOM,thefunctionalitiesofphoto-sensorandnon-volatile 16January2013 memoryareintegrated.Thankstothedeliberateengineeringofelectronicstructureandself-organization processattheinterface,92%ofthestoredcharges,whicharelinearlycontrolledbythequantityoflight, retainafter20000 s.Thestoredchargescanalsobenon-destructivelyreadanderasedbyasimplevoltage Correspondenceand program.Theseresultspavethewaytolarge-area,flexibleimagingcircuitsanddemonstrateabrightfuture ofsmallmolecularmaterialsinnon-volatilememory. requestsformaterials shouldbeaddressedto Y.Q.L.(liuyq@iccas. Electronic devices based on organic materials are suitable for applications requiring large area, flexible ac.cn) substrates by virtue of their low-cost scalable manufacturing processes. As a result, organic electronic systemhasemergedasaninterestingalternativetoconventionalamorphoussiliconelectronics(a-Si)1–5. Althoughphotoconductivityisacommonphenomenoninorganicphototransistorsandphotodiodes,organic opticalimagingcircuitsonflexiblesubstrateshaverarelybeenreported6,7.Inphototransistorsandphotodiodes, theelectricalresponsereliesoncontinuouslightexposureandthephotocurrentdisappearsimmediatelyoncethe lightisextinguished8–10.Therefore,itisdesirabletoendowphoto-sensorswithcontrolledmemorypropertyinthe hugeimagingarray.Ifso,therecordedphotographcouldbestoredforasufficienttimeafterlightexposureto allowpixeladdressingandreading. Inthetoolboxoforganicelectronics,bothnon-volatilememoryandphotoconductorareavailable.However, thefunctionalitiesintegrationintoasingledeviceisdifficultsinceorganicnon-volatilememoryisnotsensitiveto thecontinuously-varyinganalogsignalmodulatedbyincidentlightthroughphotoconductorlayer11.Inorderto makethememorylayermoresensitivetothephotogeneratedelectronsintheorganicsemiconductorlayer,alow- lying electron injection barrier should be achieved by pulling down the LUMO energy level of the memory material. So we design a new electron-accepting material and use it to absorb the photo-excited electrons in neighboring semiconductor layer. Because the stored charge density is an analog signal that represents the incidentlightintensity,thistransistoriscalledlight-chargeorganicmemory(LCOM)forthesakeofsimplicity inthiswork. The enabling material is a small molecular electron-acceptor with dicyanomethylene groups attached to the conjugated core. The molecule is referred to as M-C10, where ‘‘C10’’ indicates the n-decyl substitution. Compared to polymers, smallmolecules have thefollowingadvantages of(i) easy purification, (ii) nobatch- to-batch variation, (iii) well-defined molecular and electronic structure, (iv) intermolecular packing pro- pertyeasytobecharacterizedbyX-rayanalysis12.Inrecentyears,smallmolecularsemiconductorsdeveloped rapidly, mainly focusing on charge transporting materials13–16. However, small molecules designed to store charge firmly as non-volatile memory materials are lagged far behind despite that small molecule is advan- tageous over polymeric material in terms of memory mechanism study. Therefore in this work, we not only demonstrate the application of LCOM in imaging arrays by specific M-C10 molecules, but also investigate how the intermolecular packing property significantly influences the electrical performance of LCOM. SCIENTIFICREPORTS |3:1080|DOI:10.1038/srep01080 1 www.nature.com/scientificreports Results 80uConhotplatefor60 seconds.Itisessentialtonotethatannealing Deviceconfigurationandoperationalprinciple.Figure1ashowsa process was a critical factor for successfully realizing the designed schematicillustrationofLCOM,whichtakessimilarconfiguration functionality of LCOMs (detail discussion provided later). The withorganicthinfilmtransistor(OTFT).Forprogramming,thegate transfer and output curves of LCOM in TFT mode are shown in electrodeispositivelybiased(Fig.1b,c).Indark,thebulkdensityof Fig. 2a,b. Better than expected, the mobility of pentacene on electronchargecarriersinpentacenelayerisverylowaspentaceneto annealed M-C10 modification layer reached a peak value of be hole-dominated p-type semiconductor. In addition, electron 3.3 cm2V21s21 as calculated from the saturation region of transfer injection from gold into pentacene is also limited because of the curve(Fig.2a).Highmobilitywillresultincurrent-measuringmore energy mismatch between the gold work function (W of gold 5 sensitivetothesameelectron densityinmemorylayerandenable F 5.2 eV)andtheLUMOofpentacene(2.4 eV,Fig.1a)17,18.Asaresult, fasterdeviceswitchingincircuit. the applied positive gate voltage will not lead to charge transfer Asacharacterizationofprogramming,therelationshipbetween between M-C10 memory layer and pentacene layer theoretically transfercurveshiftandincidentlightpowerissummarizedasFig.2c (Fig.1b).Then,ifthedeviceisilluminated,photo-excitedelectrons (alsoseeSupplementaryFig.S5).Duringlightexposure,thewriting will come into being in pentacene (Fig. 1c). Motivated by positive voltage(V )wasapplied35 Vand8 swhilelightpowerwascon- W gate voltage, these electrons transport towards pentacene/M-C10 trolledbymeansofgraypaperwithdifferentgrayscales.Micrographs interfaceandeventuallyflowintothememorylayerbecauseofthe andphotographsofthegraypapersareshowninSupplementaryFig. low-lying LUMO energy level of M-C10 compared with that of S6,S7.Afterexposure,thethresholdvoltage(V )shiftasafunctionof T pentacene(Fig.1a). incident light power is superimposed in Fig. 2d. It is obvious that The photo modulated electrons stay in the memory layer and thereexistsalinearcorrelationbetweenV shiftandlightpower. T induce holes in the neighboring pentacene film. As a result, the One may argue that 8 s writing voltage is too long forimaging. analoguesignalrecordedbyM-C10isreadytobenon-destructively However,thelongtimeisdeliberatelychosentomakethetransfer sensed by measuring LCOM in TFT mode (Fig. 1d and curvesinFig.2cdistinguishabletothenakedeye.Wehaveshown SupplementaryFig.S1,S2).Comparisontestbasedonpentaceneonly that a 250 ms voltage pulse is enough to induce the conductance devicewithoutM-C10arealsoperformedandtheresults arepro- variationofthepentacenelayeratleast(Fig.S2).Iftheexposuretime vided in Fig. S3, S4. As we anticipated, the pentacene only device for imaging was assumed to be t , the time required for pixels expo showedlightsensingduringillumination,butthecurrentresponse addressingandinformationreadingwasassumedtobet ,while read disappearedimmediatelywhenthelightwasoff.Morediscussionof thecurrentforthephoto-inducedelectronsinjectionintothemem- theoperatingprinciplesofanOTFTcanbefoundinrelevantreview orylayerisI ,andtheescapingcurrentofstoredchargesisdefined expo articles19–21. It is worth noting that if the gate voltage is enough tobeI .Thereisanequationtorealizetheimagingwithoutdis- esca negative,holesattheinterfacecanalsoovercometheenergybarrier tortion: andtransportintotheM-C10layerwiththeaidofelectricalfield22. Whenthishappens,thestoredelectronswillbeneutralizedbyholes I |t =I |t ð1Þ esca read expo expo andtheerasingprocesshasbeendescribedasFig.1e. Soitisobviousthatt isrestrictedbyt ,I andI .And expo read esca expo Deviceperformance of LCOM on annealed M-C10layer. Before this equation points out how to improve the refresh frequency of thedepositionofpentacene,theM-C10layerhasbeenannealedat LCOMarraysinfuture. Figure1|SchematicdiagramandoperationalprincipleofLCOM. (a)DeviceconfigurationofLCOMandthemolecularstructuresofmaterialsusedas semiconductorandchargestoragelayer.HOMO-LUMOenergylevelsandelectronicstructuresaredeterminedbydensityfunctionaltheorycalculations attheB3LYP/6-31G(d)leveloftheory.Thedeviceusessilicaasdielectriclayer(300nm).Source2Drainelectrodesaremadeofgoldwhileheavily dopedsiliconasgateelectrode.Electricalfieldassistedelectroninjectionfrompentaceneintomemorylayerasthedeviceis:(b)Indark.(c)Illuminated. Thephoto-excitedelectronsinpentacenewouldtransportintothememorylayerandstaythere.(d)DeviceoperatedinTFTmodeasholesaccumulateat thepentacene/M-C10interface.(e)ElectricfieldassistedholeinjectionfrompentaceneintoM-C10whenthegatevoltageisenoughnegative.Thiscould berecognizedasanerasingprocess. SCIENTIFICREPORTS |3:1080|DOI:10.1038/srep01080 2 www.nature.com/scientificreports Figure2|ElectricalpropertyinTFTmodeandlight-controlledprogramming. (a)Transfercurveand(b)OutputcurveofpentaceneTFTusing annealedM-C10asmodificationlayer.(c)Transfercurvesbeforeandafterdifferentdosesoflightexposure,whichistunedbygraypaperswithdifferent grayscales.Inset:microscopicimagesofgraypapers.(d)ThelinearrelationshipbetweenV shiftandincidentlightpower.Inset:schematicdiagramofthe T measurementprocedure.Thelightpowerthroughgraypapershasbeencalibratedbyalightintensitymeter. InthecaseofannealedM-C10asmemorylayer,thestoredcharge current of the 2nd pathway should depend on the stored electrons retainedforalongtimeasshowninFig.3a.Chargeretentiontests density.AsshowninFig.3d,thestoredelectrondensityinM-C10 wereperformedbymeasuringtheV shiftafterstoragefor20000 sin layerisquitedifferentfordevicesaturatedwithV of25 V,15 Vand T W air.TheV wasinitiallymovedfrom211.1 V(blacklines)to11.1 V 5 V,whiletheerasingrateissimilarforthesedevicesunderthesame T (redlines)bylightexposure.After20000 s,thevalueofV degraded valueofV 2V (Fig.3c).Sothisobservationsuggeststhatthe1st T W E to 9.4 V (blue lines) as determined by Fig. 3a. As V is linearly pathwaymightbedominatedintheerasingprocess,althoughpath- T dependentontheelectrondensityinmemorylayer,thecalculated way1stand2ndarebothpossibleintheory26.Theschematicdiagram charge retention ratio of 92% after 20000 s is much better than andmoredetailexplanationcouldalsobefoundinFig.S9. previously reported organic charge memory based on polymeric In the writing process, because pentacene is a hole-dominated materials and represents an outstanding progress in the field of semiconductor,electronswillnotaccumulateattheM-C10/penta- organicnonvolatilememories23,24. ceneinterfaceandso,whenthegateelectrodeispositivelybiased,a Besidestheexcellentretentionproperty,thestoredchargeswere positiveelectricfieldwillformallacrossthepentacenechannelarea alsobeerasedinacontrollablemanner22.AsshowninFig.3b,voltage ratherthanbeingfocusedontheinterface(Fig.1b).Theelectricfield pulse(2100 V,0.5 s)wasappliedongateelectrodeaserasingvolt- inthepentacenelayerprovidesdrivingforceforphoto-excitedelec- age(V )inordertomovethetransfercurvetothenegativedirection tronstomovetowardstheM-C10layer.Aselectronsaccumulatein E anderasetherecordedlightsignal.Aftererasingpulse,V changed M-C10layer,theelectricfieldinpentacenewillbecomeweakerand T from14.4 V(redlines)to4.3 V(bluelines),andthetransfercurve weaker. Eventually, photo-excited electrons cease to move. In this becameclosetotheinitialstage(blacklines).Tofurtherinvestigate case,theLCOMisthoughttobesaturatedbylightunderthegiven erasingprocess,theerasingratedependenceonV 2V (seeFig.3c V (SupplementaryFig.S10). W E W andSupplementaryFig.S8)wasalsostudied.Weshouldnotethatthe Thisprocesscanalsobedescribedbythefollowingequation, valueofV 2V representsthevoltagedropacrosstheM-C10/pen- W E taceneinterfacewhenVEwasappliedonthegateelectrode(seeFig. V ~V zVzV ð2Þ W C I F S9).ItwasfoundthattheV shiftwasnotobservedwhenthevalueof T V 2V waslessthan70 V.However,theerasingspeedincreased WhereV isdeterminedbytheelectrondensityinthememory W E C significantlyiftheabsolutevalueofV 2V exceeded80 V(Fig.3c). layer and the specific capacitance of the dielectric layer, V is the W E I Weshouldalsonotethattheerasingprocesscouldbeviewedasa voltage across the pentacene/M-C10 interface, and V is the volt- F tunnelingprocessbetweentwoconjugatedmolecules.Similarcharge age-drop in thepentacene film, which is assumed to be zero for a transferbehaviorcouldalsobefoundinorganicpindiodes25. saturatedLCOM.V isobtainedbycalculatingthedifferenceDV C T Intheerasingprocess,theremightbetwowaysfortheelectron beforeandafterlightexposure.AssumingthatV isnear-zerointhe I transferacrossthepentacene/M-C10interface:(1)thepositiveholes perfectstate,thetheoreticalmaximumchargestorageoftheM-C10 injectedintothememorylayerandrecombinedwithstoredelectrons layer is given by V 3 11 nF cm22 (where the latter value is the W in the LUMO energy level eventually; (2) Stored electrons in the specificcapacitanceofthe300 nmSiO dielectriclayer).Thediffer- 2 memory layer released into the channel and recombined with the ence between the theoretical and measured maximum storage is holesinpentacene26.AtagivenV 2V ,thetotalelectronrelease determined by the actual value of V. For the interface between W E I SCIENTIFICREPORTS |3:1080|DOI:10.1038/srep01080 3 www.nature.com/scientificreports Figure3|ElectricalcharactersofLCOMs.(a)Thetransfercurveevolutionafterstoragefor20000sasthegatevoltagewaskeptat0V.Ascalculated,92% ofthechargesinthememorylayerretainedafterstoragefor20000s.Thetrappedchargesescapedatanaveragerateof9.3310213Acm22.(b)Thetransfer curveevolutionaftera0.5serasingvoltage(V )pulseof2100V.(c)Plotofaverageholeinjectioncurrent(thenumberequalstotherateofelectrons E flowingoutbutoppositeindirection)versuserasingvoltage(V )fordevicessaturatedbydifferentwritingvoltage(V ).(d)Thecalculatedmaximum E W electrondensityunderdifferentwritingvoltage(V )andthemeasuredresults.Inset:voltagedistributionacrossthedeviceasthegatevoltagewas W positivelybiased(V ). W pentacene and M-C10, the value of V is only 2–3 V according to used in the same device configuration to evaluate the device I Fig.3d,suggestingveryefficientelectrontransferfrompentaceneto performance. M-C10 in the writing process. The small voltage drop across the BothM-C10andM-C0moleculesconsistofinseparablemixtures interface also provides a method to refresh the device: the device ofthesyn-andanti-isomers,whichdoesnotconsiderablyinterfere wasfirstover-erasedandthensaturatedbyalowV (forexample, withcrystallizationorX-raydiffractionstudies.Forthesakeofsim- W 5 V).Sothedevicesinanarraycanbesetaninitialstageregardlessof plicity,onlythechemicalstructureoftheanti-isomerisdrawninthe theirhistory. figuresofthisarticle.TheformalnamesandsynthesisdetailsofM- Now it is clear that the LCOM could be written and erased by C10 and M-C0 are given in the Supplementary Information. The voltageprograms,sothewrite-read-erase-readcyclesfortheLCOM HOMO and LUMO energy levels of M-C10 and M-C0 molecules asalight-assistednon-volatilememorywerealsotestedandsupplied areclosetoeachotheraccordingtotheirUV2visabsorptionspectra inFig.S11.After1000 cycles,theon-offratiowasstilllargerthan103. and cyclic voltammetry (CV) measurements (Supplementary Fig. S12).Thelongalkylsidechainsattachedtotheconjugatedcorecould Influence of molecular organization and interface property on enhancethesolubilityofM-C10comparedwithM-C0,solarge-area device performance. For further improvement of LCOMs, the uniformthinfilmsofM-C10wereeasilypreparedbyspin-coating mechanism of charge transfer between the heterojunction of while M-C0 memory layer was only fabricated by vacuum-depos- pentacene and the memory layer must be explored in depth. As a ition.Besidessolubilityenhancement,thelongalkylsidechainsalso mainadvantagecomparedtopolymer,themolecularstructureand enable the material to undergo self-organization on annealing as the packing motif of small molecules in film is easier to study. In showninSupplementaryFig.S13,S14. preceding paragraphs, we demonstrated that annealed M-C10 be Both M-C0 and non-annealed M-C10 modification layers dis- suitableforconstructingthetransistorwithdesignedfunctionality. playedclearfieldeffectbehavior(SupplementaryFig.S15),however, BesidestheseresultsobtainedusingannealedM-C10,non-annealed themobilitywasmuchlowerthanthatofannealedM-C10layeras M-C10layerandM-C0layer,whichhasidentical conjugatedcore showninTable1.Itisnowwellestablishedthathighmobility(m) withM-C10moleculebutwithoutalkylchainsubstitution,werealso means the formation of excellent interface between the dielectric Table1|PentaceneTFTsperformanceondifferentmodificationlayers Pentaceneon Mobility(cm2V21s21) Thresholdvoltage(V) On/offratio Subthresholdslope(S)(Vdecade21) T M-C0 0.072 25.9 2.63104 3.30 Non-annealedM-C10 1.04 21.08 1.53104 3.68 80uCannealedM-C10 2.74 21.95 53106 1.79 SCIENTIFICREPORTS |3:1080|DOI:10.1038/srep01080 4 www.nature.com/scientificreports layerandsemiconductorlayerwithlowerdensityofchargetraps.So discussion including grazing incidence X-ray diffraction (GIXRD) thetrendisclearthatthetrapdensityattheinterfaceofannealedM- couldbefoundinsupplementaryinformation. C10layerandpentaceneismuchlowerthanthatofnon-annealed Inthinfilmphase,theM-C10moleculesalsoadoptlayer-by-layer one,whilethenon-annealedM-C10hasabetterinterfacecompared packingmotif.ThisisconfirmedbyGIXRDmeasurementsinboth withM-C0,whichdoesnotpossessalkylchains.Theatomicforce in-planeandout-of-planescanningmotifs(SupplementaryFig.S18). microscopy(AFM)wasemployedinthetappingmodetoimagethe For M-C10 with alkyl substituent at both ends, the layer-by-layer topography of three kinds of modification layers. Insight into the packingmotifresultsinamicrostructurewiththelongalkylchains morphologyofpentacenegrownonthesemodificationlayersisalso pointing out from the substrate plane (as depicted in the inset of provided in Fig. S16. It is found that the topographic patterns for Fig.4a).Inotherwords,theorganizedlongalkylchainsattheM- thesethreekindsofmodificationlayerswithandwithoutpentacene C10/pentaceneinterfaceisolatetheconjugatedcoreofM-C10from grownontopwerenotclearlycorrelatedwiththethinfilmtransistor thepentacenesemiconductoraftertheannealingprocess.TheXRD performance. The most smoothing film of non-annealed M-C10 patterns of pentacene films on M-C0, non-annealed M-C10 and shows a moderate transistor performance. Previous reports have annealed M-C10 showed the same crystalline phase (see Fig. 4b). indicated that a rough substrate results in low mobility and high And as the HOMO2LUMO energy levels were almost identical hysteresis27.HoweverinthiscaseofM-C10modificationlayer,the for M-C10 and M-C0, so the device performance variation could pentacenemobilitywaslargeronannealedandroughM-C10surface beascribedtotheinterfacedifferencebetweenpentaceneandmodi- thanthatonnon-annealedandsmoothingM-C10surface. ficationlayers. The molecular packing properties of the memory layer and the Since UV2vis absorption spectroscopy is an effective probe of semiconductor layer were also investigated by X-ray diffraction molecularaggregation,spectraofM-C10andM-C0wererecorded (XRD). As shown in Fig. 4a, the non-annealed M-C10 thin film toassesstheextentofself-organizationduringthermaltreatmentas wasamorphous.Afterannealingfor60 sat80uC,thefilmshowed suppliedinFig.4c,d.WhenM-C0wasannealedat80uCinair,its astrongdiffractionpeakcorrespondingtoaspacingof21.5A˚,sug- UV2visabsorptionpropertywasnotaffected.Thisisnotsurprising gestinglayer-by-layerpackingmotifwhichhasalsobeenevidenced as differential scanning calorimetry (DSC) measurements showed byAFMimageinFig.S16.ForthedefiniteunderstandingoftheXRD that there is no phase transition peak for M-C0 below 220uC results,wegrownM-C10singlecrystalsbyslow-evaporationmethod (Supplementary Fig. S13). Meanwhile, for M-C10 a new peak usingtolueneassolventandobtainedthemolecularpackingprop- appearedatlongwavelength,withitspositionclosetothemaximum ertythroughX-rayanalysis.Thesinglecrystalstructureisshownas absorptionpeakofpolycrystallinethinfilmobtainedbydip-coating SupplementaryFig.S17andthez-axisspacingdistanceisca.29.5A˚. M-C10fromtoluene(SupplementaryFig.S19).Thesignificantdif- ItisobviousthatthemolecularorganizationinannealedM-C10film ferenceinUV2visabsorptionbetweenthesolutionandtheannealed issimilarbutnotidenticaltothatinsinglecrystal,sotheannealedM- thinfilmofM-C10suggestedthatmolecularreorganizationoccurred C10 film could be described as a thin film phase. More detailed onthermaltreatment. Figure4|XRDandUV2visabsorptionofthemodificationlayers. (a)XRDpatternsoftheM-C10thinfilmbeforeandafterannealing,togetherwith thatofM-C0filmobtainedbyvacuum-deposition.TheM-C10moleculesadoptalayer-by-layerpackingmotifinannealedthinfilmasevidencedbythe diffractionpeakappearsafterthermaltreatment.Inset:schematicdiagramofmolecularpackingstylesofamorphousandthinfilmphase.(b)XRD characterizationofpentacenegrownonM-C0,non-annealedM-C10,andannealedM-C10modificationlayers.UV2visabsorptionspectraof(c)M-C0 and(d)M-C10insolutionandthinfilmstates(beforeandafterannealing).Inset:molecularstructuresofM-C10andM-C0. SCIENTIFICREPORTS |3:1080|DOI:10.1038/srep01080 5 www.nature.com/scientificreports The presence of self-assembled alkyl chains at the interface curveshiftinthedark32.Thisbackgroundelectroninjectionintothe betweendielectricandsemiconductorhasbeenreportedtoreduce memorylayerhasadeleteriouseffectonthedetectionofweaklight the carrier trap density and improve OTFT performance28,29. Our andshouldbeeliminated. observationinthecaseofannealedM-C10modificationlayerisin According to the Marcus electron transfer theory, the self- goodagreementwiththesepreviouscontributions.Thesamephe- assembled alkyl spacers between pentacene and M-C10 efficiently nomenonwasalsoobservedusingadifferentp-typesemiconductor, decreasethechargetransferprobability.Indeed,asshowninFig.5b copper phthalocyanine (CuPc). The mobility of the CuPc OTFT thedarkcurrentgeneratedattheinterfacewasverylimitedforthe increased from 5.831024 cm2V21s21 on a bare silica substrate to annealed M-C10 memory layer even when the V of 35 V was W 5.031023 cm2V21s21 using non-annealed M-C10 as modification maintainedfor1 minute—thebackgroundelectroninjectioncurrent layer, and further increased to 2.431022 cm2V21s21 when incorp- densitywascalculatedtobeonly0.175 nAcm22fortheannealedM- oratingannealedM-C10layer(SupplementaryFig.S20). C10 layer, whereas a much higher value of 3.03 nA cm22 was Hereweshouldnotethattheself-organizedalkylblockinglayer observedwithanon-annealedM-C10layer(Fig.5c).AsforM-C0 fromannealingnotonlyenhancedthethinfilmtransistorperform- layer,thisvaluewasevenlarger,reaching3.5 nAcm22inaverageas ance,butalsoprolongedthecharge retentiontimeofthememory determined from Fig. 5d. In any case, the mobility enhancement, film.Thesource-draincurrentretained92%ofitsinitialleveleven backgroundcurrentreductionandprolongedchargeretentiontime after 20000 s when the annealed M-C10 film was employed. shouldbeexpectedtoresultfromtheself-organizationprocessofthe However, when M-C0 and non-annealed M-C10 films were used, memorylayerandthealkylchainspackingattheinterface. the photo-generated charge stored in the memory layer was lost much more rapidly, with only 25% and 18%, respectively, of the The application of LCOM fabricated on large-area and flexible current being retained after 20000 s (Fig. 5a). Thus, in the case of substrate. Because the devices possess the features of light- annealedM-C10film,thewell-organizedalkylchainsatthesurface sensitivity,non-volatilememory,andnon-destructivereading,and areviewedasadielectriclayerwhichelectricallyisolatesthetrapped canberefreshed,wetriedtofabricatea12312imagingmatrixona charge from the semiconductor, and this assumption is in good 535 cm2siliconwafer.Thesourceelectrodesofall144deviceswere agreement with previous contributions emphasizing the dielectric connectedtogetherandgrounded(insetofFig.6).Beforeimaging, propertyofself-assemblingalkylchains30,31. theLCOMsweresaturatedbyaV of5 Vin890 mWillumination W Another key parameter for LCOM is the background electron for 5 s in order to set the ‘‘zero’’ stage of the imaging circuit. The injectioncurrentintothememorylayerunderapositivegatevoltage matrix was then covered with a sheet of paper bearing a Chinese indark.Asadonor2acceptor(D2A)pair,chargetransferwilloccur ‘‘taiji’’ pattern as shown in Fig. 6. After light exposure, we ifpentacenemoleculeandtheconjugatedcoreofM-C10molecule measured the I2V curve of every imaging pixel manually and are close to each other. When a positive writing voltage (V ) is compared them with the I2V curves of the ‘‘zero’’ stage. The W appliedtotheLCOM,theelectron–holepairsgeneratedattheinter- optical information on the paper was successfully transferred to facewillbeseparatedbytheelectricalfieldandresultinatransfer the LCOM matrix in the form of current variations. The Figure5|TheLCOMperformanceaffectedbyinterfaceproperties. (a)CurrentdecaytestofLCOMswiththeannealedM-C10film,non-annealedM- C10filmandM-C0filmasthememorylayerafterthesamedoseoflightexposure.ForannealedM-C10memorylayer,thecurrentdecreasedto92%ofthe initiallevelafterstoragefor20000s;thecurrentdecayedto25%and18%oftheinitialvalues,respectively,fornon-annealedM-C10andM-C0memory layers.Thebackgroundtransfercurveshiftswhenawritingvoltageof35Vwasappliedtothedevicefor60sindarkfor(b)AnnealedM-C10memory layer.(c)Non-annealedM-C10memorylayer.(d)M-C0memorylayer.Thebackgroundcurrentdensityindarkwassignificantlyreducedfrom3.03nA cm22to0.175nAcm22afterthealkylsidechainself-organizationattheinterfaceofpentacene/M-C10. SCIENTIFICREPORTS |3:1080|DOI:10.1038/srep01080 6 www.nature.com/scientificreports Organicelectronicdevicesarerealizedonplasticsubstrateandthis is one of the main advantages of organic materials. Here we also fabricatedLCOMonpoly(ethyleneterephthalate)(PET)substrate. Themorphologyevolvementuponthefabricationstepsweresupplied inFig.7a–d.Thepentacenemobilitywasca.1.35cm2V21s21asdeter- minedbythetransfercurve(Fig.7e)andthechargesinthememory layer which was deposited on PAN could also be firmly stored as showninFig.7f,whiletheon/offwindowremainedlargerthan103 after20000s. After the above device property investigation, we fabricated a 3324LCOMarrayonPETsubstrate.Aphotographoftheresulting large-areaandflexiblescannerisshowninFig.7g.Asillustratedin theinsetofFig.7g,theimagingarraycouldbebenttotheradiusofa beakerandstillreadablack-and-whitebarcode(Fig.7g).DetailI–V curvesofpixelsfabricatedonsilicaandPETsubstrateareprovidedin SupplementaryFig.S21–38. Discussion Althoughsmallmolecularsemiconductorshavebeenwidelyinves- tigatedasthechargetransportlayerinthinfilmtransistorsandsolar Figure6|Large-areaimagingarrayconstructedbyLCOMs. Forthe cells,smallmoleculesdesignedasmemorymaterialshaverarelybeen ‘‘taiji’’graph,theimagewascollectedimmediatelyafterlightexposure, reporteduntilnow32,33.ThechargestoragemechanismofM-C10is whileforthe‘‘A’’image,theconductivitypatternwasmeasured20000s differentfromexistingnon-volatilememorysystemsbasedonmetal afterlightexposure.Inset:photographoftheLCOMarraysonsilicon nanoparticles,organicdonor2acceptorblends,dielectricpolymers, wafer. ferroelectrictransistorsandfloatinggatememory34–39.Particularly, there are four important features of this small molecular memory information could be erased by applying a pulse of negative gate material:(i)lowelectricalconductivityinthinfilm,(ii)narrowband- voltage. Then the circuit was saturated by V of 5 V in order to gapbetweenHOMOandLUMOenergylevels,(iii)efficientisolation W refresh. Another feature, the letter ‘‘A’’ was also efficiently oftheconjugatedcoreofthememorylayerfromthesemiconductor recordedbytheLCOMscanner.AsshowninFig.6,wefoundthat molecules and (iv)low-lying LUMOenergy levelcompared to the thelightinformationhadbeenstoredfirmlyinthememorymaterial couplingsemiconductor. intheformofconductancepatternandtheimagewasread20000 s In detail, the low electrical conductivity allows charges to be afterlightexposure. locatedwithoutflowingalongthecontinuousspin-coatedmemory Figure7|LCOMsfabricatedonflexibleandlarge-areaPETsubstrate. Thefilmmorphologyof(a)PANdielectriclayer.(b)M-C10layerwithout thermaltreatmentafterspin-coating.(c)AnnealedM-C10layeronPAN.(d)40nmpentacenegrownonannealedM-C10memorylayer.(e)Transfer curveofpentaceneTFTfabricatedonPANandM-C10layer.(f)Non-volatilememorypropertyofLCOMonPETsubstrate.(g)Theoutcomeofthe readingprocesswiththeLCOMarrayinbentstatusasaflexiblebarcodescannerandthemeasurementschematicdiagramwithbarcodeattachedtothe curvedsurfaceofabeaker. SCIENTIFICREPORTS |3:1080|DOI:10.1038/srep01080 7 www.nature.com/scientificreports film.Therelativelynarrowbandgapguaranteesthatbothelectrons Processedn-ChannelOrganicThinFilmTransistors.J.Am.Chem.Soc.132, and holes can be injected into the memory layer, so that the light 3697–3699(2010). 14.Takimiya,K.etal.2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene,ANew informationcanbewrittenbyapositivevoltageandbeeasilyerased OrganicSemiconductorforAir-StableOrganicField-EffectTransistorswith by a negative voltage. The electrical isolation effect prevents the Mobilitiesupto2.0cm2V21s21.J.Am.Chem.Soc.128,12604–12605(2006). undesirable charge transfer at the interface in dark, and keeps the 15.Handa,S.,Miyazaki,E.,Takimiya,K.&Kunugi,Y.Solution-processible stored charge from escaping into the semiconductor layer. As an n-channelorganicfield-effecttransistorsbasedondicyanomethylene-substituted terthienoquinoidderivative.J.Am.Chem.Soc.129,11684–11685(2007). electron-acceptor,electronsintheneighboringsemiconductoreasily 16.Subramanian,S.etal.ChromophoreFluorinationEnhancesCrystallizationand transportintothememorylayerandtendtostaythereratherthan StabilityofSolubleAnthradithiopheneSemiconductors.J.Am.Chem.Soc.130, escapingbacktothesemiconductor.Inadditiontotheenergylevel 2706–2707(2008). alignmentoftheconjugatedcores,ourresultshaveshownthatthe 17.Ahles,M.,Schmechel,R.&vonSeggern,H.Complementaryinverterbasedon presence of self-organized alkyl chains also significantly alters the interfacedopedpentacene.Appl.Phys.Lett.87,113505(2005). 18.Chua,L.-L.etal.Generalobservationofn-typefield-effectbehaviourinorganic electricalpropertiesofthedonor/acceptorinterface. semiconductors.Nature434,194–199(2005). Inconclusion,wefabricatedlight-chargeorganicmemorybased 19.Horowitz,G.Organicfield-effecttransistors.Adv.Mater.10,365–377(1998). onsolution-processedchargestoragesmallmoleculesanddemon- 20.Facchetti,A.,Yoon,M.H.&Marks,T.J.Gatedielectricsfororganicfield-effect strateditsapplicationonlarge-areaandflexiblesubstrate.Giventhe transistors:Newopportunitiesfororganicelectronics.Adv.Mater.17,1705–1725 diversity of organic molecules, further improvements are clearly (2005). 21.Zaumseil,J.&Sirringhaus,H.Electronandambipolartransportinorganicfield- feasiblethroughmoleculardesign.TheinventionofLCOMmakes effecttransistors.Chem.Rev.107,1296–1323(2007). one-photosensor-one-memory strategyveryattractiveforthereal- 22.Debucquoy,M.,Rockele´,M.,Genoe,J.,Gelinck,G.H.&Heremans,P.Charge ization of organic imaging circuits. More importantly, our results trappinginorganictransistormemories:Ontheroleofelectronsandholes.Org. highlightthattheuseoftailoredorganicmaterialsfortherealization Electron.10,1252–1258(2009). of new organic devices with a specific function offers a promising 23.Tseng,C.-W.&Tao,Y.-T.ElectricBistabilityinPentaceneFilm-BasedTransistor EmbeddingGoldNanoparticles.J.Am.Chem.Soc.131,12441–12450(2009). pathforthefuturedevelopmentoforganicelectronics. 24.Baeg,K.J.etal.Organicnon-volatilememorybasedonpentacenefield-effect transistorsusingapolymericgateelectret.Adv.Mater.18,3179–3183(2006). Methods 25.Kleemann,H.,Gutierrez,R.,Lindner,F.,Avdoshenko,S.,Manrique,P.D., Lussem,B.,Cuniberti,G.,&Leo,K.OrganicZenerDiodes:Tunnelingacrossthe Materialsandfilmdeposition.Polyacrylonitrileandpentacenewerepurchased GapinOrganicSemiconductorMaterials.NanoLett.10,4929–4934(2010). fromAldrichChemical.M-C10andM-C0moleculesweresynthesizedaccordingto 26.Sze,S.M.&Ng,K.K.inPhysicsofSemiconductorDevices.293–373(JohnWiley& theprocedureprovidedinsupportinginformation.ThemodificationlayerofM-C10 Sons,Inc.,2016). wasspin-coatedfroma4mg/mlchloroformsolution.PentacenelayerandM-C0layer werethermallydepositedatabasepressureof431024Pa. 27.Sun,X.N.,Di,C.A.&Liu,Y.Q.Engineeringofthedielectric-semiconductor interfaceinorganicfield-effecttransistors.J.Mater.Chem.20,2599–2611(2010). FabricationprocessofLCOMonPETsubstrate.polyacrylonitrile(PAN)thinfilm 28.Ito,Y.etal.Crystallineultrasmoothself-assembledmonolayersofalkylsilanesfor organicfield-effecttransistors.J.Am.Chem.Soc.131,9396–9404(2009). wasspin-coatedasdielectriclayer.ThenM-C10memorylayerwasdepositedonto PANandalsounderwentaself-organizationprocessbythermaltreatment.Asactive 29.Virkar,A.etal.TheroleofOTSdensityonpentaceneandC-60nucleation,thin layerinTFT,40nmpentacenewasvacuumdeposited.Atlast,30nmgoldwas filmgrowth,andtransistorperformance.Adv.Funct.Mater.19,1962–1970 vacuumdepositedassource-drainelectrodestofinishthedevicefabrication. (2009). 30.Halik,M.etal.Low-voltageorganictransistorswithanamorphousmoleculargate Devicemeasurement.Allelectricalmeasurementswerecharacterizedusinga dielectric.Nature431,963–966(2004). Keithley4200semiconductorcharacterizationsysteminair.Themobilityinthe 31.Klauk,H.,Zschieschang,U.,Pflaum,J.&Halik,M.Ultralow-powerorganic saturatedregimewasextractedfromthefollowingequation:I 5Cm(W/2L)(V 2V )2, complementarycircuits.Nature445,745–748(2007). D i G T whereI isthedraincurrent,C isthecapacitanceperunitareaofthegatedielectric 32.Park,B.,Choi,S.,Graham,S.&Reichmanis,E.MemoryandPhotovoltaic D i layer,andV andV arethegatevoltageandthresholdvoltage,respectively. ElementsinOrganicFieldEffectTransistorswithDonor/AcceptorPlanar-Hetero G T JunctionInterfaces.J.Phys.Chem.C116,9390–9397(2012). 33.Tayi,A.S.etal.Room-temperatureferroelectricityinsupramolecularnetworksof 1. Gelinck,G.H.etal.Flexibleactive-matrixdisplaysandshiftregistersbasedon charge-transfercomplexes.Nature488,485–489(2012). solution-processedorganictransistors.NatureMater.3,106–110(2004). 34.Leong,W.L.etal.Non-volatileorganicmemoryapplicationsenabledbyinsitu 2. Sekitani,T.etal.Stretchableactive-matrixorganiclight-emittingdiodedisplay synthesisofgoldnanoparticlesinaself-assembledblockcopolymer.Adv.Mater. usingprintableelasticconductors.NatureMater.8,494–499(2009). 20,2325–2331(2008). 3. Sekitani,T.etal.Organicnonvolatilememorytransistorsforflexiblesensor 35.Baeg,K.-J.,Noh,Y.-Y.,Sirringhaus,H.&Kim,D.-Y.ControllableShiftsin arrays.Science326,1516–1519(2009). ThresholdVoltageofTop-GatePolymerField-EffectTransistorsforApplications 4. Krebs,F.C.,Gevorgyan,S.A.&Alstrup,J.Aroll-to-rollprocesstoflexible inOrganicNanoFloatingGateMemory.Adv.Funct.Mater.20,224–230(2010). polymersolarcells:modelstudies,manufactureandoperationalstabilitystudies. 36.Chu,C.W.,Ouyang,J.,Tseng,H.H.&Yang,Y.Organicdonor-acceptorsystem J.Mater.Chem.19,5442–5451(2009). exhibitingelectricalbistabilityforuseinmemorydevices.Adv.Mater.17, 5. Sekitani,T.,Zschieschang,U.,Klauk,H.&Someya,T.Flexibleorganictransistors 1440–1443(2005). andcircuitswithextremebendingstability.NatureMater.9,1015–1022(2010). 37.Ouyang,J.Y.,Chu,C.W.,Szmanda,C.R.,Ma,L.P.&Yang,Y.Programmable 6. Someya,T.etal.IntegrationoforganicFETswithorganicphotodiodesforalarge polymerthinfilmandnon-volatilememorydevice.Nat.Mater.3,918–922 area,flexible,andlightweightsheetimagescanners.IEEETrans.ElectronDevices (2004). 52,2502–2511(2005). 38.Singh,T.B.etal.Nonvolatileorganicfield-effecttransistormemoryelementwith 7. Ng,T.N.,Wong,W.S.,Chabinyc,M.L.,Sambandan,S.&Street,R.A.Flexible apolymericgateelectret.Appl.Phys.Lett.85,5409–5411(2004). imagesensorarraywithbulkheterojunctionorganicphotodiode.Appl.Phys.Lett. 39.Kaltenbrunner,M.etal.Anodizedaluminumoxidethinfilmsforroom- 92,213303(2008). temperature-processed,flexible,low-voltageorganicnon-volatilememory 8. Hu,W.etal.Aself-assemblednanoopticalswitchandtransistorbasedonarigid elementswithexcellentchargeretention.Adv.Mater.23,4892–4896(2011). conjugatedpolymer,thioacetyl-end-functionalizedpoly(para-phenylene ethynylene).J.Am.Chem.Soc.127,2804–2805(2005). 9. Zhou,Y.,Wang,L.,Wang,J.,Pei,J.&Cao,Y.Highlysensitive,air-stable photodetectorsbasedonsingleorganicsub-micrometerribbonsself-assembled Acknowledgments throughsolutionprocessing.Adv.Mater.20,3745–3749(2008). WethankBeijingSynchrotronRadiationFacility(BSRF)forGIXRDmeasurements.We 10.Jiang,L.,Fu,Y.,Li,H.&Hu,W.Single-Crystalline,Size,andOrientation thankDr.JianmingChenandProf.ZhigangShuaiformolecularmodeling.Thisworkwas ControllableNanowiresandUltralongMicrowiresofOrganicSemiconductor supportedbytheNationalBasicResearchProgramofChina(2011CB932700, withStrongPhotoswitchingProperty.J.Am.Chem.Soc.130,3937–3941(2008). 2011CB808403,2011CB932303,2009CB623603),theNationalNaturalScienceFoundation 11.Guo,Y.L.etal.Multibitstorageoforganicthin-filmfield-effecttransistors.Adv. ofChina(61101051,61171054,20973184,20825208,60911130231),andtheChinese Mater.21,1954–1959(2009). AcademyofSciences. 12.Zhang,L.,Di,C.A.,Yu,G.&Liu,Y.Q.Solutionprocessedorganicfield-effect transistorsandtheirapplicationinprintedlogiccircuits.J.Mater.Chem.20, 7059–7073(2010). Authorcontributions 13.Gao,X.etal.Core-ExpandedNaphthaleneDiimidesFusedwith2-(1,3-Dithiol-2- L.Z.andY.Q.L.designedtheconcept.T.W.designedandsynthesizedthematerial.L.Z.and Ylidene)MalonitrileGroupsforHigh-Performance,Ambient-Stable,Solution- T.W.performedtheexperimentsandco-wrotethepaper.Y.Z.,X.N.S.,Y.G.W.,Y.L.G.and SCIENTIFICREPORTS |3:1080|DOI:10.1038/srep01080 8 www.nature.com/scientificreports G.Y.assistedwiththeexperiments,discussedtheresultsandcommentedonthe Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. manuscript.Y.Q.L.supervisedtheprojectandfinalizedthemanuscript. License:ThisworkislicensedunderaCreativeCommons Attribution-NonCommercial-NoDerivs3.0UnportedLicense.Toviewacopyofthis Additionalinformation license,visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ Supplementaryinformationaccompaniesthispaperathttp://www.nature.com/ Howtocitethisarticle:Zhang,L.etal.Large-area,flexibleimagingarraysconstructedby scientificreports light-chargeorganicmemories.Sci.Rep.3,1080;DOI:10.1038/srep01080(2013). SCIENTIFICREPORTS |3:1080|DOI:10.1038/srep01080 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.