ebook img

Klein's Fundamental 2-Form of Second Kind for the $C_{ab}$ Curves PDF

0.35 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Klein's Fundamental 2-Form of Second Kind for the $C_{ab}$ Curves

Symmetry, Integrability and Geometry: Methods and Applications SIGMA 13 (2017), 017, 13 pages Klein’s Fundamental 2-Form of Second Kind for the C Curves ab Joe SUZUKI Department of Mathematics, Osaka University, Machikaneyama Toyonaka, Osaka 560-0043, Japan E-mail: [email protected] Received January 05, 2017, in final form March 11, 2017; Published online March 16, 2017 7 https://doi.org/10.3842/SIGMA.2017.017 1 0 2 Abstract. In this paper, we derive the exact formula of Klein’s fundamental 2-form of r second kind for the so-called C curves. The problem was initially solved by Klein in the a ab M 19th century for the hyper-elliptic curves, but little progress had been seen for its extension formorethan100years. Recently, ithasbeenaddressedbyseveralauthors, andwassolved 7 for subclasses of the C curves whereas they found a way to find its individual solution ab 1 numerically. Theformulagivesastandardcohomologicalbasisforthecurves,andhasmany applications in algebraic geometry, physics, and applied mathematics, not just analyzing ] G sigma functions in a general way. A Key words: C curves; Klein’s fundamental 2-form of second kind; cohomological basis; ab . symmetry h t a 2010 Mathematics Subject Classification: 14H42; 14H50; 14H55 m [ 2 1 Introduction v 1 3 Since Abel, Jacobi, Poincar´e, and Riemann established its framework, theories of Abelian and 9 modular functions associated with algebraic curves have been of crucial importance in algebraic 0 0 geometry, physics, and applied mathematics. Algebraic curves in this paper are intended as . compact Riemann surfaces. 1 0 The study of the hyper-elliptic curves goes back to the beginning of the 20th century, and 7 these appear in much detail in advanced text-books such as Baker [2] and Cassels and Flynn [9]. 1 : However, little has been considered for more general curves than the hyper-elliptic curves. In v this paper, we consider a class of curves (C curves) in the form i ab X ar (cid:88)ci,jxiyj = 0, (1.1) i,j where (i,j) range over ai+by ≤ ab, 0 ≤ i ≤ b, 0 ≤ j ≤ a for some mutually prime integers a, b, and c are constants such that (1.1) implies (cid:80)ic xi−1yj (cid:54)= 0 or (cid:80)jc xiyj−1 (cid:54)= 0. i,j i,j i,j i,j i,j This paper studies cohomologies of C curves in terms of which the Klein–Weierstrass con- ab struction of multivariate Abelian and sigma functions is made possible. It does not seek further theories but focuses on the description of cohomologies of these curves. According to the Riemann–Roch theorem, the entire holomorphic differentials make a vector space over C of dimension g. For example, we can take them as xi−1dx du (x,y) = , (1.2) i 2y 2 J. Suzuki i = 1,2,...,g for the hyper-elliptic curve 2g+1 (cid:88) y2 = c xi (1.3) i i=0 with c = c , c = 0, i = 0,...,2g+1. i,0 i i,1 We consider a 2-form ((x,y),(z,w)) (cid:55)→ R((x,y),(z,w))dxdz over C ×C that has a (double) pole only at (z,w) = (x,y) and is normalized: lim R((x,y),(z,w))(x−z)2 = 1. (z,w)→(x,y) Such a 2-form can be written as g d (cid:88) dui(x,y)dri(z,w) R((x,y),(z,w)) := Ω((x,y),(z,w))+ , (1.4) dz dx dz i=1 usingdifferentials{dr }g ofthesecondkindthathavepolesonlyatinfinityandameromorphic i i=1 function Ω((x,y),(z,w)). If we further require symmetry: R((x,y),(z,w)) = R((z,w),(x,y)), then such an {dr } is unique modulo operation of Sp(2g,Z) and the space generated by {du } i i (see [5] for hyper-elliptic curves and [8, 11] for general curves). We call such a normalized symmetric R((x,y),(z,w))dxdz Klein’s fundamental 2-form of second kind [14, 15]. For example, for the hyper-elliptic curve (1.3), such a 2-form can be obtained using the canonical meromorphic differentials {dr }g i i=1 2(cid:88)g−i zk dr (z,w) = c (k+1−i) dz (1.5) i k+1+i 2w k=i and 1-form y+w Ω((x,y),(z,w)) := dx. 2(x−z)y It is known that the normalized symmetric bilinear R((x,y),(z,w)) can be expressed us- ing (1.4) for C [17] and telescopic curves [1] although Ω((x,y),(z,w)) needs more extensions. ab However, for the canonical meromorphic differentials {dr }g , no exact formula has been given. i i=1 For example, C and C curves and C curves were studied in [6] and [12], respectively. Re- 34 35 45 cently, the reference [7] addressed C curves with genus g. These results dealt with a specific 3,g+1 class of curves and failed to obtain the formula for general C curves with arbitrary mutually ab prime a, b. As a result, still many researchers are either numerically calculating or algorithmi- cally computing {dr }g given {c } and {du }g . This paper extends (1.5) and obtains the i i=1 i,j i i=1 general formula in a closed form for the C curves. It contains all the existing results and has ab many applications including algebraic expression of sigma functions [17], defining equations of the Jacobian varieties, etc. [5, 10]. This paper is organized as follows: Section 2 sets up the holomorphic differentials {du }g i i=1 and gives background of this paper. Section 3 states and proves the main result (formula) and gives two typical examples both of which extend the previous cases. In the last section, we raise an open problem. Klein’s Fundamental 2-Form of Second Kind for the C Curves 3 ab 2 Background Let a, b be mutually prime positive integers, and C the curve defined by (cid:88) F(x,y) := c xiyj = 0 i,j i,j with a unique point O at which the zero orders of x and y are a and b, respectively, where (i,j) range over D := {(i,j)|ai+bj ≤ ab, 0 ≤ i ≤ b, 0 ≤ j ≤ a}, and c are constants such that either (cid:80)ic xi−1yj (cid:54)= 0 or (cid:80)jc xiyj−1 (cid:54)= 0 for each (x,y) on i,j i,j i,j i,j i,j the curve. We consider the set of 1-forms [17] xiyj du = dx, i,j ∂F(x,y) ∂y where (i,j) range over J(a,b) := {(i,j)|i,j ≥ 0, ai+bj ≤ ab−a−b}. We know by the general theory that for g variable points (x ,y ),...,(x ,y ) on C, the sum 1 1 g g of integrals from O to those g points (cid:88) (cid:90) (xi,yi) u = (u ) = du i,j (i,j)∈J(a,b) i,j O (i,j)∈J(a,b) fill the whole space Cg, where the weights of the variables u are ab−a(i+1)−b(j +1). If i,j we regard the weight of each coefficient c in (1.1) is ai+bi−ab, the weights assigned to the i,j differentials render F(x,y) homogeneous. Proposition 2.1. The set J(a,b) has (a−1)(b−1) #J(a,b) = g = 2 elements, and the zero orders of {du } are nonnegative and different. i,j Definition 2.2. The 2-form R((x,y),(z,w))dxdz on C×C is called the fundamental 2-form of the second kind if the following conditions are satisfied 1) it is symmetric: R((x,y),(z,w)) = R((z,w),(x,y)), 2) it has its only pole along the diagonal of C ×C, and 3) in the vicinity of each point, it is expanded in power series as dt dt xy zw R((x,y),(z,w))dxdz = +O(1) (t −t )2 x,y z,w as (z,w) → (x,y), where t and t are local coordinates of points (x,y) and (z,w), x,y z,w respectively. 4 J. Suzuki We shall look for a realization of R((x,y),(z,w)) in the form G((x,y),(z,w)) R((x,y),(z,w)) = , (x−z)2∂F(x,y)∂F(z,w) ∂y ∂w where G((x,y),(z,w)) is a symmetric polynomial in its variables. Example 2.3 (hyper-elliptic curves [3, 4]). For the hyper-elliptic curve (1.3), in which a = 2 and b = 2g+1, where g is the genus of the curve C, then (1.1) expresses a hyper-elliptic curve, the meromorphic function on C ×C y+w Ω((x,y),(z,w)) = 2y(x−z) and differentials (1.2), there exists {dr }g such that (1.4) is symmetric. In fact, i i=1 2g+1 (x−z) (cid:80) kc zk−1+2w(y+w) d dw(x−z)+(y+w) k Ω((x,y),(z,w)) = dz = k=1 dz 2y(x−z)2 4yw(x−z)2 2g+1 2g+1 x (cid:80) kc zk−1− (cid:80) (k−2)c zi+2c +2yw k k 0 = k=1 k=1 . (2.1) 4yw(x−z)2 If we add g 2g+1 (cid:88) (cid:88) (x−z)2 xk−1 c (h−2k)zh−k−1 h k=1 h=2k+1 to the numerator of (2.1), we obtain G((x,y),(z,w)) = 2 (cid:88) ck2xk/2zk/2+ (cid:88) ck(cid:0)xk+21zk−21 +xk−21zk+21(cid:1)+2c0+2yw, k: even k: odd where i/2 (cid:88) −(k−2)zk +kzk−1x+(x−z)2 (k−2h)zk−h−1xh−1 h=1 (cid:98)k/2(cid:99) (cid:88) = −(k−2l)zk−l+1xl−1+(k−2l+2)zk−lxl +(x−z)2 (k−2h)zk−h−1xh−1 h=l for l = 1,2,...,(cid:98)i/2(cid:99) has been applied ((cid:98)k/2(cid:99) = k/2 and (k −1)/2 when k is even and odd, respectively), which means that by choosing dri 2(cid:88)g+1 (h−2i)zh−i−1 (z,w) = , dz 2w h=2i+1 we obtain R((x,y),(z,w)) = R((z,w),(x,y)) and G((x,y),(z,w)) lim R((x,y),(z,w))(x−z)2 = lim = 1. (z,w)→(x,y) (z,w)→(x,y) 4yw Klein’s Fundamental 2-Form of Second Kind for the C Curves 5 ab 3 The fundamental 2-form of the second kind for the C curves ab Hereafter,wedenoteF := ∂F(z,w),F := ∂F(z,w),H := F(y,z)−F(w,z),H := ∂H,andH := ∂H. z ∂z w ∂w y−z z ∂z w ∂w We find symmetric R((x,y),(z,w)) for the meromorphic function H Ω((x,y),(z,w)) := . (x−z)F y To this end, if we note dw = −Fz, we have dz Fw dΩ (H +H dw)(x−z)+H (H F −H F )(x−z)+HF = z wdz = z w w z w. (3.1) dz (x−z)2F (x−z)2F F y y w j−1 Let g := (cid:80) c zi, g(cid:48) := ∂gj, and h := (cid:80) wiyj−1−i for j = 0,...,a. Then, one j i,j j ∂z j i: 0≤ai+bj≤ab i=0 checks a a a F = (cid:88)jwj−1g , H = (cid:88)h g , H = (cid:88)h g(cid:48), H = (cid:88) ∂hjg . (3.2) w j j j z j j w ∂w j j=0 j=0 j=0 j=0 Let (cid:18) (cid:19) I(i,j) := −wi∂hj +jwj−1h − ∂hiwj g(cid:48)g (x−z)+(cid:0)jwj−1h −jh wi(cid:1)g g ∂w i ∂y i j i j−1 i j a for i,j = 0,...,a. Then, from (3.2) and that the arithmetic is modulo F(z,w) = (cid:80) wjg = 0, j j=0 we have   a a a a (cid:88)(cid:88)I(i,j) = (cid:88)−wig(cid:48)H +h g(cid:48)F − ∂hig(cid:48)(cid:88)wjgj(x−z) i w i i w ∂y i   i=0 j=0 i=0 j=0   a a (cid:88) (cid:88)  + h g F −wig jh g , i i w i j−1 j   i=0 j=0 which coincides with the numerator of (3.1). We seek {dri,j} such that the 2-form dz (i,j)∈J(a,b) dΩ(z,w) (cid:88) dui,j dri,j R((x,y),(z,w)) := + dz dx dz (i,j)∈J(a,b) is symmetric, in other words, its numerator a a (cid:88)(cid:88) (cid:88) I(u,v)+(x−z)2 u (x,y)r (z,w) i,j i,j u=0v=0 (i,j)∈J(a,b) is symmetric, where dr r (z,w) i,j i,j = dz F w 6 J. Suzuki is the differential of the second kind given the differentials of the first kind du u (x,y) i,j i,j = dx F y with u (x,y) = xiyj. i,j (cid:40) mod(α,β) mod(α,β) (cid:54)= 0, Let mod(α,β) := α−(cid:98)α/β(cid:99)∗β, and mod(α,β) := for positive α mod(α,β) = 0 integers α, β, and (cid:100)γ(cid:101) and (cid:98)γ(cid:99) are the smallest integer no less than γ and the largest integer no more than γ, respectively for positive real γ. For example, mod(3,2) = mod(3,2) = 2, 2 = mod(4,2) (cid:54)= mod(4,2) = 0, etc. Then, the following property plays an important role in the derivation of the main theorem: Proposition 3.1. If m ≤ n, then I(m,n)+I(n,m) = mwm−1yn−1g g(cid:48)(x−z)+mwm−1yn−1g g m n m n +mwn−1ym−1g(cid:48) g (x−z)+mwn−1ym−1g g m n m n n−1 − (cid:88) (cid:2){(n−k)g g(cid:48) +(k−m)g(cid:48) g }(x−z)+(n−m)g g (cid:3) m n m n m n k=m+1 ×wk−1ym+n−k−1. (3.3) Theorem 3.2. R((x,y),(z,w)) is symmetric when (cid:88)(cid:88)(cid:88) r (z,w) = c c u(s−i−1)zr+s−i−2wu−1 (3.4) i,j r,u s,j+1 u≤j r s (cid:88) (cid:88)(cid:88) + c c (j +1)(r−i−1)zr+s−i−2wv−1 (3.5) r,j+1 s,v j+1≤v r s (cid:88) (cid:88) (cid:88)(cid:88) + c c {(i+1)(v−u)−(j +1−u)s r,u s,v u≤jj+2≤v r s −(v−j −1)r}zr+s−i−2wu+v−j−2, (3.6) where (r,s) range over s ≥ i+2 in D for the first term, over r ≥ i+2 in D for the second term, and over (j +1−u)s+(v−j −1)r ≤ (i+1)(v−u) and r+s ≥ i+2 in D for the last term. G((x,y),(z,w)) The symmetric value is given by R((x,y),(z,w)) = with (x−z)2∂F(x,y)∂F(z,w) ∂x ∂z a a G((x,y),(z,w)) = (cid:88)G(12)+(cid:88)(cid:88)(cid:8)G(12)+G(34)+G(5)(cid:9), u,u u,v u,v u,v u=0 u=0u<v (cid:88)(cid:88) G(12) := u c c xrzsyu−1wv−1, (3.7) u,v r,u s,v r s (cid:88)(cid:88) G(34) := u c c xszryv−1wu−1, (3.8) u,v r,u s,v r s and v−1 G(u5,v) := − (cid:88) (cid:88)(cid:88)cr,ucs,v(cid:8)mod{(k−u)s+(v−k)r,v−u}z(cid:100)(k−u)vs−+u(v−k)r(cid:101) k=u+1 r s ×x(cid:98)(k−u)vr−+u(v−k)s(cid:99)+mod{(k−u)r+(v−k)s,v−u}z(cid:98)(k−u)vs−+u(v−k)r(cid:99) ×x(cid:100)(k−u)vr−+u(v−k)s(cid:101)(cid:9)wk−1yu+v−k−1. (3.9) Klein’s Fundamental 2-Form of Second Kind for the C Curves 7 ab Proof. First of all, we prove u(cid:88)(cid:88)c c (cid:8)t(12)(x,z)+(x−z)2∆(12)(x,z)(cid:9)wu−1yv−1 = G(12) r,u s,v u,v r s for 0 ≤ u ≤ v ≤ a, where t(12)(x,z) := szr+s−1(x−z)+zr+s and s−1 (cid:88) ∆(12)(x,z) := kzr+k−1xs−k−1. k=1 In fact, we see t(12)(x,z)+(x−z)2∆(12)(x,z) s−l (cid:88) = −(s−l)zr+s−l+1xl−1+(s−l+1)zr+s−lxl +(x−z)2 kzr+k−1xs−k−1 k=1 for l = 1,...,s. In particular, (cid:88)(cid:88) uc c ∆(12)(x,z)yv−1wu−1 r,u s,v r s (cid:88) (cid:88)(cid:88) = xiyj uc c (s−i−1)zr+s−i−2wu−1, r,u s,j+1 (i,j)∈J(a,b) r s where (r,s) range over s ≥ i + 1 in D. Thus, from the first and second terms in (3.3), we obtain (3.4) and (3.7). Similarly, u(cid:88)(cid:88)c c (cid:8)t(34)(x,z)+(x−z)2∆(34)(x,z)(cid:9)wv−1yu−1 = G(34) r,u s,v u,v r s for 0 ≤ u ≤ v ≤ a, r−1 (cid:88) t(34)(x,z) := rzr+s−1(x−z)+zr+s, ∆(34)(x,z) := kzs+k−1xr−k−1, k=1 and (cid:88)(cid:88) uc c ∆(34)(x,z)yu−1wv−1 r,u s,v r s (cid:88) (cid:88)(cid:88) = xiyj uc c (r−i−1)zr+s−i−2wv−1, r,j+1 s,v (i,j)∈J(a,b) r s where (r,s) range over r ≥ i + 1 in D. Thus, from the third and fourth terms in (3.3), we obtain (3.5) and (3.8). On the other hand, we claim t(5)(x,z)+(x−z)2∆(5)(x,z) = −{(p+1)(v−u)−(v−k)s−(k−u)r}zr+s−pxp k k −{(v−k)s+(k−u)r−p(v−u)}zr+s−p−1xp+1 (3.10) 8 J. Suzuki for 0 ≤ u ≤ v ≤ a, where t(5)(x,z) := {s(v−k)+r(k−u)}zr+s−1(x−z)+(v−u)zr+s, k p ∆(5)(x,z) := (x−z)2(cid:88){(v−k)s+(k−u)r−(v−u)h}zr+s−h−1xh−1, k h=1 where p is a unique integer such that p(v−u) ≤ (v−k)s+(k−u)r < (p+1)(v−u). (3.11) In fact, we see t(5)(x,z)+(x−z)2∆(5)(x,z) = −{s(v−k)+r(k−u)−l(v−u)}zr+s−l+1xl−1 k k +{s(v−k)+r(k−u)−(l−1)(v−u)}zr+s−lxl p (cid:88) +(x−z)2 {(v−k)s+(k−u)r−(v−u)h}zr+s−h−1xh−1 h=l for l = 1,2,...,p+1. Similarly, we obtain t(5) (x,z)+(x−z)2∆(5) (x,z) = −{(q+1)(v−u)−(v−k)r−(k−u)s}zr+s−qxq u+v−k u+v−k −{(v−k)r+(k−u)s−q(v−u)}zr+s−q−1xq+1 (3.12) for 0 ≤ u ≤ v ≤ a, where t(5) (x,z) := {r(v−k)+s(k−u)}zr+s−1(x−z)+(v−u)zr+s, u+v−k p ∆(5) (x,z) := (x−z)2(cid:88){(v−k)r+(k−u)s−(v−u)h}zr+s−h−1xh−1, u+v−k h=1 where q is a unique integer such that q(v−u) ≤ (v−k)r+(k−u)s < (q+1)(v−u). (3.13) From (3.11) and (3.13), we have two possibilities: p+q = r+s and p+q+1 = r+s. For the former case, (3.10) and (3.12) are −(v−u)zqxp and −(v−u)zpxq, respectively; and for the latter case, (3.10) and (3.12) are −{(v−k)s+(k−u)r−q(v−u)}zq+1xp+{(v−k)s+(k−u)r−p(v−u)}zqxp+1 and −{(v−k)r+(k−u)s−p(v−u)}zp+1xq +{(v−k)r+(k−u)s−q(v−u)}zpxq+1, respectively. Since (cid:22) (cid:23) (cid:22) (cid:23) (v−k)s+(k−u)r (v−k)r+(k−u)s p = , q = , v−u v−u (v−k)s+(k−u)r−p(v−u) = mod{(v−k)s+(k−u)r,v−u}, (v−k)r+(k−u)s−q(v−u) = mod{(v−k)r+(k−u)s,v−u}, Klein’s Fundamental 2-Form of Second Kind for the C Curves 9 ab we have (3.9), which means we obtain (3.6) as well v−1 (cid:88) (cid:88)(cid:88)c c ∆(5)(x,z)yu+v−k−1wk−1 r,u s,v k k=u+1 r s (cid:88) (cid:88)(cid:88) = xiyj uc c {(i+1)(v−u)−(j +1−u)s r,j+1 s,v (i,j)∈J(a,b) r s −(v−j −1)r}zr+s−i−2wv−1, wherewehavechosenforeach(i,j) ∈ J(a,b),i = h−1andj = u+v−k−1,sothat1 ≤ i+1 ≤ p and u+1 ≤ u+v−j −1 ≤ v−1. Hence, (u,v) and (s,r) need to satisfy u ≤ j, j +2 ≤ v, (i+1)(v−u) ≥ (v−k)s+(k−u)r, respectively. This completes the proof. (cid:4) Corollary 3.3. lim R((z,w),(x,y))(x−z)2 = 1. (z,w)→(x,y) Proof. Let f := (cid:80) c xr. Then, G(12), G(34), and G(5) converge to uf f , uf f , u r,u u,v u,v u,v u v u v 0≤ar+bu≤ab,r≥0 and −(v−u)(v−u−1)yu+v−2, respectively. Thus, G((x,y),(z,w)) converges to a a a (cid:88) (cid:88)(cid:88) (cid:88)(cid:88) uf2y2u−2+ 2uf f yu+v−2− (v−u)(v−u−1)f f yu+v−2 u u v u v u=0 u=0u<v u=0u<v a a = (cid:88)uf2y2u−2+(cid:88)(cid:88)(cid:8)(u+v)−(u−v)2(cid:9)f f yu+v−2 u u v u=0 u=0u<v a a = 1 (cid:88)(cid:88)(cid:8)u+v−u2−v2+2uv(cid:9)f f yu+v−2 u v 2 u=0v=0 a a a a (cid:40) a (cid:41)2 (cid:88)(cid:88) (cid:88) (cid:88) (cid:88) = uvf f yu+v−2 = uf yu−1 vf yv−1 = uf yu−1 = F2, u v u v u y u=0v=0 u=1 v=1 u=1 where a a a a (cid:88)(cid:88) (cid:88) (cid:88) uf f yu+v−2 = yu−2 f yv = 0 u v v u=0v=0 u=1 v=0 and a a a a a a (cid:88)(cid:88) (cid:88)(cid:88) (cid:88)(cid:88) vf f yu+v−2 = u2f f yu+v−2 = v2f f yu+v−2 = 0 u v u v u v u=0v=0 u=0v=0 u=0v=0 have been applied. On the other hand, the denominator of R((z,w),(x,y))(x−z)2 converges to F2 as well. This completes the proof. (cid:4) y Example 3.4 (generalized hyper-elliptic curves). For the curve F(x,y) = y2+yf +f = 0, 1 0 G((x,y),(z,w)) = 2yw+f w+g y+f g 1 1 1 1 (cid:88) (cid:0) r+1 r−1 r−1 r+1(cid:1) (cid:88) r r − cr,0 z 2 x 2 +z 2 x 2 − 2cr,0z2x2, r: odd r: even 10 J. Suzuki when (cid:88) (cid:88) r (z,w) = c c (r−i−1)zr+s−i−2 i,0 r,1 s,1 r≥i+2s≥0 2i+2 (cid:88) (cid:88) + c (r−i−1)zr−i−2+ c (2i+2−r) r,1 r,0 r≥i+2 r=i+2 and converges to 2y2+2f y+f2+2(cid:0)f y+y2(cid:1) = (2y+f )2 = F2 1 1 1 1 y as (z,w) → (x,y). Example 3.5 (cyclic curves, super-elliptic curves [13]). For the curve F(x,y) = ya+f = 0, 0 a−1 G((x,y),(z,w)) = −(cid:88)cr,0(cid:88)(cid:8)mod((a−k)r,a)z(cid:100)(a−ak)r(cid:101)x(cid:98)kar(cid:99) r k=1 +mod(kr,a)z(cid:98)(a−ak)r(cid:99)x(cid:100)kar(cid:101)}wk−1ya−k−1, when b (cid:88) r (z,w) = − c (ar−a−r−ai−rj)zr−2−iwa−2−j i,j r,0 r=i+2 and converges to −2f ya−2 = F2 0 y as (z,w) → (x,y). Example 3.6 (trigonal curves [6, 7]). For the curve F(x,y) = y3 −q(x)y −p(x) with p(x) = g+1 (cid:98)2g+2(cid:99) − (cid:80) c xr and q(x) = − (cid:80)3 c xr, r,0 r,1 r=0 r=0 (cid:88) (cid:88) (cid:88) (cid:88) G((x,y),(z,w)) = c xr c zs+ c xrw2+ c zsy2+3y2w2 r,1 s,1 r,1 s,1 r s r s −(cid:88)c (cid:8)mod(2r,3)z(cid:100)2r/3(cid:101)x(cid:98)r/3(cid:99)+mod(r,3)z(cid:98)2r/3(cid:99)x(cid:100)r/3(cid:101)(cid:9)y r,0 r −(cid:88)c (cid:8)mod(r,3)z(cid:100)r/3(cid:101)x(cid:98)2r/3(cid:99)+mod(2r,3)z(cid:98)r/3(cid:99)x(cid:100)2r/3(cid:101)(cid:9)w r,0 r −(cid:88)c (cid:8)mod(r,2)z(cid:100)r/2(cid:101)x(cid:98)r/2(cid:99)+mod(r,2)z(cid:98)r/2(cid:99)x(cid:100)r/2(cid:101)(cid:9)wy r,1 r (cid:88) (cid:88) (cid:88) (cid:88) = c xr c zs+ c xrw2+ c zsy2+3y2w2 r,1 s,1 r,1 s,1 r s r s − (cid:88) c (cid:8)3z2r/3xr/3y+3z2r/3xr/3w(cid:9) r,0 r=3m − (cid:88) c (cid:8)2z(2r+1)/3x(r−1)/3y+z(2r−2)/3x(r+2)/3y r,0 r=3m+1 +z(r+2)/3x(2r−2)/3w+2z(r−1)/3x(2r+1)/3w(cid:9)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.