ebook img

Kinetic Resolution of Cyclic Secondary Amines and Synthesis of Partially Saturated N-Heterocycles PDF

358 Pages·2016·33.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kinetic Resolution of Cyclic Secondary Amines and Synthesis of Partially Saturated N-Heterocycles

ETH Library Kinetic Resolution of Cyclic Secondary Amines and Synthesis of Partially Saturated N- Heterocycles Doctoral Thesis Author(s): Kreituss, Imants Publication date: 2016 Permanent link: https://doi.org/10.3929/ethz-a-010655149 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. Diss. ETH NO 23440 Kinetic Resolution of Cyclic Secondary Amines and Synthesis of Partially Saturated N-Heterocycles A thesis submitted to attain the degree of Doctor of Sciences of ETH Zurich (Dr. Sc. ETH Zurich) presented by Imants Kreituss Master of Science, ETH Zurich born February 14, 1987 Citizen of Latvia Accepted on the recommendation of Prof. Dr. Jeffrey W. Bode, examiner Prof. Dr. Erick M. Carreira, co-examiner 2016 II Abstract Saturated N-heterocycles such as α-substituted piperidines, piperazines, morpholines and others are a privileged class of molecules for the discovery of bioactive small molecules. These motifs are prevalent in pharmaceutical industry and numerous drugs contain a cyclic secondary amine. The most common methods to access these structures in enantiopure form are either classical resolution via salt formation or separation of the enantiomers by chromatography on chiral supports. Both of these approaches have limitations, namely, classical resolution often is laborious, time consuming and does not always afford high enantiopurity while chromatography bears a high cost of the infrastructure and the chiral supports. F O Cl Me CF3 O N N O N O N O NN N NH H CF3 OH N Me H Paroxetine Belsomra Mefloquine antidepressant insomnia treatment anti-malaria Scheme I. Selected pharmaceuticals containing a chiral N-heterocycle A complementary approach to obtain enantiopure cyclic amines has been developed in our group – catalytic kinetic resolution via asymmetric acylation using an in situ generated acyl hydroxamic acid. In this dissertation methods to immobilize the chiral acylating agent and its applications for resolution of cyclic secondary amines were assessed. Two different approaches have been described – linking the hydroxamic acid to a commercial polymer support and immobilization via ring opening metathesis polymerization. Both reagents proved to be highly selective in amine acylation and were used in the resolution of a broad range of saturated N-heterocycles. Polymeric reagents were recovered and reused for more than 20 resolution cycles without noticeable erosion in reactivity or selectivity. The practicality of our method was exemplified by kinetic resolution of antimalarial drug mefloquine on a decagram scale. More than 50 g of enantiopure mefloquine has been prepared starting from 150 g of the racemate. O O Ph O N O X X X N R N R N R H H O Ph Scheme II. Kinetic resolution with immobilized acyl hydroxamic acid. In kinetic resolution as the reaction proceeds the enantiopurity of the unreacted starting material increases while that of the product decreases; therefore the scalemic product often is discarded. To take advantage of both of the enantiomers of the racemic starting material parallel kinetic resolution can be applied. In this process the slower reacting enantiomer of the starting material III is transformed to a non-enantiomeric product via a competing reaction. For the chemodivergent parallel kinetic resolution of saturated N-heterocycles, we prepared two quasi-enantiomeric acylating agents. Both enantiomers of the chiral hydroxamic acid were polymerized and acylated with two orthogonal acyl groups. When the chiral acylating agents were used in concert, two distinct highly enantioenriched amide products were obtained. The design of the acyl groups allowed to separate and selectively hydrolyze the amides in high yields without detectable epimerization. Parallel kinetic resolution has been successfully applied to resolve cyclic secondary amines in batch and flow systems. R1 X X O O conditions A O N N R N R O O R1 O R1 X R2 NH R O O X X O N conditions B O N R N R H O R2 Scheme III. Parallel Kinetic Resolution of saturated N-heterocycles. During the establishment of the substrate scope for kinetic resolution, we became interested in the synthesis of fused aromatic/unsaturated N-heterocycles. The preparation of this class of molecules relies either on classical Pictet-Spengler or Bischler-Napieralski reactions, which are not amenable if the aromatic core is electron poor (e.g. pyridine). To address this problem we prepared a new class of reagents to access α-substituted tetrahydronaphthyridines and their regioisomers in a single step operation in a predictable manner via a formal radical Pictet-Spengler reaction. The requisite reagents are air and moisture stable and can be prepared on a multigram scale in a few synthetic steps from readily available starting materials. Additionally, to tetrahydronaphthyridines in various regioisomeric forms this protocol was extended for the synthesis of tetrahydropyridines. N3 O Ph3P (TMS)3SiH NH 20 mol % AIBN N N Br H R PhCH3, 100 °C R N R N R N Br N Scheme IV. One step synthesis of tetrahydronaphthyridines. IV Résumé Les N-hétérocycles saturés tel que les piperidines, les piperazines, et les morpholines α- substitués sont une classe moléculaire importante pour la découverte de petites molécules bioactives. Ces motifs sont fréquemment rencontrés dans l’industrie pharmaceutique et de nombreux médicaments contiennent une amine cyclique secondaire. Les méthodes les plus communes pour obtenir ces structures de manière énantiopure sont soit par résolution classique via la formation d’un sel, ou bien par séparation d’énantiomères par chromatographie sur support chiral. Ces deux approches ont certaines limitations, à savoir que la résolution classique est souvent compliquée, longue, et ne permet pas toujours d’obtenir une grande pureté énantiomérique, tandis que la chromatographie sur support chiral est coûteuse en infrastructure et en support chiraux. F O Cl Me CF3 O N N O N O N O NN N HN H CF3 OH N Me H Paroxétine Belsomra Méfloquine antidépresseur traitement de l'insomnie anti-malaria Schéma I. Exemple de médicaments contenant un N-hétérocycle chiral. Une approche complémentaire pour obtenir des amines cycliques énantiopures a été développée dans notre laboratoire, par résolution cinétique via une acylation asymétrique en utilisant un acyle d’acide hydroxamique généré in situ. Dans cette dissertation, des méthodes pour immobiliser l’agent d’acylation chiral et ses applications pour la résolution d’amines cycliques secondaires ont été évaluées. Deux approches différentes sont décrites : soit en liant l’acide hydroxamique à un support polymérique commercial, ou bien par immobilisation dans une polymérisation par ouverture de cycle par métathèse. Les deux agents ont montré qu’ils étaient très sélectifs dans l’acylation des amines, et ont été utilisés dans la résolution d’une grande gamme de N-hétérocycles saturés. Les agents polymériques ont pu être récupérés et réutilisés pour au moins 20 cycles de résolution sans baisse notable de réactivité ou de sélectivité. La faisabilité de notre procédé a été illustrée par la résolution cinétique d’un médicament antimalaria - la méfloquine, sur une échelle d’une dizaine de grammes. Plus de 50 g de méfloquine énantiopure ont ainsi été préparés en commençant avec 150 g de racémate. O O Ph O N O X X X N R N R N R H H O Ph Schema II. Résolution cinétique avec un acyle d’acide hydroxamique immobilisé. Durant la résolution cinétique, lorsque la réaction se déroule, l’énantiopureté du produit de départ qui n’as pas réagi croit, tandis que celle du produit final décroit; par conséquent, le produit est V souvent ignoré. Pour tirer le meilleur profit des deux énantiomères, une résolution cinétique du produit de départ racémique peut être mise en place en parallèle. Dans ce cas, l’énantiomère du produit de départ qui réagit le plus lentement est transformé en un produit non-énantiomérique à travers une réaction compétitive. Pour la résolution cinétique en parallèle chimiodivergente de N-hétérocycles saturés, nous avons préparé deux agents d’acylation quasi-énantiomérique. Les deux énantiomères de l’acide hydroxamique chiral ont été polymérisés et acylés avec deux groupements acyles orthogonaux. Lorsque les agents acylants chiraux ont été utilisés ensemble, deux produits amides distincts hautement énantioenrichie ont été obtenus. Le design des groupes acyles a permis de séparer et d’hydrolyser sélectivement les amides avec des rendements élevés sans détecter d’épimérisation. La résolution cinétique en parallèle a été utilisée avec succès pour résoudre des amines secondaires cycliques dans les systèmes par lots et en flux. R1 X X O O conditions A O N N R N R O O R1 O R1 X R2 NH R O O X X O N conditions B O N R N R H O R2 Schema III. Résolution cinétique parallèle de N-hétérocycles saturés. Alors que nous établissions le champ d'application des substrats possible pour la résolution cinétique, nous nous sommes dans le même temps intéressés à la synthèse des N-hétérocycles aromatiques/insaturés fusionnés. La préparation de cette famille de molécules repose soit sur les voies réactionnelles classiques de Pictet-Spengler ou bien de Bischler-Napieralski, mais reste inaccessible si le noyau aromatique est électrodéficient (p. ex. pyridine). Pour résoudre ce problème, nous avons préparé une nouvelle classe de réactifs pour obtenir les tétrahydronaphtyridine α-substitués et leurs régioisomères en une seule étape et d'une manière prévisible, via une réaction de Pictet-Spengler radicalaire. Les réactifs nécessaires sont stables à l'air et à l'humidité, et peuvent être préparés sur une échelle de plusieurs grammes en quelques étapes de synthèse à partir de produit de départ facilement accessibles. En outre, au-delà de la tétrahydronaphtyridine sous ses diverses formes régioisomériques ce protocole a été étendu à la synthèse de tétrahydropyridines. N3 O Ph3P (TMS)3SiH NH 20 mol % AIBN N N Br H R PhCH3, 100 °C R N R N R N Br N Schema IV. Synthèse en une étape de tétrahydronaphthyridines. VI Acknowledgements I would like to thank Prof. Jeffrey W. Bode for the opportunity to carry out my masters and Ph.D. studies in his group. I am grateful for both the guidance and the allowed freedom to pursue my own ideas. I highly appreciate his patience, support and advices he has offered throughout these years. I am grateful to Prof. Erick M. Carreira in whose labs I performed my very first experiments at ETH during my masters studies and who has agreed to be the co-examiner for my doctoral thesis. I would like to acknowledge the people who have helped with this dissertation. Florian Rohrbacher, Raphael Hofmann, Low Jia En and Dmitry Mazunin who were kind enough to proof read the thesis and give valuable suggestions to get it into a much better shape. Dr. Safwan Aroua and Dr. Fredric Thuaud who greatly helped with the translation of the abstract. Dr. Alexey Fedorov whose chemistry knowledge has no borders and whose suggestions have gotten me this far. My fellow country man Alons Lends both for helpful suggestions and good science and non-science related discussions. Over the years I have been extremely lucky to have learned from remarkably talented scientists in the Bode group and who have taught me so much. Dr. Johannes Teichert, Dr. Michael Binanzer, Dr Aaron Dumas, Dr. Thibaud Gerfaud and Dr. Ying-Ling Chiang, – I am very grateful not only for the lessons you have taught but also for the friendship you have offered. I would like to acknowledge Dr. Jessada Mahatthananchai, Dr. Hidetoshi Noda, Dr. Gabor Eros, who have always found time for fruitful discussion. My past lab mates from both F318 and F310 must be mentioned for the support when the work was not going the right direction – Dr. Aaron Dumas, Dr. Thibaud Gerfaud, Dr. Ying-Ling Chiang, Dr. Jessada Mahatthananchai, Dr. Trung Cao, Dr. Ivano Pusterla, Florian Rohrbacher, Sheng-Ying Hsieh, Michael Luscher, Dr. Yoshifumi Aoki. The long hours in the lab would not be the same without you! I have been lucky to have good friends around who could offer a helping hand when needed the most. Dr. Gabriel Schaefer and Dmitry Mazunin – thank you for valuable suggestions throughout my research. I am lucky to call you both my friends! Bode group is a remarkably fun place to work in and for that I have to thank Thibault Harmand, Dr. Safwan Aroua, Benedikt Wanner, Thomas Wucherpfennig, Claudia Murar, Andre Zwicky, Florian Rohrbacher and of course Dr. Ivano Pusterla for keeping the team spirit and “the fun” at the highest of levels. I have been lucky to have a chance to mentor very talented students Tobias Sandmeier and Moritz Jackl. I am grateful for the job you guys have done which is partially reflected in this thesis but most importantly for the successful knowledge exchange. ETH is a great place to work not only because of its great infrastructure but mainly because of the people who maintain the high level. To that end I would like to acknowledge Mario Kessinger VII without whom I, and possibly most of the students in the Bode group, would be completely lost. My thanks also go to people who have made my work much easier – friendly Schalter ladies, and the gentlemen from ETH NMR service, machine shop, mass spec lab and X-ray crystallography center. I am certain that the Bode group will remain a remarkable place to work thanks to the “younger” students who are doing an incredible job both in the lab and outside to maintain the high team spirit – Gabor Boross, Simon Baldauf, Raphael Hofmann, Fumito Saito, Sizhou Liu, Iain Stepek, Dino Wu, Yayi Wang – keep up the excellent work. And last but not least I like to acknowledge all the unmentioned past and current members of the Bode group who have made my studies in Switzerland so enjoyable. Un visbeidzot es vēlos pateikties savai "imenei – mātei Ilgai Kreitusei un tēvam Aivaram Kreitusam, kuri mani ir atbalstījuši šajā grūtaja ce'ā un kuru smagais darbs ir kalpojis par iedvesmu turpināt un nepadoties. Paldies, saku arī māsai Ilzei Jakušai-Kreitusei ar vīru Jāni Jakušu-Kreitusu un bērniem Demianu Jakušu-Kreitusu un Odriju Jakušu-Kreitusi. (imenei vienmēr jāturas kopā. Es esmu pateicību parādā savam bakalaura darba vadītājam un draugam Profesoram Mārim Turkam, kurš ir darījis 'oti daudz manā labā, un bez kura, visticamāk, es nekad nenonāktu Šveicē. VIII List of Publications and Presentations Copyright Permission Notes Additional manuscripts are in preparation Parts of this dissertation are reproduced with permission from the publisher 1) M. K. Jackl, I. Kreituss, J. W. Bode, “Synthesis of tetrahydronaphthyridines from aldehydes and HARP reagents via radical Pictet-Spengler Reactions.” Org. Lett., 2016, 18, 1713 – 1715. Reprinted (adapted) with permission from above. Copyright (2016) American Chemical Society 2) B. Wanner, I.Kreituss, O. Gutierrez, M. C. Kozlowski, J. W. Bode, “Catalytic kinetic resolution of disubstituted piperidines by enantioselective acylation: synthetic utility and mechanistic insights.” J. Am. Chem. Soc. 2015, 137, 11491 – 11497. Reprinted (adapted) with permission from above. Copyright (2016) American Chemical Society 3) I. Kreituss, K-Y. Chen, S. H. Eitel, J.-M. Adam, G. Wuitschik, A. Fettes, J. W. Bode, “A robust, recyclable resin for decagram scale resolution of (±)-mefloquine and other chiral N- heterocycles.” Angew. Chem. Int. Ed. 2016, 55, 1553 – 1556. Wiley-VCH Verlag Gmbh & Co. KGaA Weinheim. License Number 3811870995053 4) I. Kreituss, Y. Murakami, M. Binanzer, J. W. Bode, “Kinetic resolution of N-Heterocycles with a recyclable polymer-supported reagent.” Angew. Chem. Int. Ed. 2012, 51, 10660 – 10663. Wiley-VCH Verlag Gmbh & Co. KGaA Weinheim. License Number 3811871123067 5) S.-Y. Hsieh, M. Binanzer, I. Kreituss, J. W. Bode, “Expanded substrate scope and catalyst optimization for the catalytic kinetic resolution of N-heterocycles.” Chem. Comm. 2012, 48, 8892 - 8894. 6) T. Gerfaud, Y.-L. Chiang, I. Kreituss, J. Russak, J. W. Bode, “Enantioselective, chromatography-free synthesis of β3-amino acids with natural and unnatural side chains.” Org. Process Res. Dev. 2012, 16, 687 – 696. IX

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.