JournalofGeodynamics65 (2013) 292–307 ContentslistsavailableatSciVerseScienceDirect Journal of Geodynamics journal homepage: http://www.elsevier.com/locate/jog Kinematics of Sürgü Fault Zone (Malatya, Turkey): A remote sensing study AytenKoc¸ ∗,NuretdinKaymakcı DepartmentofGeologicalEngineering,MiddleEastTechnicalUniversity,Ankara06531,Turkey a r t i c l e i n f o a b s t r a c t Articlehistory: TheSürgüFaultZone(SFZ)islocatedinSEAnatoliaextendingfromGöksuninthewesttoC¸elikhanin Receiv ed11January2012 the east,w herei tbifu rcates fr omtheE as tA natolian FaultZone. Adet ailedan aly sisa long the f aultusi ng AReccceepivteedd i4n Ar euvgiussetd2 f 0o1rm2 3 August 2012 sate llite images , d igital elev ation mod els ( DEMs) an d aeri al pho to graphs r evealed that th e S FZ dis plays characteristicdeformationpatternscommontodextralstrike-slipfaults,includingpressureridges,dis- Available online 13 August 2012 placedlinearvalleys,anddeflectedstreamcourses.Inadditiontothis,faultslipdatacollectedfrom17 sitesindicatedthattheSFZisadextralstrike-slipfaultzonehavingreverseandnormalcomponentsinits Keywords: westernandeasternparts,respectively.Thetypeofdip-slipcomponents,orientationofthepalaeostress Strike-slipfault configurations,andrelatedstructuresalongthefaultarecompatiblewithalongstrikevariationsofa Remotesensing FPaaulaletoksint reemssa atincaslysis tsitvreikset-rselaipm faduelflt escytsitoenms atlhoantg stuhpepfoarutlst tzhoen edeinxdtriacla tneatthuaret tohfe thdee xftaruallt ozfofsneet. oOfbtsheerSvFeZd hmaasxbiemeunmm couremtuhlaan- SEAn atolia 3km since theestablis hmen tof thes tream networ kin the region. Accor din gto th epr eferre dtect onic modelsuggestedinthisstudy,thepresentdextralmotionalongtheSFZoccurswithinaregionalsinistral systemrelatedtowestwardsescapeoftheMaras¸Block,squeezedbetweenAnatolianBlockandArabian PlateinN–Sdirection. © 2012 Elsevier Ltd. All rights reserved. 1. Introduction principal displacement zone (PDZ), or y-shear (Fig. 1a) develops generallyatanadvancedstageofstrike-slipdisplacement,parallel The structural deformation patterns in strike-slip fault zones tothemainshearzone(Nayloretal.,1986).Theotherstructures havebe enestabli shedsinceth e1980s( Bid dleandCh ristie -Blick, inc lud e Syn thetic Shea r (or r-s he ar), Antith etic Shear (r(cid:4)-shear), 1985; Sylvester, 1988). Strike-slip fault zones are classified as Secondary Synthetic Shear (p-shear), extension structures (nor- convergent, divergent and simple or through-going strike-slip malfaults,gashes),andcompressionalen-echelonfoldsandhigh faults,dependingonthemovementvectorsofinterveningblocks anglereversefaults(Fig.1a).Ther-,andp-shearsaresub-parallel (Sande rson and M ar chin i, 1984). In simple str ike-slip zon es, the (appr oximate ly ±15 ◦) to the y-sh ea r an d they al l ha ve the same major horiz onta l compres sion ax is makes a n approxim ately 45◦ senseofslip.Ho wever ,th ean glebetw een the y-sh eara ndt her(cid:4)- angle withthezo ne(Fig.1a)w hilet hisang lei shigherinthec on- shear isa roun d75◦and they have opposite slip senses(F ig.1 a).T he vergentstrike-slipfaultsandindivergentstrike-slipfaultzonesit angularrelationshipbetweenthestructuresismainlycontrolled islessth an45◦ (Sa nders ona nd Marchini, 1984).De velop ment of bythein ternalfrictio nangleo fthe faultedm ate rialand thecohe- convergent and divergent strike-slip fault zones depends on the sionandtheyobeytheCoulomb–Mohrcriterion(JaegerandCook, changeintheregionalstressfieldorreactivationofzonesofweak- 1971). ness(Deweyetal.,1995).Analogandnumericalmodels(Wilcox TheEastAnatolianFaultZone(EAFZ)isoneofthemajorsinistral etal.,1973;SegallandPollard,1983)demonstratedthatthepat- intra-continentalstrike-slipfaultsinEasternAnatoliaalongwhich ternofstructureswithinstrike-slipfaultzonesiscontrolledbythe the Anatolian Block is moving westwards (S¸engör and Yılmaz, typeandorientationofhorizontalmajorandminorcompressive 1981) (Fig. 1b). The EAFZ displays all the characteristic features stressesaswellasalongstrikevariationsofthemasterfaultstrand ofasinistralstrike-slipfaultzone(Perinc¸eketal.,1987;Perincek (AmbraseysandTchalenko,1970;BiddleandChristie-Blick,1985; and C¸emen, 1990; Lyberis et al., 1992), and recent GPS studies WoodcockandFischer,1986;Sylvester,1988).Inastrike-slipfault indicatethatthefaultzoneistransferringthetotalconvergentvec- zone, the master fault strand (MFS), which is also known as the tor into strike-slip motion (Reilinger et al., 2006), which implies thatoverallEAFZisasimple(through-going)strike-slipfaultzone withoutconvergencenordivergence.Ontheotherhand,anum- ∗ berofsplayfaultsbifurcatefromthemainstrandoftheEAFZand Correspondingauthor. transferthedeformationoutofthefaultzone.Faultkinematic(e.g. makEc-ı)m.ail addresses: [email protected] (A. Koc¸ ), [email protected] (N. Kay- Arpatan dS¸a rog˘lu,1972; S¸aro g˘l uet al.,1 992;P erinc¸ eketal.,1 987; 0264-3707/$–seefrontmatter© 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jog.2012.08.001 A.Koc¸,N.Kaymakcı/JournalofGeodynamics65 (2013) 292–307 293 Fig.1. (a)Riedeldeformationpatternterminologyforasinistralshearzone(afterAmbraseysandTchalenko,1970;Sylvester,1988),(b)majoractivestructuresaround easternMediterranean,(c)majorpaleotectonicunitsofTurkey(modifiedfromS¸engörandYılmaz,1981),(d)majorpaleotectonicandactivestructuresincentralandSE Anatolia(afterKaymakcietal.,2010).AF:AltınyaylaFault,BF:BozovaFault,DF:DeveliFault,DFZ:DeadSeaFaultZone,EAFZ:EastAnatolianFaultZone,EF:Ecemis¸Fault, GF:GürünFault,IF:Ilic¸Fault,KDF:Karcadag˘Fault,KF:KozanFault,NAFZ:NorthAnatolianFaultZone,MF:MalatyaFault,OF:OvacıkFault,PF:PertekFault,SF:SarızFault, SFZ:SürgüFaultZone,YF:Yes¸ilyurtFault. Perincek and C¸emen, 1990; Lyberis et al., 1992; Kaymakci et al., thecontroversialbehavioroftheSFZ.Forthesepurposes,various 2010andreferencestherein)andGPSstudies(e.g.Reilingeretal., image processing and enhancement techniques were applied to 2006)indicatemostofthesesplayfaultsarereactivatedolderstruc- data sources including Landsat TM, ETM+, Quickbird and ASTER tureswhichdonotnecessarilyobeyColoumb–Mohrdeformation imagery combined with SRTM and 1/25,000 scale digital eleva- criterion.SürgüFaultZone(SFZ)isoneofthesplayfaultswhich tion models, and stereo-pairs of aerial photographs. The results bifurcates from EAFZ around C¸elikhan with approximately E–W obtainedfromremotelysenseddatahavebeenverifiedinthefield. strikeand theb ifurcat ionang le isabou t30◦( Fig.1d).Morph otec- During th e fie ld verific ation, f ault slip d ata w ere co lle cted and tonicfeaturesandfaultkinematicdataindicatethattheSFZisa detailedobservationsofthestructureswereperformed. dextralstrike-slipfaultzonecontrarytoexpectedsinistralsense proposedbypreviousstudies(ArpatandS¸arog˘lu,1975;Perinc¸ek 2. Geologicalsetting andKozlu,1984).ThismakestheSFZapeculiarstructureasbeinga dextralfaultzonesub-paralleltoamajorsinistralintra-continental TheLateCretaceoustorecenttectonicdevelopmentoftheeast- EAFZ.SuchmotionalongtheSFZseemsnottobefeasibleaccording ernMediterraneanregionisrelatedtotheconvergencebetween topublishedanalogandnumericalmodelsandmostofthefield theAfro-ArabianandEurasianplates,whichismostlyaccommo- observations elsewhere. Therefore, the dextral nature of the SFZ datedbynorthwardsubductionofbranchesoftheNeotethysOcean deservesexplanation. (S¸engörandYılmaz,1981;BarrierandVrielynck,2008)leadingto Inthiscontext,themainpurposeofthisstudyistodetermine theformationoftwomajorsuturezones(Fig.1c).Theseincludethe thegeometry,deformationmechanismandkinematicsoftheSFZ northernandsouthernbranchesoftheNeotethysOcean(S¸engör by using remote sensing techniques and field studies including andYılmaz,1981).ThenorthernoneisdemarcatedbytheIzmir- fault slip measurements. Additionally, it is aimed to construct a Ankara-ErzincanSutureZoneanddevelopedbetweenthePontides tectonicmodelinordertoprovideasatisfactoryexplanationfor (Eurasia)inthenorthandTauride-AnatolidePlatform(Gondwana) 294 A.Koc¸,N.Kaymakcı/JournalofGeodynamics65 (2013) 292–307 Fig.2. (a)Samplelocationsand(b)majortectonicelementsinthevicinityofthestudyarea(legendislikeinFig.1)(afterPerinc¸eketal.,1987;Kaymakcietal.,2006,2010). inthesouth(Fig.1c).Theinterveningcontinentalblockscollided demarcatedbytheBitlisZagrosSutureZoneanddevelopeddueto after the oceanic lithosphere was completely subducted north- collisionbetweentheArabianPlateandtheEurasianPlate(Fig.1c) wards under the Pontides by the end of the Late Cretaceous bytheEocenetoOligocene(GhasemiandTalbot,2005;Hüsingetal., and collision lasted until the end of the Oligocene to Earliest 2009;Rollandetal.,2012)orlater,bytheendofMiddleMiocene Miocene(Kaymakcietal.,2001,2003,2009).Thesouthernbranchis (S¸engörandYılmaz,1981;Deweyetal.,1986;Keskin,2003;S¸engör A.Koc¸,N.Kaymakcı/JournalofGeodynamics65 (2013) 292–307 295 Fig.3. Simplifiedgeologicalmapandactivefaultsofthestudyarea(partlymodifiedfrom1/500,000scalegeologicalmapofMTA).Halfarrowsindicatedirectionoffault blockmovements. etal.,2003;Faccennaetal.,2006;Hüsingetal.,2009;Okayetal., andChristie-Blick,1985;Sylvester,1988;CunninghamandMann, 2010). 2007). Although the exact timing of collision between Eurasian and TheSFZ(ArpatandS¸arog˘lu,1975;Perinc¸ekandKozlu,1984)has Arabianplatesisstillunderdebate,theconsequencesofthiscolli- averypeculiarcharacteristicinhavinganalmostE–Wtrend(Fig.2). sionarebetterknownNevertheless,post-collisionalconvergence ThefaultzonebifurcatesfromtheEAFZintheeastanddelimitsa ineasternAnatoliaisstillactiveandgavewaytothedevelopment number of NNE–SSW trending major faults including Sarız Fault of transcurrent tectonics that is dominated by the dextral North (SF),GürünFault(GF),andMalatyaFault(MF)(Fig.1d).Itisalmost Anatolian and sinistral East Anatolian fault zones. Along these perpendiculartotheN–SconvergencevectorbetweentheArabian fault zones, the Anatolian Block is escaping westwards toward andEurasianplates(Reilingeretal.,2006)andhasmorphotectonic theHellenictrench(Fig.1b)whichaccommodateAfrica-Eurasian features and kinematic data indicating dextral strike-slip nature convergencetogetherwithCyprussubductionzone(S¸engöretal., withreverse(inthewest)andnormal(intheeast)components; 1985;S¸engör,1987;DeweyandSengör,1979;Arpat,1972;Arpat however,itissub-paralleltothesinistralEAFZ(Fig.2).Thismakes andS¸arog˘lu,1975;KhairandTsokas,1999). theSFZanenigmaticstructureinhavingadextralstrike-slipchar- Apart from Arabian collision, the present tectonic scheme of acterwithinasinistralstrike-slipsetting.Thisisunexpectedsince southern and south-ea stern Ana tolia has be en shape d by su b- itsstr ikedev i atesonly 30◦ count erclock -wis ef romthestri keof ductionoftheoceaniclithosphereoftheAfricanplatebelowthe theEAFZ;hence,itisnotanantitheticstructureoftheEAFZ.Most Taurides that probably had been subject to slab roll-back, slab ofthewesternsegmentoftheSFZdevelopedalongthesouthern detachment,slabbreak-offandSubductionTransformEdgeProp- boundaryoftheMaras¸Block(Fig.3),whichcontainsmagmaticarc- agator(STEP)(GoversandWortel,2005)faultprocessessincethe massifandSupraSubductionZoneophiolitesdevelopedduringthe MiddleMiocene(Faccennaetal.,2006;Gansetal.,2009;Kaymakci LateCretaceoustoEocenebetweentheTauride-AnatolidePlatform etal.,2010;VanHinsbergenetal.,2010;Biryoletal.,2011).This inthenorthandAfro-ArabianPlateinthesouth(Fig.1c)(Robertson resultedinthedevelopmentofcompressional–contractionalgeo- etal.,2006;Kaymakcietal.,2010), dynamicsineasternAnatoliathatismanifestedbythrustingand The SFZ and palaeotectonic (pre-Late Miocene) evolution of strike-slipfaultingwithconsiderablereversecomponents.West- the region has been studied mainly by Arpat (1972), Arpat and wards, the compressional–contractional deformation in eastern S¸arog˘lu(1975),Perinc¸ekandKozlu(1984),Perinc¸eketal.(1987), Anatoliahasbeengraduallyreplacedbystrike-slipandextensional Kozlu(1987),MuehlbergerandGordon(1987),S¸arog˘luetal.(1992), tectonics in response to these mantle processes, that dominate Yurtmenetal.(2002),andRobertsonetal.(2006).However,the mainly in central Anatolia and in western Anatolia respectively geometry, morphotectonics, deformation mechanism and kine- (S¸engör et al., 1985; Dewey et al., 1986; Perinc¸ek et al., 1987; maticsoftheSFZisstillunclearandthediscrepancybetweenits S¸engör,1987;Reilingeretal.,2006).Theendresultisacomplex dextralnatureandexpectedsinistraldisplacementisunderdebate. array of faults and fault zones that have changed character in Geographically, the regional extent of the SFZ lies between spaceandtimesincetheMiddleMiocene.Forexample,incentral theGöksun–C¸elikhan,Dog˘ans¸ehirandNurhakregionswheredif- andsouth-easternAnatolia,threetypesoffaultshavedeveloped ferent Mesozoic to Paleogene tectonic units collided and were (Fig.1d)(Kaymakcietal.,2010).Theseinclude:(1)sinistralstrike- amalgamatedduringtheNeogene(Fig.3).Thegeologicalmapof slipfaultswithNNE–SSWtoNE–SWstrike,(2)curvilinearfaults the region was prepared mainly by Turkish Petroleum Co. geol- with average E–W strike and (3) dextral strike-slip faults with ogists during the early 1980s (Perinc¸ek and Kozlu, 1984) and NW–SEstrike.Atpresentmostofthesestrike-slipfaultshavenor- also covered by the 1/500,000 scale Sivas and Hatay sheets of malorreversecomponents.Themostimportantfactorsgoverning thegeologicalmapofTurkeycompiledbyGeneralDirectorateof normalorreversecomponentalongastrike-slipfaultaretheirori- MineralResearchandExploration(Ankara,Turkey)(Fig.3).How- entationandcurvaturewithrespecttomaindisplacementzoneand everthesemapsaremainlyconcentratedonlithostratigraphicand regionalstresstensor.Forexample,re-strainingorreleasingbends largescalestructuresthatdonotincludemostoftheactivestruc- oroff-setsaccommodatelocalcontractionandextension(Biddle tures. 296 A.Koc¸,N.Kaymakcı/JournalofGeodynamics65 (2013) 292–307 3. Dataandmethods This study integrates data sets obtained from two different disciplines:(1)remotesensingand(2)fieldobservation.Morpho- tectonic structures and kinematic indicators were mapped and interpreted using remote sensing techniques and subsequently theywereverifiedinthefield.Additionally,fault-slipdatawerecol- lectedfrommesoscopicfaultsduringfieldstudiesforpalaeostress inversionanalysis. 3.1. Remotesensinganalysis Theappliedremotesensingtechniquesincludedprocessingand interpretation of satellite images, and stereographic aerial pho- tographs with the utilization of mirror stereoscopes. The used satellite imagery included Landsat 4, 5 and 7 (TM and ETM+), AdvancedSpace-borneThermalEmissionRadiometer(ASTER),and Quickbird images obtained from Google Earth and 167 stereo- graphicaerialphotographswith1/35,000scaletakenbyGeneral Command of Mapping (Turkey). Further image enhancement techniques, including contrast enhancement, color composites, PrincipalComponentAnalysis(PCA)andDecorrelationStretching (DS)wereperformedontheASTERandLandsatdatainorderto enha nceim agevisual izat ion. Additi onall y,90m× 90m ( 3(cid:4)(cid:4))res o- lutionShuttleRadarTopographicalMission(SRTM)dataand25m resolutiondigitalelevationmodels(DEMs)preparedfrom1/25,000 scale topographic maps are used to aid the interpretations. The abovementionedimagesandDEMshavedifferentlevelsofspa- tial(ground)andspectral(i.e.,differentwavelength)resolutions, andtheyareusefulfordistinguishinglithologiesandfordelineat- ing structures at different scales. Finally, all of these data were co-registered and combined in a GIS environment together with previouslyobtainedmapstocarryoutanintegratedanalysis. 3.2. Groundtruthingandfaultslipdataanalysis Fieldstudiesweremainlycarriedoutonthemainstrandofthe Fig.4. Fieldphotographsoffaults.(a)Intenselyshearedreversefaultaroundsite4 SFZforg roundt ruthin gofth estructu res an dki nema ticindi cat ors (vie w toS)a nd(b)norma lf aultsa rou ndsite19 (viewt oNW)( seeF ig.2afo rth e locatio ns of the site s). interpreted from the remotely sensed imagery in various scales. During the field studies, various compressional and extensional structu resw ereo bserved indiffer entlocationsalo ngth efaultzone Atotalof246faultslipmeasurementsweretakenfrom17sites (Fig.4aand b)in additiont os lickensid edsurfac es(Fig .5), block tilt- acros sthe SF Z.Du ring the analysisofthefa ultsl ipdata ,misfi tf aults ing( i.e. ,rot ati on withres pe cttohorizon talaxis) ,alig ne dmin eral within eac h an alyzed clu ster wer e sepa rated fro m th e bulk data wat ersp rings,na rrow linearva lle ys,andfaul trocks (phaco ids,fault basedo nma ximumm isfitang le(AN G)andma ximum qu ality esti- brecci a,catacl asites,fa ultgo uge,etc .). mator (RU P)andthe nanaly zedse parate ly.T hisprocess wasapp lied Furth er,thefault slipd atacol lectedfromexposedfaultplanes iterati velyu ntil reliab leresults wereobta ined .Thecr iteri aofthe (Fig.5)alon gth emai nstr ando ftheSFZ were usedfor stress inver- reliabilitya rede termine das20◦ forth emaximu mde viation (A NG) sion to resol ve t he kin ematic s of t he f ault z one u sin g Ang elier’s and50◦fo rthe maximumv al ueofth equ alityestim ator(RUP) forall meth od (Angel ier, 1994). This is base d on the r econst ruction of thef aultsin ea chdataset inacc ord an cewith themetho d(Ang eli er, thestres sellipsoid inorde rtod et ermine re lativ emagnitudesa nd 198 8, 199 4) . The faul ts t ha t did not fu lfill t hes e condit ions were orie ntatio nsofthe pri nciple st resses(Ang elier,19 79,1984,19 90). consid ereda sspu rious (19d ata) and they wered isregarded from Therearetw of und amental assumpt ionsinthi sappr oach: (1)the furtherana lys isandma keu parou nd8 %of alldat a.Inversiono fthe bulks tate ofst ressinasmal lareaisunifo rm and (2)theslip dir ec- datawa scarried out onth ere mainin g2 27 sli pme asuremen ts. tion is parallel to the maximum resolved shear stress along an optimallyorientedplaneofweakness(Wallace,1951;Bott,1959). 4. Resultsanddiscussion Duringtheconstructionofthestressconfigurations,themaximum shearstressdirectionisdeterminedbycalculatingtheshapefac- The enhanced satellite images of the Sürgü Fault Zone (SFZ) torandorientationofthestressellipsoidbyusingthebest-fitting display various kinematic indicators and morphological features reduced stress tensor based on the given fault slip data and the relatedtoitsactivity.Themostprominentofthesearethelinearly orientati onsof thethr eeprin cip alst ressa xes((cid:2) :m axim um, (cid:2) : arrange dp re ssurerid ges forme dmainlyal on gthe Kur ucao vaseg- 1 2 intermediate a nd (cid:2) : m inimum). The sh ape facto r of any str ess ment (Fig . 6a), and step- overs al ong the main cou rse of the SFZ. 3 ellipsoid is d eterm ine d from; ˚= ((cid:2) −(cid:2) )/( (cid:2) −(cid:2) ) a nd ranges Pressu re r idges are associated with strik e-slip motio n a nd con- 2 3 1 3 between tw o extreme v alues of 0 and 1. The ˚ con strai nts all- trolledby initial fau ltgeometry .Inad dition,the orientat iono fthe possible cases between uniax ial ((cid:2) =(cid:2) ; ˚=0 o r (cid:2) =(cid:2) ; ˚ =1) pressur er idgesc learly definesth es trikeofth eSF Z,whichism a inly 2 3 1 2 to tri-ax ial str ess config urations ((cid:2) > (cid:2) >(cid:2) ; ˚ = 0.5) (An ge lie r, inanE–W dire ction.I tstarts from the C¸e likh anB asinin t heeast 1 2 3 1994). and continues to the Sürgü Village in the west, and controls the A.Koc¸,N.Kaymakcı/JournalofGeodynamics65 (2013) 292–307 297 Fig.5. ReversefaultdevelopedinthewesternendoftheSFZaroundGöksun(site1,seeFig.2foritslocation).(a)Slickensidedfaultsurface(viewtoSW),(b)itsclose-up picture,and(c)palaeostressconfigurationofthesefaults.NoteNW–SEdirectedcompression. Fig.6. (a)Uninterpretedand(b)interpretedASTERimage(bandcombination;R:3,G:2,B:1)showingpressureridgeswithinananastomosingpatternoffaults(yellowlines), EAFZ:EastAnatolianFaultZone.(c)ASTERimage(bandcombination;R:3,G:2,B:1)showingdextrallydisplacedstreamsalongtheSFZbetweenC¸elikhanBasinandSürgü Village.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.) 298 A.Koc¸,N.Kaymakcı/JournalofGeodynamics65 (2013) 292–307 northern margin of the Kozaklı Basin (Fig. 6b). Within the zone westernpart,thedifferentsegmentsoftheSFZareeasilyrecog- of pressure ridges, a number of deflected streams with appar- nizedduetoabruptchangesinelevationonlinearscarpsandcliffs. entdextraloffsetarealsoobserved(Fig.6c).Maximumobserved Inthisarea,thehightopographyofthesouthernblocktectonically deflectionsinthestreamcoursesreachupto3km(Fig.6c).Simi- limitsthealluvialplainoftheGöksunandElbistanbasins.Alongthis larly,displacedstreamsarealsodetectedNWofNurhakandeastof segment,themaincourseoftheSFZisbentgraduallysouthwards Derbent(Fig.7a).However,thedeflectionpatternismorecomplex (Fig.7c). and non-uniform, unlike the deflections observed in the Kozaklı Aerialphotographsusedinthisstudyalloweda3Dvisualization Basin.InthatpartoftheSFZ,someofthestreamchannelsdonot capability and facilitated verification of the detected lineaments havecleardownstreamcontinuationsandthismaybeduetocon- and geomorphological features observed on the satellite images tortionofthedrainage.Thisresultsinfanningoutofstreamcourses suchaslonglinearridges(Fig.8a),suddenreliefchanges,stream thatdonotyieldavisiblechannelcourse.Therefore,themaximum course deflections (Fig. 8b) or truncations (contortions) and dis- observeddextraldisplacementaroundDerbentisapproximately turbed stream network (Fig. 8c). The pressure ridges (which are 1km(Fig.7a). also shutter ridges along the Kurucaova segment of the SFZ) Remote sensing analysis also provided information from dif- and the deflected streams in the northern margin of the Koza- ferent lithologies by processing and enhancement of spectral kli Basin (Fig. 8a) and in the east of Derbent and northwest of information.Thejuxtapositionofdifferentlithologiesisthediag- Nurhak(Fig.8b)areclearlyvisibleandrecognizableintheaerial nosticcriterionfordeterminationoffaulttracesandtheiroffset.For photographs and Quickbird images (Fig. 8d) with the deflection example,anumberofdifferentlithologiesarejuxtaposedalongthe magnitudesjustasobservedontheASTERimages.Moreover,the centralsegmentoftheSFZonaverysharptraceandresultinavery belt of pressure ridges can be divided into a number of small prominentcolorcontrastintheASTERimagesduetotheirdiffer- blocks bounded by NE–SW striking en echelon faults with sinis- ingpetrographyandmineralogy(Fig.7b).Ontheotherhand,atits tral off-set, and displays an anastomosing pattern supporting Fig.7. OriginalandinterpretedimagesfromSürgüFaultZone.(a)DeflectedstreamsalongtheSFZinaroundDerbentoverlaidonASTERimage.BandcombinationsRGB:5,2,1 withsaturationenhancement(seeFig.2foritslocation)(yellowboxindicatesthepositionofFig.6b).(b)MasterstrandoftheSFZnearSürgüDamindicatedwithwhite arrowsandoverlaidondecorrelationstretched(DS)ASTERimage.Bandcombinations;RGB:4,2,1.NoteverysharptraceofthemasterstrandoftheSFZ.(c)SubsetofanASTER imagedepictingaverysharptraceofthewesternpartoftheSFZ(forthesakeofsimplicityfaulttraceisnotdelineatedbutindicatedwitharrows).Theimageisproducedby DSandPrincipalComponentAnalysis(PCA).Bandcombination;RGBI:5,3,1,intensityisPC-1.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthearticle.) A.Koc¸,N.Kaymakcı/JournalofGeodynamics65 (2013) 292–307 299 Fig.7. (Continued). 300 A.Koc¸,N.Kaymakcı/JournalofGeodynamics65 (2013) 292–307 clockwise block rotations along the dextral Kurucaova segment movementoftheSFZandmayindicatepaleotectonicmovement (Fig.8a). sense of the fault zone. This has further implications, such that In the west, relief information extracted from the aerial pho- duringthepaleotectonicperiodthefaultzonewasalsoadextral tographsindicatesasuddenelevationchangeandabuttingofthe strike-slipfaultzonethatreactivatedduringtheneotectonicperiod southern block of the SFZ to the alluvial plain of Göksun Basin co-axiallyoritkeptitsslipsensesincethen. (Fig.8c).Thissectionischaracterizedbythesharpnorthdipping Thehostlithologiesofthecollectedfaultslipdatarangefrom mainstrandoftheSFZandanumberofNE–SWtrendingen-echelon PaleozoictoMesozoicmarblesandmetamorphics,toLateCreta- folds.Sincethesefoldsweredevelopedwithinpre-Neogeneunits ceousophiolitesandophioliterelatedunits,toPaleocenevolcanic which pre-date the SFZ, they are not taken into consideration, andclasticunits,andtoNeogenesedimentaryandvolcanicunits even though they have compatible orientations with the dextral (Fig.3).Thefaultslipdataonthepre-Cenozoicunitsmaybelong Fig.8. OriginalaninterpretedimagesfromSürgüFaultZone.(a)Aerialphotoshowingpressureridgeswithinananastomosingpatternoffaults(red)anddextrallydisplaced streamcourses(blue).EAFZ:EastAnatolianFaultZone.Notethatallthestreamsflowsouthwards.(b)DeflectedstreamsinEofDerbentandNWofNurhakoverlaidonthe aerialphoto(seeFig.5bforitslocation).(c)Aerialphotoshowingwesternpartofthestudyarea.MainstrandoftheSFZisdippingnorthwardsandisindicatedwithred arrows.Singlyplunginganticlinesandsynclinesareindicatedwithyellowlines.Divergentwhitearrowsarealluvialfans.(d)Quickbirdimage(obtainedfromGoogleEarth) indicatingdextrallydeflectedstream.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.) A.Koc¸,N.Kaymakcı/JournalofGeodynamics65 (2013) 292–307 301 Fig.8. (Continued). tobothpastandpresentdeformationphases.However,adjacent (oblique) in all sites except sites 9 and 19 (Fig. 9a) where (cid:2) is 1 Quaternary basins partly juxtaposed by the fault itself indicate vertical.Thisischaracteristicfortriaxialstressconditionswhere currentacti vitytha tiscon sistentwith th esli pdata .Fore xample, ˚ value s are cl ose to 0.5 (Ta ble 1). In ad dition , oblique o rienta- thefaultzonethrustovertheQuaternaryunitsclosetowesternend tions of principal stresses characterize a triaxial strain condition (nearsites1–4),aroundSEofGöksun(Fig.5).Similarly,thefault thatdeviatesgreatlyfromAndersonian(Anderson,1951)typesof juxtaposestheQuaternaryunitslaterallyalongtheKurucaovaseg- faults(Reches,1978,1983;Krantz,1988). mentwherethefaultplanedisplaysclearstriations.Basedonthese Thehorizontalcomponentsoftheconstructedstressconfigura- observations,faultslipdatacollectedfromfreshsurfacesofthefault tionsareplottedinordertounderstandthestyleofdeformation plane,incontactwithQuaternarydeposits,havebeenassociated and to check compatibility of the constructed principal stress withthelatestphaseofdeformationalongtheSürgüFaultZone. directions, and to assess the nature of local and regional struc- ExtractedstressconfigurationsshowninFig.9andTable1indi- tures.Apartfromsomeextensionalsolutions(sites9and19),the catethatthe major principalstress ((cid:2) )is ge nera ll yori ented ( sub-) horizo ntalco mpo nento fmostofthe (cid:2) directi onsat ea chsi tem ake 1 1 horiz onta lly, where as(cid:2) an d(cid:2) a rein te rchangeab lysub-v ertical anapproxi mately45◦a ng lewi th the localtrendof th eSFZ and they 2 3
Description: