ebook img

Kinematic signatures of AGN feedback in moderately powerful radio galaxies at z PDF

28 Pages·2016·3.13 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kinematic signatures of AGN feedback in moderately powerful radio galaxies at z

A&A586,A152(2016) Astronomy DOI:10.1051/0004-6361/201526872 & (cid:2)c ESO2016 Astrophysics Kinematic signatures of AGN feedback in moderately powerful ∼ (cid:2) radio galaxies at z 2 observed with SINFONI C.Collet1,N.P.H.Nesvadba1,C.DeBreuck2,M.D.Lehnert3,P.Best4,J.J.Bryant5,6,7,R.Hunstead5, D.Dicken1,8,andH.Johnston5 1 Institutd’AstrophysiqueSpatiale,CNRS,CentreUniversitaired’Orsay,Bat.120−121,91405Orsay,France e-mail:[email protected] 2 EuropeanSouthernObservatory,Karl-SchwarzschildStrasse,GarchingbeiMünchen,Germany 3 Institutd’AstrophysiquedeParis,CNRS&UniversitéPierreetMarieCurie,98bis,bdArago,75014Paris,France 4 SUPA,InstituteforAstronomy,RoyalObservatoryofEdinburgh,BlackfordHill,EdinburghEH93HJ,UK 5 SydneyInstituteforAstronomy(SIfA),SchoolofPhysics,TheUniversityofSydney,NSW2006,Australia 6 AustralianAstronomicalObservatory,POBox915,NorthRyde,NSW1670,Australia 7 ARCCentreofExcellenceforAll-skyAstrophysics(CAASTRO),Australia 8 LaboratoireAIMParis-Saclay,CEA/DSM/Irfu,OrmedesMerisiers,Bât.709,91191Gif-sur-Yvette,France Received1July2015/Accepted19August2015 ABSTRACT Mostsuccessful galaxyformationscenariosnow postulatethattheintensestarformationinmassive,high-redshift galaxiesduring their major growth period was truncated when powerful AGNslaunched galaxy-wide outflows of gas that removed large parts of theinterstellarmedium.SINFONIimagingspectroscopyofthemostpowerfulradiogalaxiesatz∼ 2showclearsignaturesofsuch winds,butaretooraretobegoodrepresentativesofagenericphaseintheevolutionofallmassivegalaxiesathighredshift.Herewe presentSINFONIimagingspectroscopyoftherest-frameopticalemission-linegasin12radiogalaxiesatredshifts∼2.Oursample spans a range in radio power that is intermediate between the most powerful radio galaxies with known wind signatures at these redshiftsandvigorousstarburstgalaxies,andareabouttwoordersofmagnitudemorecommonthanthemostpowerfulradiogalaxies. Thus,ifAGNfeedbackisagenericphaseofmassivegalaxyevolutionforreasonablevaluesoftheAGNdutycycle,thesearejust thesourceswhereAGNfeedbackshouldbemostimportant.Oursourcesshowadiversesetofgaskinematicsrangingfromregular velocitygradientswithamplitudesofΔv=200−400kms−1consistentwithrotatingdiskstoveryirregularkinematicswithmultiple velocityjumpsofafew100kms−1.Linewidthsaregenerallyhigh,typicallyaroundFWHM=800kms−1,moresimilartothemore powerfulhigh-zradiogalaxiesthanmass-selectedsamplesofmassivehigh-zgalaxieswithoutbrightAGNs,andconsistentwiththe velocityrangeexpectedfromrecenthydrodynamicmodels.AbroadHαlineinonetargetimpliesablackholemassofafew109 M(cid:4). Velocityoffsetsofputativesatellitegalaxiesnearafewtargetssuggestdynamicalmassesofafew1011 M(cid:4)foroursources,akintothe mostpowerfulhigh-zradiogalaxies.Ionizedgasmassesare1−2ordersofmagnitudelowerthaninthemostpowerfulradiogalaxies, andtheextinctioninthegasisrelativelylow,uptoA ∼2mag.Theratiooflinewidths,σ,tobulkvelocity,v,issolargethateven V thegasingalaxieswithregularvelocityfieldsisunlikelytobegravitationallybound.Itisunclear,however,whetherthelargeline widthsareduetoturbulenceorunresolved,localoutflowsasaresometimesobservedatlowredshifts.Wecompareoursourceswith setsofradiogalaxiesatlowandhighredshift,findingthattheymayhavemoreincommonwithgas-richnearbyradiogalaxieswith similarjetpowerthanwiththemostpowerfulhigh-zradiogalaxies.Comparisonofthekineticenergywiththeenergysupplyfrom theAGNsthroughjetandradiationpressuresuggeststhattheradiosourcestillplaysadominantroleforfeedback,consistentwith low-redshiftradio-loudquasars. Keywords.galaxies:active–galaxies:high-redshift–galaxies:starformation–galaxies:jets–galaxies:kinematicsanddynamics– radiocontinuum:galaxies 1. Introduction massfunction,whichisdominatedbyearly-typegalaxies(e.g., Bensonetal.2003),whosemassandstructuralpropertiesappear Itisnowwidelyacceptedthatthesupermassiveblackholesre- closely related to the mass of their central supermassive black siding in the vast majority of early-type galaxies and bulges hole(e.g.,Tremaineetal.2002). (e.g., Yu & Tremaine 2002) can have a sizeable impact on the evolution of their host galaxies. Semi-analytic models require Powerful active galactic nuclei (AGNs) release approxi- a strong source of energy to balance the overcooling of gas matelytheequivalentofthebindingenergyofamassivegalaxy ontodarkmatterhalosandtoavoidastrongexcessinbaryonic duringtheirshortactivityperiod,eitherintheformofradiation, mass and star formation in galaxies compared to observations. or through jets of relativistic particles, or both. They are thus Thediscrepancyisstrongestatthehigh-massendofthegalaxy in principle able to offset the excess cooling out to the highest galaxymasses(Silk &Rees1998).Ifsufficientlylargepartsof (cid:4) BasedonobservationscarriedoutwiththeVeryLargeTelescopeof thisenergyaredepositedintheinterstellarmedium(ISM)ofthe ESOunderProgramIDs084.A−0324and085.A−0897,andatATCA host galaxy, they may drive winds (Di Matteo et al. 2005) or underProgramIDC2604. turbulence(Nesvadbaetal.2011a).Themechanismsthatcause ArticlepublishedbyEDPSciences A152,page1of28 A&A586,A152(2016) this, however,arestill notverywellunderstood.Evenveryba- massivehigh-redshiftgalaxiesoverall,seeninashortbutimpor- sicquestions,e.g.,whetherfeedbackisdominatedbyradiojets tant phase of their evolution, and we summarize our results in orthebolometricenergyoutputofradiativelyefficientaccretion Sect.10. disks,arestillheavilydebatedintheliterature.Thereisclearob- Throughout our analysis we adopt a flat cosmology with saetrkvpactiodniastlaenvciedefnrocemththatejnetusccleaunsp,ewrthuirlebtthheeIoSbMsersvtraotinognlayleevvein- H0 =70kms−1Mpc−1,ΩΛ =0.7,andΩM =0.3. denceforwindsdrivenbyquasarradiationoverkpcscalesisstill mixed(e.g.,Husemannet al. 2013;Liu et al. 2013;Cano-Díaz etal.2012;Harrisonetal.2012).Hydrodynamicmodelsofra- diojetsarenowfindingdepositionratesofkineticenergyfrom 2. Sample thejetintothegasthatarebroadlyconsistentwithobservations (Wagneretal.2012). Our sources have a radio power of a few 1027−28 W Hz−1 at Following the most popular galaxy evolution models, 500 MHz in the rest frame, about 2 to 3 orders of magni- AGN feedback should have been particularly important in the tude fainter than the most powerful high-redshift radio galax- early evolution of massive galaxies at high redshift, where ies known, which reach up to nearly 1×1030 W Hz−1 (Miley AGN-drivenwindsmayhave blownoutthe remaininggaseous & De Breuck 2008, and references therein), but powerful reservoirsthatfueledthemainphaseofgalaxygrowth,inhibiting enoughtosafelyneglectcontaminationfromintensestarforma- extended periods of subsequent star formation from the resid- tion.Forcomparison,anintenselystar-formingHyLIRG(hyper- ual gas. Whereas the jets of powerful radio galaxies in the lo- luminous infrared galaxy) with far-infrared luminosity L = FIR calUniverseareknowntoaffectthegaslocallywithinextended 1×1013L(cid:4) wouldproducearest-frame1.4GHzradiopowerof gas disks (“jet-cloud interactions”, e.g., Tadhunter et al. 1998; 1025.0WHz−1,assumingafar-infrared-to-radioluminosityratio vanBreugeletal.1985),itwasfoundonlyrecentlythatoutflows of 2.0, as found for high-redshift submillimeter galaxies (e.g., driven by the most powerful radio jets in the early universe at Vlahakisetal.2007;Seymouretal.2009;Thomsonetal.2014), z∼2canencompassveryhighgasmasses,uptoabout1010 M(cid:4) andaradiospectralindextypicalofstarformationofα=−0.7to in the most powerfulradio galaxies at high redshift(Nesvadba −0.8.Thisisverysimilartothesteepspectralindicesα ∼ −1.0 etal.2006,2008a).Thisissimilartothetypicaltotalgasmasses thatarecharacteristicofhigh-redshiftradiogalaxies,makingit in massive, intensely star-forming, high-redshift galaxies of a evenmoredifficulttodisentanglethecontributionofAGNsand few1010 M(cid:4) (e.g.,Greveetal.2005;Tacconietal.2008).This star formationto lower-powerradio sources than those studied gas is strongly kinematically perturbed with full width at half here.Inspiteoftheirfaintnessrelativetootherhigh-redshiftra- maximum(FWHM)upto∼2000kms−1andhigh,abruptveloc- dio galaxies, the radio power of fainter sources in this present ity gradientsofsimilar amplitude,consistentwith theexpected studyisnonethelesscomparabletothatofthemostpowerfulra- signaturesofvigorousjet-drivenwinds. diogalaxiesknownatlowredshift(e.g.,Tadhunteretal.1993). Galaxieswithextremeradiopowerat1.4GHzofuptoP1.4 = Our targets come from two different surveys. One is the few×1029 WHz−1 likethosestudiedbyNesvadbaetal.(2006, southernsampleof234distantradiogalaxiesofBrodericketal. 2008a)are,however,veryrare,whichraisesthequestionofthe (2007), Bryant et al. (2009a,b), and Johnston et al. (in prep.), impact that AGNs may have on their host galaxies when their whichwerefertohereafterastheMRCR-SUMSSsample.The radiopowerissignificantlylower.Thepresentpapergivesafirst other is the sample of radio galaxies within the fields of the answer to this question. It is part of a systematic study of the ESO imaging survey (EIS) by Best et al. (2003) and Brookes warm ionized gas in 49 high-redshift radio galaxies at z ∼ 2 et al. (2006, 2008), which we call the “CENSORS” sample with SINFONI, which span three decades in radio power and (“CombinedEIS-NVSSSurveyOfRadioSources”). two decades in radio size. Our sources cover the lower half of the radio power of this sample, P = few ×1026−27 W Hz−1 The MRCR-SUMSS sources have steep radio spectral in- at 1.4 GHz in the rest frame. Tow1a.4rd lower radio power, con- dices α408−843 ≤ −1.0 between 408 MHz and 843 MHz, and fluxesat408MHzS ≥200mJy.Fromthiscatalogue,wese- tamination from the non-thermal radio continuum of vigorous 408 lected12moderatelylow-powersourcesatz≥2withP =few starburstsbecomesincreasinglyimportant.Thehigh-redshiftra- 1.4 ×1027 W Hz−1. Theyhaveradiosizes between∼2(cid:7)(cid:7) and24(cid:7)(cid:7) at dioluminosityfunctionofWillottetal.(2001)andGendreetal. 1.4 GHz frequency, a typical range of radio sizes of powerful (2010)suggeststhatsuchgalaxiesarefactorsof100morecom- HzRG. monthantheverypowerfulradiosources,withco-movingnum- berdensitiesontheorderofafew10−7Mpc−3,sufficienttorep- The six galaxies with the lowest radio power (P ∼ 1.4 resentashort,genericphaseintheevolutionofmassivegalaxies, 1026 W Hz−1) come from the CENSORS survey. This cata- aswewillarguebelowinSect.9. logueof150radiogalaxiesresultsfromcross-matchingtheESO The organization of the paper is as follows. In Sect. 2 we Imaging Survey (EIS) patch D with the NVSS radio survey present our sample and in Sect. 3 our SINFONI near-infrared (Best et al. 2003). Radio sources detected in the NVSS were (NIR) imaging spectroscopy and ATCA centimeter continuum re-observed at 1.4 GHz with the VLA in the BnA configura- observations,andthemethodswithwhichwereducedthesedata. tionataspatialresolutionof3(cid:7)(cid:7)−4(cid:7)(cid:7),comparedtotheinitialspa- In Sect. 4 we present our methods of analysis and the results tialresolutionofthe NVSSof45(cid:7)(cid:7), whichiscompletedownto for each individual target, before presenting the overall results 7.2mJy.Thismadeitpossibletostudythestructureoftheradio drawnfromoursampleinSect.5.InSect.6wediscusstheAGN sourcesandtoidentifythe mostlikelyrest-frameopticalcoun- properties,andinSect.7weuseadditionallineemittersnearour terpartsof102sources.Opticalspectroscopyprovidedredshifts radiogalaxiestoestimatedynamicalmassesofourhigh-redshift of 81 sources(Brookeset al. 2008).Amongthese, we selected radio galaxies (HzRGs). In Sect. 8 we compare our data with sixsourceswitharadiopowerofafew×1026WHz−1andappro- otherclassesofHzRGsbeforediscussingtheimplicationsofour priate redshifts for ground-based NIR follow-up spectroscopy. resultsforAGNfeedback.WeargueinSect.9thatsourcessim- Three have extended radio morphologies and three have com- ilartothosestudiedheremaywellbearepresentativesubsetof pact,unresolvedradiocores. A152,page2of28 C.Colletetal.:Moderatelypowerfulhigh-zradiogalaxies 3. Observationsanddatareduction 3.2.Radiocontinuumobservations 3.1.Near-infraredimagingspectroscopy WeobservedourMRCR-SUMSSandCENSORSsourcesintwo runs on 2012 January 28 and February 02 with the Australia We observed all MRCR-SUMSS galaxies with the NIR imag- TelescopeCompactArray(ATCA,projectC2604).Observations ingspectrographSINFONI(Eisenhaueretal.2003)betweenlate were carried out simultaneously at 5.5 and 9.0 GHz using the 2009andearly2010underprogramID084.A-0324attheESO CompactArrayBroadbandBackend,withbandwidthsof2GHz VeryLargeTelescope.SINFONIobservationsoftheCENSORS andchannelwidthsof1MHz.Thearrayconfigurationwas6A, sourceswerecarriedoutbetweenlate2010andearly2011under with baselines between 337 and 5939 m. For flux density and program ID 086.B-0571.All data were taken in Service Mode bandpass calibration we observed PKS B1934−638 at the be- undervariableconditions. ginningandendofeachsession.Poorphasestabilitywasdueto SINFONI is an image slicer that operates between 1.1 μm heavyrainandhighhumidity,andthissignificantlyaffectedthe and 2.4 μm. We used the seeing-limited mode with the largest signal-to-noiseratio. availablefieldofviewof8(cid:7)(cid:7) × 8(cid:7)(cid:7)andapixelscaleof250mas. Individualsourceswereobservedin13–15five-minutesnap- AlldataweretakenwiththeH+K gratingwhichcoverswave- shots spread over8.5 h to ensure gooduv coverage;an excep- lengths between 1.45 μm and 2.4 μm at a spectral resolving tion was NVSS J144932−385657, which set early with only power R ∼ 1500 (∼200 km s−1). We observed each MRCR- five snapshots spanning 3 h. We did not obtain any new data SUMSS galaxy for 180−230 min of on-source observing time forCENSORS072becauseweusedincorrectcoordinatesfrom (300−440 min for the CENSORS sources), split into individ- Brooks et al. (2008). The ATCA observing log is given in ualobservationsof5min.Mostofourgalaxiesaresmallerthan TableB.2andlistsforeachsourcethedateofobservation,total the field of view. We therefore adopted a dither pattern where on-sourceintegrationtime,thesecondaryphasecalibratorused, the object is shifted between two opposite corners of the field andthesynthesizedbeamateachfrequency. of view, which allows us to use two subsequentframes for the ThedatareductionwasdonewithMiriad(Saultetal.1995) skysubtractionandmakestakingdedicatedskyframesunneces- in the standard way. We find typical beam sizes of 4(cid:7)(cid:7)×1.5(cid:7)(cid:7) sary.Thespatialresolutionofourdata islimitedby thesize of at 5.5 GHz and 2.5(cid:7)(cid:7)×0.9(cid:7)(cid:7) with position angles between −6◦ theseeingdisk,whichistypicallyaround1.0(cid:7)(cid:7)forbothsamples. and13◦(exceptforNVSSJ144932−385657,wherePA=−40◦). The FWHM sizes of the pointspread functions(PSFs) ofindi- DetailsaregiveninTableB.2. vidualtargetsaregiveninTableB.1.Theyaremeasuredfroma TheradiomorphologiesareshowninFig.1.Theygenerally standardstarobservedattheendofeachhourofdatataking. confirmthosepreviouslymeasuredat1.4GHzand2.4GHzwith DatareductionreliesonacombinationofIRAF(Tody1993) larger beams. In NVSS J002431−303330 we detect a fainter andourowncustomIDLroutines(e.g.,Nesvadbaetal.2011b). second component to the southwest of the main radio emis- Allframesaredark-subtractedandflat-fielded.Wethenremove sion below the detectionthresholdof previousobservations.In the curvaturefrom the spectra in each slit and put them onto a NVSS J234235−384526we tentatively detecta radio core that commonwavelengthscalebyusingthebrightnight-skylinessu- is coincidentwith the galaxy.Radio sizes are givenin Table 1. perimposedoneachframe,usingonlyarclampspectratosetthe Thelargestangularscale(LAS)givestheseparationbetweenthe absolutewavelengthscale.Wethenskysubtractourdataandre- twolobes,ifthesourceisresolved,orthedeconvolvedsize,ifit arrangethemintothree-dimensionaldatacubes,whicharethen isnot. combined.Toaccountforthevariabilityofthenightskywescale the total flux in each sky frame to the total flux in each object frame,aftermaskingthetarget.Weusethestandardstarobser- 3.2.1. Relativeastrometricalignmentoftheradio vationstocorrectfortelluricandinstrumentaleffectsandtoset andSINFONIdata theabsolutefluxscale. StudyingtheeffectsoftheradiojetontheISMofhigh-redshift In this analysis, we discuss the optical emission-line galaxiesrequiresanaccuraterelativealignmentbetweenthera- properties of 8 of the 12 MRCR-SUMSS galaxies we ob- dioandNIRdatasetstobetterthananarcsecond,i.e.,betterthan served. Two of the other four, NVSS J004136−345046 and the absolute astrometry of the VLT. Unfortunately, we did not NVSS J103615−321659,have continuumemission but no line detecttheradiocoreofmostofourgalaxieswithextendedradio emission at the redshiftspreviouslymeasuredin the rest-frame lobes.Moreover,owingtothesmallfieldofviewofSINFONI, UV. Their redshifts are relatively high, z = 2.6, placing [OIII] aligningourdatacubesaccuratelywithintheWorldCoordinate and Hα at wavelengths outside the NIR atmospheric bands, System(WCS)isnottrivial.Wethereforeregisterourcubesrel- where the atmospheric transmission is below 10%, and is ativetotheK-bandimagingofBryantetal.(2009a),whichisac- strongly variable both in time and in wavelength. At the ex- curatelyalignedwiththeWCS,andassumethattheradioframe pectedwavelengthofHα,thetelluricthermalbackgroundisal- ofATCAalignswellwiththeWCS,tobetterthan1(cid:7)(cid:7)(Broderick ready a factor of ∼10 greater than at 2.2 μm. A third source, etal.2007).Forcompactradiosources(LAS(cid:2)2.0(cid:7)(cid:7)inTable1), NVSS J233034−330009, was found to coincide with a fore- weassumethattheK-bandcontinuumisalignedwiththeradio groundstar afterourdatahadalreadybeentaken(Bryantetal. source,correspondingtotheassumptionthattheradioemission 2009b). The fourth source, NVSS J210626−314003 shows a in compact sources originates from the nucleus of the galaxy. strongmisalignmentbetweentheradiosourceandtheextended Figure 1 shows the radio contours of the MRCR-SUMSS and gas,andnogasalongtheradiojetaxis,whichis verydifferent CENSORS sources,andtheredboxgivestheadoptedposition fromtheothergalaxiespresentedhere.Thissourcehasalready oftheSINFONImapsbasedonthismethod. beendiscussedbyColletetal.(2015),sowedonotdescribeits characteristicsindetailagain,butwedoincludeitintheoverall discussion of the propertiesof our sources. For the CENSORS 4. Results sourceswefocusourdiscussiononthethreesourceswherewe detected line emission at the redshifts previously measured in For each galaxy we show integrated spectra and emission-line therest-frameUV. mapsof[OIII]λ5007surfacebrightness,relativevelocities,and A152,page3of28 A&A586,A152(2016) 20 NN NN NN 10 NVSS 0024 20 NVSS 0040 NVSS 0129 EE EE EE 10 ec] 0 10 s c ar 0 [ et s-10 0 off -10 -20 -10 -20 -20 -10 0 10 -20 -10 0 10 -20 -10 0 10 20 20 30 NN 20 NN NN NVSS 0304 NVSS 1449 NVSS 2019 EE EE 20 EE 10 10 c] se 10 c ar 0 0 [ set 0 off -10 -10 -10 -20 -20 -20 -20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20 20 NVSS 2046 NN 30 NVSS 2106 NNN 20 NVSS 2342 NN EE 20 EEE EE ec] 10 10 10 s c ar [ 0 et s 0 0 off -10 -20 -10 -10 -30 -20 -10 0 10 20 -30 -20 -10 0 10 20 30 -20 -10 0 10 20 offset[arcsec] offset[arcsec] offset[arcsec] 20 20 20 NN NN NN CEN 020 CEN 105 CEN 118 EE EE EE 10 10 10 c] e s c ar 0 0 0 [ et s off -10 -10 -10 -20 -20 -20 -20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20 offset[arcsec] 20 10 NN NN CEN 129 CEN 134 EE EE 10 5 c] e s c ar 0 0 [ et s off -10 -5 -20 -10 -20 -10 0 10 20 -10 -5 0 5 10 offset[arcsec] offset[arcsec] Fig.1.Radiomorphologiesat5.5GHzoftheMRCR-SUMSSsample.Thesizeandorientationoftherestoredbeamisgiveninthebottomleftof eachpanel.TheredboxindicatesthesizeandlocationoftheSINFONImapspresentedinFig.2.ForNVSSJ144932−385657, giventheshort observationtimeofthissourceandhencethedeformedbeam,wealsopresentits4.8GHzobservationsfromBryantetal.(2009a),whoobserved apartoftheirsampleat4.8GHzand8.64GHz. A152,page4of28 C.Colletetal.:Moderatelypowerfulhigh-zradiogalaxies Fig.2. Integrated spectra of our sources. Gaussian fitstodetected lines areplotted assolid redlines. Below each spectrum weshow atypical night-skyspectrumtoillustratethepositionofbrightnight-skylines(dashedlines).Thisspectrumisnottoscale;thenight-skylinesshownare brighterthantheemissionlinesfromourtargets.Thebottompanelshowsthefitresiduals. A152,page5of28 A&A586,A152(2016) Table1.ATCAresults. SourceID S a S b αc logL d logL e LASf PAg 5.5 9.0 500 1.4 [mJy] [mJy] [WHz−1] [WHz−1] [arcsec] [deg] NVSSJ002431−303330 21.1 11.1 −0.99±0.05 27.9 27.5 16 18 NVSSJ004000−303333 10.0 3.4 −1.34±0.06 28.6 27.9 15 91 NVSSJ012932−385433 29.2 14.3 −1.06±0.02 28.1 27.6 <1.4 ... NVSSJ030431−315308 13.4 5.9 −1.25±0.03 28.1 27.5 <3.6 ... NVSSJ144932−385657 ... ... −0.99±0.05 27.9 27.4 13.4 59 NVSSJ201943−364542 11.7 10.2 −1.13±0.07 28.0 27.5 31.4 65 NVSSJ204601−335656 9.8 9.1 −1.14±0.04 28.0 27.6 3.6 ... NVSSJ210626−314003 19.8 22.4 −1.05±0.05 28.1 27.6 50.0 98 NVSSJ234235−384526 6.0 2.2 −1.38±0.03 28.5 27.9 19.6 54 NVSSJ094604−211508(CEN020) 14.5 8.0 −1.02±0.04 27.3 26.8 <2.9 0 NVSSJ094724−210505(CEN105) 2.2 0.8 −1.18±0.09 27.5 26.8 28.4 95 NVSSJ094748−204835(CEN118) 1.9 0.6 −1.29±0.15 27.6 26.9 10. 0 NVSSJ095226−200105(CEN129) 2.7 1.7 −0.82±0.01 26.9 26.5 5.0 95 NVSSJ094949−213432(CEN134) 2.4 1.0 −1.08±0.09 27.0 26.6 4.5 131 Notes.(a) Fluxmeasuredat5.5GHz.(b) Fluxmeasuredat9.0GHz.(c) Radiospectralindex.(Sect.6.1).(d) Radiopowerat500MHz.(e) Radio power at 1.4 GHz inthe rest frame. (f) Largest angular size, corresponding tothe separation between the twolobes (when detected) or to the deconvolvedsizeforcompactsources.Forunresolvedsourcesthedeconvolvedsizesat5.5GHzand9.0GHzarebothgiven.(g) Positionangle measuredfromnorthtoeast. FWHMlinewidths(Figs.2toA.2andTables2and3).Unless thespectrabeforefittingtheemissionlines.Toperformthissub- statedotherwise,wegiveintrinsicFWHMs,FWHM , that traction,wemaskstrongemissionlinesandstrongnight-skyline intrinsic are corrected for (cid:2)instrumental resolution FWHMinst, setting residualsandfitafifth-orderpolynomialovertheirwholespec- FWHM = FWHM2 −FWHM2 . The instrumental trum,whichwesubtractafterward. intrinsic obs inst resolution, FWHM , is wavelength dependent and was mea- inst suredfromthewidthofnight-skylines.Mapsareonlygivenfor 4.1.Descriptionofindividualsources spatialpixelswherethesignal-to-noiseratioofthelinecoreex- ceeds5.WeusedaMonteCarlomethodtoconfirmthatthiswas 4.1.1. NVSSJ002431−303330 agoodvaluewithwhichtorobustlymeasurethelineproperties NVSSJ002431−303330isadoubleradiosource,dominatedby in spite of strong non-Gaussianities in the noise related to the abrightcomponentassociatedwiththeopticalcounterpart,and imperfectnight-skylinesubtraction,badpixels,andpotentially aweakercomponentat16(cid:7)(cid:7) towardsouthwest(Fig.1).We find intrinsiclineprofiles. thissourceataredshiftofz = 2.415±0.001,whichisingood Integratedspectraincludeallpixelswhere[OIII]λ5007isde- agreementwiththeestimateofJohnstonetal.(inprep.)fromthe tectedatasignificantlevel.Weadopttheredshiftestimatedfrom rest-frameUV lines, with zuv = 2.416±0.001.In the H band, the brightest pixels near the center of the galaxy as systemic. wedetectthe[OIII]λ4959,5007doubletandHβ.IntheK band, Beforeaddingthespectrumofapixel,weshiftittothesystemic we find Hα and [NII]λ6548,6583, which are strongly blended redshiftin ordertoavoidartificialbroadeningofthelinein the owing to their large intrinsic widths. The Hα line has a broad integratedspectrumbythelarge-scalevelocitygradient. component with FWHM = 3250 km s−1. Figure 2 shows the Foreachgalaxywealsomappedthesurfacebrightness,rela- integratedspectrumofthissource.Alllinepropertiesarelisted tivevelocitytothesystemicredshiftandtheFWHMlinewidths inTable2. of[OIII]λ5007(Figs. 3to 4) byfitting Gaussian profilesto the As shown in Fig. 3, NVSS J002431−303330 has a lines extracted from small apertures across the cube. Aperture sizes are 3 pixels × 3 pixels, correspondingto 0.4(cid:7)(cid:7) × 0.4(cid:7)(cid:7), or strong continuum associated with a bright emission-line 5 pixels× 5 pixels(0.6(cid:7)(cid:7) × 0.6(cid:7)(cid:7)) forthe faintestregionsof the region with [OIII]λ5007 surface brightness of (5−25) × 10−16 ergs−1cm−2arcsec−2. Line widths in this region are source. This helps to improve the signal-to-noise ratio of the very broad, FWHM ∼ 1200 kms−1, and the velocity field data, but still oversamples the seeing disk and avoids loss of is perturbed with two small, unresolved regions that show spatial information. Since the sizes of the extended emission- abrupt velocity jumps relative to their surroundings with rela- line regions,S , are typically onlya few times largerthan maj,obs tiveredshiftsof about250kms−1 ineach region.Thisarea ex- thesizeoftheseeingdisk,welistsizesofsemi-majorandsemi- tends over∼1.0(cid:7)(cid:7)×1.0(cid:7)(cid:7) aroundthe peak of the continuumand minoraxesthatarecorrectedfortheb(cid:2)roadeningofthePSFSPSF, [OIII]λ5007lineemission,correspondingto8kpcatz= 2.415. Smaj,intrinsic, by setting Smaj,intrinsic = Sm2aj,obs−SP2SF alongthe The Hα surface brightness in this region is ΣHα ∼ (5−9) × same position angle. The same method was applied to the size 10−16ergs−1cm−2arcsec−2. alongthesemi-minoraxis,whereresolved. Towardthesouthwest,thelineemissionbecomesfainter,but Contours in Fig. 3 show the line-free continuum emission canbetracedoutoveranother2(cid:7)(cid:7),withatypical[OIII]λ5007sur- for the galaxies where the continuum was detected. In most facebrightnessofΣ =(1−5)×10−16ergs−1 cm−2arcsec−2. [OIII] galaxiesthecontinuumisonlydetectedaftercollapsingtheline- The gas is more quiescent, with line widths of FWHM = free cube along the wavelength axis. However, we detect rel- 300−400 kms−1. We show integrated spectra of both regions atively bright continuum emission in NVSS J002431−303330 in Fig. 5. The box in the right panel of Fig. 3 shows the re- and NVSS J201943−364542, which we need to subtract from gion from which we extracted the narrow-line emission. This A152,page6of28 C.Colletetal.:Moderatelypowerfulhigh-zradiogalaxies Table2.Emission-linepropertiesoftheMRCR-SUMSSsources. Source Line λ a λ b FWHMc Fluxd 0 obs [Å] [Å] [kms−1] [10−16ergs−1cm−2] NVSSJ002431−303330 Hβ 4861.3 16603.4±5.3 675±70 4.1±1.0 [OIII] 4958.9 16936.8±5.4 903±40 10.6±2.1 [OIII] 5006.9 17100.7±5.4 903±40 32.2±6.4 [NII] 6548.1 22364.6±7.1 220±25 1.6±0.3 Hα 6562.8 22414.8±7.1 675±70 12.9±2.6 Hα 6562.8 22414.8±7.1 3250±300 20.8±4.2 b [NII] 6583.4 22485.1±7.1 220±25 4.8±1.0 NVSSJ004000−303333 [OII] 3727.5 16397.3±4.0 900±90 16.5±3.3 Hβe 4861.3 21385.6±3.7 744±70 5.8±1.2 [OIII] 4958.9 21814.9±3.8 744±70 22.3±4.5 [OIII] 5006.9 22026.1±3.8 744±70 67.5±13.5 NVSSJ004000−303333Bf [OIII] 4958.9 21794.0±3.8 760±80 1.3±0.7 south [OIII] 5006.9 22005.0±3.8 760±80 3.9±1.9 south NVSSJ012932−385433 Hβ 4861.3 15484.5±3.5 750±80 2.0±0.4 [OIII] 4958.9 15795.4±3.6 909±80 8.0±1.6 [OIII] 5006.9 15948.3±3.6 909±80 24.3±4.9 [NII] 6548.1 20857.4±4.7 1100±110 2.5±0.5 Hα 6562.8 20904.6±4.7 750±80 7.0±1.4 Hα 6562.8 20904.6±4.7 3500±350 20.1±4.0 b [NII] 6583.4 20970.2±4.7 1100±110 7.4±1.5 [SII] 6716.4 21393.9±4.8 800±80 2.9±0.5 [SII] 6730.8 21439.8±4.8 800±80 3.1±0.5 NVSSJ030431−315308 Hβ 4861.3 15773.2±2.8 470±50 2.5±0.5 [OIII] 4958.9 16089.9±2.9 683±50 9.7±1.9 [OIII] 5006.9 16245.6±2.9 683±50 29.5±5.9 [NII] 6548.1 21246.3±3.8 910±90 2.3±0.5 Hα 6562.8 21294.0±3.8 470±50 5.7±1.1 [NII] 6583.4 21360.8±3.8 910±90 6.9±1.4 NVSSJ144932−385657 Hβ 4861.3 15310.4±3.4 350±35 1.1±0.2 [OIII] 4958.9 15617.8±3.5 420±40 6.4±1.3 [OIII] 5006.9 15769.0±3.5 420±40 19.5±3.9 [NII] 6548.1 20622.9±4.6 ≤200 0.5±0.1 Hα 6562.8 20669.2±4.6 350±35 6.6±1.3 [NII] 6583.4 20734.1±4.6 ≤200 1.4±0.3 NVSSJ201943−364542 Hβ 4861.3 15165.3±4.4 440±50 ≤0.5 [OIII] 4958.9 15469.8±4.5 540±30 1.5±0.3 [OIII] 5006.9 15619.5±4.5 540±30 4.5±0.9 [NII] 6548.1 20431.6±5.9 150±20 0.4±0.1 Hα 6562.8 20477.5±5.9 440±50 2.5±0.5 Hα 6562.8 20477.5±5.9 8250±800 35.9±7.0 b [NII] 6583.4 20541.8±5.9 150±20 1.1±0.2 NVSSJ201943−36454Bg [OIII] 4958.9 15450.9±4.0 320±30 0.5±0.2 south [OIII] 5006.9 15600.4±4.0 320±30 1.6±0.3 south NVSSJ204601−335656 Hβ 4861.3 17010.6±5.5 840±80 1.1±0.2 [OIII] 4958.9 17352.1±5.7 820±80 3.4±0.7 [OIII] 5006.9 17520.0±5.7 820±80 10.2±2.0 [NII] 6548.1 22913.0±7.5 650±70 0.8±0.2 Hα 6562.8 22964.4±7.5 840±80 5.8±1.2 [NII] 6583.4 23036.5±7.5 650±70 2.4±0.5 NVSSJ234235−384526 [OII] 3727.5 16829.6±5.0 1100±110 7.7±1.5 Hβ 4861.3 21947.0±5.0 820±60 2.5±0.5 [OIII] 4958.9 22387.6±5.2 820±60 12.5±2.5 [OIII] 5006.9 22604.3±5.2 820±60 37.8±7.6 [OIII] 4958.9 22333.5±5.2 1330±130 5.6±1.1 blue [OIII] 5006.9 22549.7±5.2 1330±130 16.9±3.4 blue Notes.(a)Rest-framewavelength.(b)Observedwavelength.(c)Fullwidthathalfmaximum.(d)Integratedlineflux.(e)Commonfitwith[OIII]with asingleredshiftandlinewidth.(f)Companionsource.Seetextfordetails.(g)Companionsource.Seetextfordetails. A152,page7of28 A&A586,A152(2016) Table3.Emission-linepropertiesoftheCensorssources. Source Line λ a λ b FWHMc Fluxd 0 obs [Å] [Å] [kms−1] [10−16ergs−1cm−2] CEN072 Hβ 4861.3 16662.1±4.0 518±70 7.3±1.6 [OIII] 4958.9 16989.8±4.0 612±40 7.7±1.5 [OIII] 5006.9 17161.1±4.0 612±40 23.3±4.5 [NII] 6548.1 22444.4±5.2 518±70 1.9±0.4 Hα 6562.8 22494.8±5.2 518±70 21.1±4.2 [NII] 6583.4 22565.4±5.2 518±70 5.8±1.2 CEN129 Hβe 4861.3 16637.0±4.0 1107±30 4.4±1.0 [OIII] 4958.9 16964.1±4.0 635±30 11.0±2.2 [OIII] 5006.9 17135.2±4.0 635±30 33.4±6.6 [NII] 6548.1 22408.6±5.2 1107±50 2.8±0.6 Hα 6562.8 22458.9±5.2 1107±50 12.7±2.5 [NII] 6583.4 22529.4±5.2 1107±50 8.4±1.6 CEN134 Hβf 4861.3 16307.9±1.9 230±60 2.3±0.4 [OIII] 4958.9 16635.4±1.9 330±60 11.0±2.2 [OIII] 5006.9 16796.4±1.9 330±60 33.2±6.6 [NII] 6548.1 21964.4±2.5 230±50 1.2±0.2 Hα 6562.8 22013.7±2.5 230±50 9.8±2.0 [NII] 6583.4 22082.8±2.5 230±50 3.7±0.7 Notes.(a) Rest-framewavelength.(b) Observedwavelength.(c) Fullwidthathalfmaximum, correctedforinstrumentalresolution.(d) Integrated lineflux.(e)CommonfitwithHαwithasingleredshiftandlinewidth.(f)CommonfitwithHαwithasingleredshiftandlinewidth. extended emission-line region to the southwest extends along z=2.185±0.001. The radio source is compact with a theaxisbetweenthetworadiolobes. deconvolved size of 0.7(cid:7)(cid:7), and is associated with the optical counterpart. [OIII]λλ4959,5007 is brightin the H band. Hβ is detected 4.1.2. NVSSJ004000−303333 at5.6σ.Inthe K band,Hαand[NII]λλ6548,6583aredetected NVSSJ004000−303333isadoubleradiosourcewithasizeof and strongly blended. Hα also shows a broad component with 17(cid:7)(cid:7) (Fig. 1). With SINFONI we find the [OIII]λλ4959,5007 FWHM ∼ 3500 km s−1. The [SII] doublet is clearly detected. The two components are also strongly blended owing to their doublet and Hβ in the K band at wavelengths that correspond toz = 3.399±0.001.TheHαand[NII]λλ6548,6583linesfall intrinsicwidth(Fig.2).AlllinepropertiesarelistedinTable2. The emission-line region is extended over 1.6(cid:7)(cid:7) × 1.2(cid:7)(cid:7). outsidetheatmosphericwindows.Inthe H band,wedetectthe It is brighter in the center with Σ ∼ (1.0−1.7) × [OII]λ3727doublet.The two lines of the doubletare too close Hα 10−15 ergs−1cm−2 arcsec−2 andfadestowardtheperiphery.We toeachothertobespectrallyresolvedwithourdata(Fig.2).All detectcontinuumemissioncoincidentwiththeemittinggas.The linepropertiesarelistedinTable2. Lineemissionextendsover2.5(cid:7)(cid:7) × 1.5(cid:7)(cid:7)withsurfacebright- [OIII]λ4959,5007 lines show a clear, relatively regular veloc- nesses between Σ[Oiii] ∼ 5 × 10−16 erg s−1 cm−2 arcsec−2 and iatxyisg.raTdhieenltinoefsΔavre∼m3o5r0e knmarrso−w1 atloownagrda nthoerthseoaustth-esaosutt,hwweitsht 3×10−15ergs−1 cm−2 arcsec−2 (Fig.3).Faintcontinuumemis- FWHM ∼ 700−800 km s−1. In the northwest FWHMs are sion is found associated with a knot to the very east of the higher,∼900−1000kms−1. emission-lineregion,andabout1.5(cid:7)(cid:7)southwestfromthecenter, outside the bright line emission. The K-band image of Bryant etal.(2009a)showsaverysimilarcontinuummorphology,like- 4.1.4. NVSSJ030431−315308 wiseatlowsignal-to-noiseratio. NVSSJ030431−315308isasingle,relativelycompactsourceat Thelocalvelocitiesof[OIII]λ5007fallmonotonicallyfrom 9GHzand5.5GHz,withadeconvolvedsizeof1.8(cid:7)(cid:7)inourhigh- the southwest to the northeast with a total gradient of about 300kms−1.Theknotinthefareastshowsanabruptvelocityin- est resolution data at 9 GHz (Fig. 1). The [OIII]λλ4959,5007 creaseof300kms−1 relativetothenearbyblueshiftedgas.The doubletis clearlydetectedin the H bandwith SINFONI andis line widthsare lowerin the north(FWHM= 200−400kms−1) wellfittedwithsingleGaussians(Fig.2).Thesameholdsforthe thaninthesouth(FWHM=700−1000kms−1). Hαand[NII]λλ6583lines.The[SII]doubletisnotdetected.All linepropertiesarelistedinTable2. AtfainterfluxlevelsthanshowninFig.3,butstillabove3σ, Thelineemissionismarginallyspatiallyresolvedwithasize wedetectanothersourceoflineemissionatadistanceofabout of1.5(cid:7)(cid:7)×1.5(cid:7)(cid:7),andaPSFwithFWHM =1.2(cid:7)(cid:7)×1.0(cid:7)(cid:7),thelargest 2(cid:7)(cid:7) to the south from the radio galaxy(about15 kpc at z ∼ 3). in this program (Table B.1). Faint continuum emission is also Theredshiftofthissecondsourceiszsouth = 3.395±0.001,i.e., detected,ataslightlydifferentposition(∼0.5(cid:7)(cid:7)tothewest)from itisblueshiftedby350±90kms−1 relativetotheradiogalaxy. thepeakin[OIII]λ5007surfacebrightness,butatthesamepo- ThissourceisshowninFig.6andisdiscussedinSect.7. sition as the peakof Hα surface brightness.The velocitymaps showtwosmallredshifted(by50−100kms−1)regionsnorthand 4.1.3. NVSSJ012932−385433 southofthecontinuum,anduniformvelocitiesintherestofthe source.Linewidthsarebetween500and1200kms−1andhigher The SINFONI maps of NVSS J012932−385433 are shown inthewesternpartsoftheemission-lineregionassociatedwith in Fig. 3. We find the optical emission lines at redshift thecontinuum. A152,page8of28 C.Colletetal.:Moderatelypowerfulhigh-zradiogalaxies 3e-15 250 1400 1 NNN 111000kkkpppccc 1 NNN 111000kkkpppccc 200 1 NNN 111000kkkpppccc 1200 EEE EEE 150 EEE ] 2e-15 100 1000 [arcsec 0 0 050 0 800 offset -1 1e-15 -1 --15000 -1 460000 -150 -2 -2 -200 -2 200 0 -250 0 -1 0 1 2 -1 0 1 2 -1 0 1 2 2 2 200 2 1200 NNN NNN NNN 111000kkkpppccc 3e-15 111000kkkpppccc 150 111000kkkpppccc 1000 EEE EEE EEE 1 1 1 100 ] 800 [arcsec 0 2e-15 0 50 0 600 offset 1e-15 -050 400 -1 -1 -1 -100 200 -2 0 -2 -150 -2 0 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 2 3e-15 2 200 2 1600 NNN NNN NNN 111000kkkpppccc 111000kkkpppccc 150 111000kkkpppccc 1400 EEE EEE EEE 1 1 1 1200 100 ] 2e-15 [arcsec 0 0 50 0 8100000 offset 1e-15 -050 600 -1 -1 -1 400 -100 200 -2 0 -2 -150 -2 0 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 2 2 150 2 1400 NNN NNN NNN 111000kkkpppccc 111000kkkpppccc 100 111000kkkpppccc 1200 EEE 2e-15 EEE EEE 1 1 1 50 1000 ] [arcsec 0 0 0 0 800 offset 1e-15 --15000 460000 -1 -1 -1 -150 200 -2 0 -2 -200 -2 0 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 400 800 2 NNN 111000kkkpppccc 8e-16 2 NNN 111000kkkpppccc 300 2 NNN 111000kkkpppccc 700 EEE EEE EEE 200 600 ] 1 6e-16 1 1 offset[arcsec -10 4e-16 -10 -0110000 -10 345000000 -200 200 2e-16 -2 -2 -300 -2 100 0 -400 0 -2 -1 0 1 2 3 -2 -1 0 1 2 3 -2 -1 0 1 2 3 offset[arcsec] offset[arcsec] offset[arcsec] Fig.3. Maps of [OIII] surface brightness (left), velocity (center), and FWHMline width (right) of our nine sources (from top to bottom). All mapsare4(cid:7)(cid:7)×4(cid:7)(cid:7)wide,exceptforNVSSJ144932−385657andNVSSJ210626−314003,wheretheyare5(cid:7)(cid:7)×5(cid:7)(cid:7)wide.Thecircleinthebottomleft representstheFWHMsizeoftheseeingdisk.Contoursmarkthecontinuumwheredetected.Continuumlevelsbeginat3σandthenincreasein stepsof1σ.ThesolidblacklineinthevelocitymapsindicatestheaxisoftheradioemissionfromourATCAdata,orfromBrodericketal.(2007) ifthesourceiscompact.Numbersgivehalfthelargestangularsizeinarcsec. 4.1.5. NVSSJ144932−385657 In the K band, Hα and [NII]λ6583 are narrow enough not to be blended. FWHM = 350 km s−1 for Hα, and the width of NVSSJ144932−385657hasoneofthelargestradiosourcesin [NII]λ6583isdominatedbythespectralresolution. our sample; the lobes are offset by 7.5(cid:7)(cid:7) relative to each other. We find the [OIII] line at z = 2.149 ± 0.001. In the H band, NVSS J144932−385657 has a very extended emission- we detect the [OIII]λλ4959,5007 doublet and Hβ (Fig. A.1). line region of nearly 4(cid:7)(cid:7) (∼30 kpc at z ∼ 2) along a A152,page9of28 A&A586,A152(2016) 2 2 200 2 900 NNN NNN NNN 800 111000kkkpppccc 111000kkkpppccc 150 111000kkkpppccc 1 EEE 2e-15 1 EEE 1 EEE 700 ec] 100 600 arcs 0 0 50 0 500 offset[ 1e-15 0 340000 -1 -1 <0.7" -1 200 -50 CEN 072 100 -2 0 -2 -100 -2 0 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 2 4e-15 2 200 2 800 NNN NNN NNN 111000kkkpppccc 150 700 EEE EEE EEE 1 3e-15 1 100 1 600 ec] 50 500 [arcs 0 2e-15 0 2.5" 0 0 400 et offs -50 300 -1 1e-15 -1 -100 -1 200 -150 100 CEN 129 -2 0 -2 -200 -2 0 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 2 2e-15 2 60 2 700 NNN NNN 40 NNN 600 EEE 1.6e-15 EEE 20 EEE 1 1 1 arcsec] 0 1.2e-15 0 --04200 0 450000 [ offset 8e-16 --8600 230000 -1 -1 -1 4e-16 9" -100 CEN 134 21. -120 100 -2 0 -2 -140 -2 0 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 offset[arcsec] offset[arcsec] offset[arcsec] Fig.4.Mapsof[OIII]surfacebrightness(left),velocity(middle),andFWHMlinewidth(right)ofthethreesourcesfromtheCENSORSsample. Allmapsare4(cid:7)(cid:7)×4(cid:7)(cid:7)oneachside.TheellipseinthebottomcornershowstheFWHMsizeoftheseeingdisk.Contoursmarkthestellarcontinuum emission,detectedinthesamedatacube,beginningatthe3σlevelandincreasingbystepsof3σ. 1.4e−17 spectrum [OIII]5007 (a) 3e−17 [OIII]5007 (b) fit 1.2e−17 nightskylines 2.5e−17 1e−17 −1Å) 8e−18 2e−17 −2 1.5e−17 m 6e−18 [OIII]4959 [OIII]4959 c −1s 4e−18 1e−17 g Hβ (er 2e−18 Hβ 5e−18 x u Fl 0 0 −2e−18 −5e−18 −4e−18 −1e−17 16400 16600 16800 17000 17200 17400 16400 16600 16800 17000 17200 17400 Wavelength(Å) Wavelength(Å) Fig.5.Spectraextractedfromthesubregions ofNVSSJ002431−303330 showninFig.2.a)Spectrumfromthecontinuum region,withbroad [OIII]lines(FWHM∼1150kms−1).b)Spectrumofthequiescentgas,withmuchmorenarrowlines(FWHM∼450kms−1). northeast-southwest axis (Fig. 3). We identify two parts: a The velocity offset between the two regions is about large, elongated region, which coincides with the continuum 800kms−1.Whilethecompactnortheasternparthasauniform and extends over another 2(cid:7)(cid:7) toward the southwest, and a velocityfieldwitharedshiftofaboutv ∼ 400kms−1,thekine- fainter,smallerregioninthenorthwest.Surfacebrightnessesof maticsintheveryextendedsouthwesternregionaremorecom- [OIII]λ5007 are between 1 × 10−16 ergs−1cm−2arcsec−2 and plex with a maximum blueshift of about −400 kms−1, before 10 × 10−16 ergs−1cm−2arcsec−2. The northwestern region is thevelocitiesapproachthesystemicredshiftagainatthelargest neartheedgeoftheSINFONIdatacube,anditisthereforepos- radii. Line widthsareFWHM = 200−500 kms−1 in the south- siblethatitextendsfartherbeyondthefieldofviewofourdata. west,andupto800kms−1inthenortheast.Inthesouthwestern Bothemission-lineregionsarealignedwiththeaxisoftheradio regionwefindelevatedwidthsinparticularnearthecontinuum jet. andatabout1.5(cid:7)(cid:7),adistanceassociatedwiththesuddenvelocity shiftfrom−400kms−1 tothesystemicvelocity. A152,page10of28

Description:
in the most powerful radio galaxies at high redshift (Nesvadba et al. 2006, 2008a). This is similar to the typical total gas masses in massive, intensely
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.