ebook img

Kazhdan's Property PDF

488 Pages·2008·2.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kazhdan's Property

This page intentionally left blank Kazhdan’sProperty(T) Property(T)isarigiditypropertyfortopologicalgroups,firstformulatedby D.Kazhdaninthemid-1960swiththeaimofdemonstratingthatalargeclassof latticesarefinitelygenerated.LaterdevelopmentshaveshownthatProperty(T)plays animportantroleinanamazinglylargevarietyofsubjects,includingdiscrete subgroupsofLiegroups,ergodictheory,randomwalks,operatoralgebras, combinatorics,andtheoreticalcomputerscience. Thismonographoffersacomprehensiveintroductiontothetheory.Itdescribesthe twomostimportantpointsofviewonProperty(T):thefirstusesaunitarygroup representationapproach,andthesecondafixedpointpropertyforaffineisometric actions.Viathesetheauthorsdiscussarangeofimportantexamplesandapplications toseveraldomainsofmathematics.Adetailedappendixprovidesasystematic expositionofpartsofthetheoryofgrouprepresentationsthatareusedtoformulate anddevelopProperty(T). Bachir BekkaisProfessorofMathematicsattheUniversitédeRennes1,France. Pierre de la HarpeisProfessorofMathematicsattheUniversitédeGenève, Switzerland. Alain ValetteisProfessorofMathematicsattheUniversitédeNeuchâtel, Switzerland. NEWMATHEMATICALMONOGRAPHS AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress. Foracompleteserieslistingvisithttp://www.cambridge.org/uk/series/sSeries.asp?code=NMM 1 M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductiveGroups 2 J.B.GarnettandD.E.MarshallHarmonicMeasure 3 P.M.CohnFreeIdealRingsandLocalizationinGeneralRings 4 E.BombieriandW.GublerHeightsinDiophantineGeometry 5 Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6 S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7 A.ShlapentokhHilbert’sTenthProblem 8 G.O.MichlerTheoryofFiniteSimpleGroups 9 A.BakerandG.WüstholzLogarithmicFormsandDiophantineGeometry 10 P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11 B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) Kazhdan’s Property (T) BACHIR BEKKA, PIERRE DE LA HARPE AND ALAIN VALETTE CAMBRIDGEUNIVERSITYPRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB28RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521887205 © B. Bekka, P. de la Harpe and A. Valette 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-39377-8 eBook (EBL) ISBN-13 978-0-521-88720-5 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Listoffigures pageix Listofsymbols x Introduction 1 HistoricalIntroduction 4 PART I: KAZHDAN’S PROPERTY (T) 25 1 Definitions,firstconsequences,andbasicexamples 27 1.1 FirstdefinitionofProperty(T) 27 1.2 Property(T)intermsofFell’stopology 32 1.3 Compactgenerationandotherconsequences 36 1.4 Property(T)forSL (K),n≥3 40 n 1.5 Property(T)forSp (K),n≥2 50 2n 1.6 Property(T)forhigherrankalgebraicgroups 58 1.7 Hereditaryproperties 60 1.8 Exercises 67 2 Property(FH) 73 2.1 AffineisometricactionsandProperty(FH) 74 2.2 1-cohomology 75 2.3 Actionsontrees 80 2.4 ConsequencesofProperty(FH) 85 2.5 Hereditaryproperties 88 2.6 Actionsonrealhyperbolicspaces 93 2.7 Actionsonboundariesofrank1symmetricspaces 100 2.8 Wreathproducts 104 2.9 Actionsonthecircle 107 2.10 Functionsconditionallyofnegativetype 119 v vi Contents 2.11 AconsequenceofSchoenberg’sTheorem 122 2.12 TheDelorme–GuichardetTheorem 127 2.13 Concordance 132 2.14 Exercises 133 3 Reducedcohomology 136 3.1 Affineisometricactionsalmosthaving fixedpoints 137 3.2 AtheorembyY.Shalom 140 3.3 Property(T)forSp(n,1) 151 3.4 Thequestionoffinitepresentability 171 3.5 OtherconsequencesofShalom’sTheorem 175 3.6 Property(T)isnotgeometric 179 3.7 Exercises 182 4 Boundedgeneration 184 4.1 BoundedgenerationofSL (Z)forn ≥ 3 184 n 4.2 AKazhdanconstantforSL (Z) 193 n 4.3 Property(T)forSL (R) 201 n 4.4 Exercises 213 5 AspectralcriterionforProperty(T) 216 5.1 Stationarymeasuresforrandomwalks 217 5.2 LaplaceandMarkovoperators 218 5.3 Randomwalksonfinitesets 222 5.4 G-equivariantrandomwalksonquasi-transitive freesets 224 5.5 Alocalspectralcriterion 236 5.6 Zuk’scriterion 241 (cid:1) 5.7 GroupsactingonA -buildings 245 2 5.8 Exercises 250 6 SomeapplicationsofProperty(T) 253 6.1 Expandergraphs 253 6.2 Normofconvolutionoperators 262 6.3 ErgodictheoryandProperty(T) 264 6.4 Uniquenessofinvariantmeans 276 6.5 Exercises 279 7 Ashortlistofopenquestions 282 Contents vii PART II: BACKGROUND ON UNITARY REPRESENTATIONS 287 A Unitarygrouprepresentations 289 A.1 Unitaryrepresentations 289 A.2 Schur’sLemma 296 A.3 TheHaarmeasureofalocallycompactgroup 299 A.4 Theregularrepresentationofalocallycompactgroup 305 A.5 Representationsofcompactgroups 306 A.6 Unitaryrepresentationsassociatedtogroupactions 307 A.7 Groupactionsassociatedtoorthogonalrepresentations 311 A.8 Exercises 321 B Measuresonhomogeneousspaces 324 B.1 Invariantmeasures 324 B.2 Latticesinlocallycompactgroups 332 B.3 Exercises 337 C FunctionsofpositivetypeandGNSconstruction 340 C.1 Kernelsofpositivetype 340 C.2 Kernelsconditionallyofnegativetype 345 C.3 Schoenberg’sTheorem 349 C.4 Functionsongroups 351 C.5 Theconeoffunctionsofpositivetype 357 C.6 Exercises 365 D UnitaryRepresentationsoflocallycompact abeliangroups 369 D.1 TheFouriertransform 369 D.2 Bochner’sTheorem 372 D.3 Unitaryrepresentationsoflocallycompactabelian groups 373 D.4 Localfields 377 D.5 Exercises 380 E Inducedrepresentations 383 E.1 Definitionofinducedrepresentations 383 E.2 Somepropertiesofinducedrepresentations 389 E.3 Inducedrepresentationswithinvariantvectors 391 E.4 Exercises 393 viii Contents F WeakcontainmentandFell’stopology 395 F.1 Weakcontainmentofunitaryrepresentations 395 F.2 Felltopologyonsetsofunitaryrepresentations 402 F.3 Continuityofoperations 407 ∗ F.4 TheC -algebrasofalocallycompactgroup 411 F.5 Directintegralsofunitaryrepresentations 413 F.6 Exercises 417 G Amenability 420 G.1 Invariantmeans 421 G.2 Examplesofamenablegroups 424 G.3 Weakcontainmentandamenability 427 G.4 Kesten’scharacterisationofamenability 433 G.5 Følner’sproperty 440 G.6 Exercises 445 Bibliography 449 Index 468

Description:
Property (T) is a rigidity property for topological groups, first formulated by D. Kazhdan in the mid 1960's with the aim of demonstrating that a large class of lattices are finitely generated. Later developments have shown that Property (T) plays an important role in an amazingly large variety of s
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.