ebook img

Kant's Philosophy of Mathematics, Volume I: The Critical Philosophy and Its Roots PDF

332 Pages·2020·2.917 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kant's Philosophy of Mathematics, Volume I: The Critical Philosophy and Its Roots

KANT’S PHILOSOPHY OF MATHEMATICS Volume I: The Critical Philosophy and Its Roots The late s saw the emergence of new philosophical interest in Kant’s philosophy of mathematics, and since then this interest has developed into a major and dynamic field of study. In this state-of- the-art survey of contemporary scholarship on Kant’s mathematical thinking, Carl Posy and Ofra Rechter gather leading authors who approachitfrommultipleperspectives,engagingwithtopicsinclud- ing geometry, arithmetic, logic, and metaphysics. Their essays offer fine-grained analysis of Kant’s philosophy of mathematics in the context of his Critical philosophy, and also show sensitivity to its historical background. The volume will be important for readers seeking a comprehensive picture of the current scholarship about the development of Kant’s philosophy of mathematics, its place in his overall philosophy, and the Kantian themes that influenced mathematicsand itsphilosophy after Kant.   is Professor Emeritus of Philosophy at the Hebrew University of Jerusalem. He is editor of Kant’s Philosophy of Math- ematics: Modern Essays () and has written extensively on the philosophy of mathematicsas well as on Kant.   is a member of the philosophy department at Tel AvivUniversity.HerworkfocusesonKantwithinthephilosophyof mathematics and its history, and she has published a number of papers onKant’sphilosophy ofarithmetic. (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17) (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17) KANT’S PHILOSOPHY OF MATHEMATICS Volume I: The Critical Philosophy and Its Roots   CARL POSY HebrewUniversityofJerusalem OFRA RECHTER TelAvivUniversity (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17) UniversityPrintingHouse,Cambridge,UnitedKingdom OneLibertyPlaza,thFloor,NewYork,,USA WilliamstownRoad,PortMelbourne,,Australia –,rdFloor,Plot,SplendorForum,JasolaDistrictCentre,NewDelhi–,India AnsonRoad,#–/,Singapore CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/ :./ ©CambridgeUniversityPress Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished PrintedandboundinGreatBritainbyClaysLtd,ElcografS.p.A. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ----Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17) Jaakko Hintikka (–) founded the modern study of Kant’s philosophy of mathematics. His early papers spurred the revival of the field as we know it. His work inspired us all; his interest and generosity encouraged us all. He was active in the field until his very last days. We are privileged that the present volume includes his last publication on our topic. We dedicate this volume to his memory. (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17) (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17) Contents List of Contributors page ix Acknowledgements x Introduction       Kant and Mendelssohn on the Use of Signs in Mathematics  Katherine Dunlop  Of Griffins and Horses: Mathematics, Metaphysics, and Kant’s Critical Turn  Carl Posy  Kant on Mathematics and the Metaphysics of Corporeal Nature: The Role of the Infinitesimal  Daniel Warren        Kant’s Theory of Mathematics: What Theory of What Mathematics?  Jaakko Hintikka  Singular Terms and Intuitions in Kant: A Reappraisal  Mirella Capozzi  Kant and the Character of Mathematical Inference  Desmond Hogan vii (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17) viii Contents        Kant on Parallel Lines: Definitions, Postulates, and Axioms  Jeremy Heis  Continuity, Constructibility, and Intuitivity  Gordon Brittan  Space and Geometry in the B Deduction  MichaelFriedman        Arithmetic and the Conditions of Possible Experience  Emily Carson  Kant’s Philosophy of Arithmetic: An Outline of a New Approach  Daniel Sutherland  Kant on ‘Number’  W. W. Tait References to Works by Kant  Bibliography  Index  (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17) Contributors  ,DepartmentofPhilosophy,MontanaStateUniversity  , Department of Philosophy, University of Rome “La Sapienza”  , Department of Philosophy, McGill University  , Department of Philosophy, University of Texas at Austin  , Department of Philosophy, Stanford University  ,DepartmentofLogicandPhilosophyofScience,University of California at Irvine  , Late of the Departments of Philosophy at the Uni- versity of Helsinki, Boston University, and of the Academy of Finland  , Department of Philosophy, Princeton University  , Department of Philosophy, the Hebrew University of Jerusalem  , Department of Philosophy, University of Illinois at Chicago . . , Department of Philosophy, University of Chicago  ,DepartmentofPhilosophy,theUniversityofCalifornia at Berkeley ix (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17) Acknowledgements A conference in March of  brought together a lively group of researchers on Kant’s philosophy of mathematics. Discussions at that conference planted the idea of producing this two-volume collection. The Israel Science Foundation, the van Leer Jerusalem Institute, and the EinsteinCenter attheHebrewUniversityco-sponsoredtheconference.It tookplaceoverthecourseoffourdaysatthevanLeerJerusalemInstitute. All the essays collected here were composed especially for this volume. Some authors submitted their contributions early on in the editorial process andsomelater.We aregrateful to alltheauthors fortheircooper- ation throughout this process. JaakkoHintikkawasthefirstto submithiscontribution,andhe kept a lively andencouraging interest in the project.We are grateful to Professor Ghita Holmström-Hintikka for permission to publish posthumously the essay he so cared about in this volume, as he wished. Grant #/ of the Israel Science Foundation supported Carl Posy during the editing of this volume and the writing of the “Introduction”. TheUniversitätbibliothekLeipziggenerouslygavethepermissiontouse imagesofKant’shandwrittenlettertoAugustRehebrg()thatappear on the cover of this volume. We are grateful to Steffen Hoffmann for finding the original manuscript in the library’s Bereich Sondersammlun- gen, and to Susanne Dietel for dealing with the digital images and handling the copyright. TheeditorswouldliketothankHilaryGaskinofCambridgeUniversity Pressforhersupportandguidancethroughtheproductionofthisvolume. WeoweaspecialdebtofthankstoDavidKashtanforhisvaluablehelpin editing it. x (cid:19)(cid:6)(cid:12)(cid:11)(cid:17)(cid:10)(cid:8)(cid:7)(cid:1)(cid:15)(cid:14)(cid:12)(cid:11)(cid:14)(cid:8)(cid:1)(cid:6)(cid:21)(cid:1)(cid:2)(cid:5)(cid:13)(cid:6)(cid:16)(cid:11)(cid:7)(cid:9)(cid:8)(cid:1)(cid:4)(cid:14)(cid:11)(cid:20)(cid:8)(cid:16)(cid:17)(cid:11)(cid:18)(cid:21)(cid:1) (cid:16)(cid:8)(cid:17)(cid:17)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.