ebook img

Jets and Radio Loud AGN PDF

33 Pages·2010·11.57 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Jets and Radio Loud AGN

ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–1 Jets and Radio Loud AGN M87:ImageCredit&Copyright:AdamBlock,Mt.LemmonSkyCenter,U.Arizona ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–7 Outline Jetsarebroadbandemitters! Firstconsidertheradioband. Thenmoveonto higherenergies. Mostimportantjetemissionprocessintheradioband: synchrotronradiation. Synchrotron-Radiation(=Magnetobremsstrahlung): Radiationemittedby relativisticelectronsinamagneticfield. Outlineforthefollowingdiscussionoftheoryofsynchrotron-radiation: Shortand qualitativedescription. SeeRybicki&Lightman(1979,Chapters3,6,and7). 1.Motionofelectronsinmagneticfields, 2.Lookatemissionfromasingleelectron, 3.Considerelectrondistributionandopacityeffectstoobtainthefinalspectrum. 4.Considerprocessestotransfertheprimarysynchrotronemissiontothehigh- Credit:X-ray:NASA/CXC/MIT/H.Marshalletal.Radio:F.Zhou,F.Owen(NRAO),J.Biretta(STScI) estenergies(ifneeded). Optical:NASA/STScI/UMBC/E.Perlmanetal. SynchrotronRadiation 1 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–6 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–8 AGN Jets Relativistic Motion Movingelectroninmagneticfield(E=0):InGaussianunits,theLorentz-Forceis dp e m v = v B where p= e =γm v (10.1) dt c × 1 β2 e − where p 1 v γ= andwhere β= (10.2) 1 β2 c − Thereforetheaccelerationis p dv e = v B (10.3) dt cγm × e Sincev BisalwaysperpendiculartovandB,thecomponentofvalongtheB-fielddoesnot × change.ThisconstantperpendicularforceresultstoahelicalmotionaroundtheB-fieldlinewith thefrequency eB ω ωB=γm c= γL (10.4) e wheretheLarmorfrequency(alsoCyclotronfrequency,gyrofrequency) (M87;Perlmanetal.,2002) eB ω =2πν = (10.5) L L m c Spectralshapeofjetemissionisapowerlaw= synchrotronradiation e ⇒ Typicalpowerlawindex:α 0.65betweenradioandoptical. ∼ Introduction 5 SynchrotronRadiation 2 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–9 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–11 Numerical values Radiated Energy, II Numerically,theLarmorfrequencyis νL =2.8B1GMHz (10.6) ∆θ r Theradiusoftheorbit(Larmorradius)is 1/γ 1 γv E B − RL = ω⊥ ∼2AU·1GeV· 10 6G (10.7) Observer L (cid:18) − (cid:19) 1 2 1 E B − 300km (10.8) ∼ ·1GeV· 1G (cid:18) (cid:19) i.e.,smalloncosmicalscales (afterFig.6.2ofRybicki&Lightman,1979) Unitsandordersofmagnitude: Relativisticelectrons:radiationisforwardbeamedintoconewithopeningangle∆θ 1/γ.Inthe ••1thGet=yp1ic0a−l4BT-,fieldintheinterstellarmediumis∼10−6G, Electronframeofrest:beampassesobserverduringtime ∼ •closetothecentersofAGNB∼1G. ∆t=∆θ =mecγ 2 = 2 (10.12) ω eB γ ω B L SynchrotronRadiation 3 SynchrotronRadiation 5 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–10 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–11 Radiated Energy, I Radiated Energy, III MotionaroundB-fieldlines:acceleration. Butacceleratedchargesemitradiation(Larmor’sformula): dW q2v˙2 2q2v˙2 ∆θ P = dt =4πc3 sin2θdΩ= 3c3 (10.9) r Z Assumptionofisotropicvelocitydistribution,relativisticelectrons(β 1),andamessyderiva- −→ 1/γ tion(seeRybicki&Lightman)yieldsfortheaverageemittedpowerofanelectroninaB-field 4 hPemi=3β2γ2cσTUB (10.10) 1 2 Observer withUB = B2/8π,themagneticfieldenergydensity,andσT = 8πe2/(3m2ec4),theThomson crosssection. Note:SinceE=γmec2=⇒P ∝E2UB. Note:Pem ∝ σT ∝ m−e2=⇒Synchrotronradiationfromchargedparticleswithlargermass(pro- (afterFig.6.2ofRybicki&Lightman,1979) tons,...)isnegligible. Observerframe:Dopplereffect!(electronisclosertousatendoftimeinterval) Note:Life-timeofparticlesofenergyEis = observedpulseduration: ⇒ t1/2∼EP ∝B12E =5s(cid:18)1BT(cid:19)−2γ−1=1.6×107years(cid:18)10B−7T(cid:19)−2γ−1 (10.11) τ =(cid:18)1−vc(cid:19)∆t=(1−β)∆t (10.13) SynchrotronRadiation 4 SynchrotronRadiation 6 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–12 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–14 Radiated Energy, IV Nonthermal Synchrotron Radiation, II Forγ 1,i.e.,β =v/c 1 ≫ ∼ 1 v2 =1 =(1+β)(1 β) 2(1 β) (10.14) power−law superposition Assumethatphotonsareonly γ2 − c2 − ≈ − emittedatthecharacteristicfre- suchthat τ =(1−β)∆t= 12 1−vc22 ∆t= γ21ω (10.15) log flux iesnpldeeicvctirtdroaunal qthuiseinscaygoγo2dνLap(pEroqx.im10at.i1on6)s.incethe L (cid:18) (cid:19) spectrumemittedbyanelectronhasa strongpeakatthatfrequency Thusthecharacteristicfrequencyoftheradiationisgivenby Therefore log frequency ω =γ2ω = eB E 2 (10.16) after(Shu,1991,Fig.18.4) φν(γ)∼δ(ν−γ2νL) (10.21) c L m c m c2 e (cid:18) e (cid:19) Thereforetheemittedpoweratfrequencyν (=spectrum)is Shortgyrationpulses= broadspectrum(Heisenberg: ∆ω∆t > 1)withthe ⇒ highestfrequencyintheregimeofν =ω /2π. ∞ c c P = P (γ) n(γ)dγ (10.22) ν ν h i Z1 SynchrotronRadiation 7 SynchrotronRadiation 9 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–13 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–15 Nonthermal Synchrotron Radiation, I Nonthermal Synchrotron Radiation, III Foranelectrondistribution,n(γ),theemittedspectrumisfoundbyproperlyweightingcontribu- Therefore,fortheelectronpower-lawdistributionEq.10.18 tionsofelectronswithdifferentenergies: 4 Pν= ∞Pν(γ)n(γ)dγ (10.17) Pν=Z1∞3β2γ2cσTUBδ(ν−γ2νL)n0γ−pdγ (10.23) Z1 sinceγ≫1:β≈1 Mostimportantcase:nonthermalsynchrotronradiation,whereelectronshaveapower-lawdistri- bution n(γ)dγ=n0γ−pdγ . (10.18) substitutingν′=γ2νL,i.e.,dν′==AνLZ21γ∞dγγ2−pδ(ν−γ2νL)dγ (10.24) ThespectralenergydistributionPνofanelectronwithtotalenergyE=γmec2canbewrittenas =BZνL∞γ1−pδ(ν−ν′)dν′ (10.25) 4 Pν(γ)=3β2γ2cσTUBφν(γ) (10.19) sinceγ=(ν′/νL)1/2,wefind wherethespectralshapeisdescribedbyafunctionφν(γ)with P =2cσ n UB ν −p−21 (10.26) ν 3 T 0ν ν φν(γ)dγ=1 . (10.20) L (cid:18) L(cid:19) Z Thespectrumofanelectronpower-lawdistributionisapower-law! SynchrotronRadiation 8 SynchrotronRadiation 10 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–16 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–18 Summary of Synchrotron Radiation Process Polarization of Synchrotron Radiation Whatwehavedonesofar: 1.Motionoftheelectron 2.Radiationcharacteristicfromrelativisticmotion 3.Doppler-effect 4.Integrationoverelectrondistribution Itispossibletodothesameanalyticallywithoutanyapproximations. Thisistoo complicatedtobedonehere. Seethereferencesfordetails. (Rybicki&Lightman,1979,Fig.6.7) Exactcalculationneedstotakeintoaccountpolarizationofsynchrotronradia- tion. SynchrotronRadiation 11 SynchrotronRadiation 13 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–17 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–19 Synchrotron Self-Absorption Polarization of Synchrotron Radiation Resultofexactcalculationforbothpolarizationdirections: afterShu(1991,Fig.18.6) Atlowν:synchrotronemitting P √3e3B F(ν/ν ) G(ν/ν ) electronscanabsorbsynchrotron k = c − c (10.27) P 2 mc2 F(ν/ν )+G(ν/ν ) photons: c c ν−(p−1)/2 (cid:18) ⊥(cid:19) (cid:18) (cid:19) x synchrotronself-absorption. where u log fl ν5/2 F(x)=x ∞K5/3(y)dy (10.28) Zx G(x)=xK (x) (10.29) 2/3 andK aremodifiedBessel-functionsofi-thorder log frequency i Forapowerlawelectrondistribution∝E−p,totalspectralshapeis: Polarizationallowstomeasurethemagneticfielddirection Forlowfrequencies:Pν∝B−1/2ν5/2 (independentofp!) Forlargefrequencies:Pν∝ν−(p−1)/2 Oneoftenusesthetermsopticallythick/thintodescribetheabsorbed/unabsorbedpartofasynchrotron spectrum.Theturnoverdescribestheτ = 1surface,e.g.,ofajet.Ingeneral:τ R(R:sizeoftheemit- ∝ tingregion).Morecompactregionsareopticallythick,moreextendedregionsareopticallythin. SynchrotronRadiation 12 SynchrotronRadiation 14 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–21 10–19 Polarization of Synchrotron Radiation Thedegreeofpolarizationisdefinedby P P degreeofpolarization:= ⊥− k (10.34) P +P ⊥ k Forapowerlawelectrondistribution: P P J p+1 ⊥− k = G = (10.35) P +P J p+7/3 F ⊥ k Forp=2.5thedegreeofpolarizationis 70%. Thisisverylarge!! ∼ Caveat:Faraday-rotationandB-fieldinhomogeneitiescandecreasethedegreeofpolarization. SynchrotronRadiation 16 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–20 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–22 Polarization of Synchrotron Radiation Introduction, I Thetotalemittedpowerformonoenergeticelectronsis ThepowerfulradiogalaxyCygnusAatz =0.057(d=230Mpc). P(ν)=P (ν)+P (ν) F(ν) (10.30) k ⊥ ∝ Asbefore,thetotalemittedspectrumisfoundbyintegratingovertheelectron energydistribution. Forapower-law: P (ν) √3 e3B JF JG 2ν −(p−1)/2 Pk(ν) = 2 n0m c2 J −+J 3ν (10.31) (cid:18) ⊥ (cid:19) (cid:18) (cid:19) e (cid:18) F G(cid:19)(cid:18) L(cid:19) where 2(p+1)/2 p 19 p 19 J = Γ + Γ (10.32) F p+1 4 12 4−12 (cid:16)p 7 (cid:17) (cid:16)p 1 (cid:17) JG =2(p−3)/2Γ 4+12 Γ 4−12 (10.33) Radio(VLA:6cm);Credit:NRAO/AUI (cid:16) (cid:17) (cid:16) (cid:17) Size: 2.2arcmin 600000ly,abouteighttimesthesizeofthemilkyway! Γ(x)= 0∞t−xe−tdtistheGamma-function. ∼ Radiom∼orphology: Core–Jets–Hotspots–Lobes R SynchrotronRadiation 15 Radio-LoudAGN:Classification 1 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–22 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–24 Introduction, II Classification, I ThepowerfulradiogalaxyCygnusAatz =0.057(d=230Mpc). Atarcsecresolution,mostradio-loudAGNare unresolved! Butgreatvarietyinspectralshape. Condonetal.(1998);Kuehretal.(1981) X-Ray(Chandra:0.2keV–8keV);Credit:NASA/UMD/A.Wilsonetal. Size: 2.2arcmin 600000ly,abouteighttimesthesizeofthemilkyway! ∼ ∼ Radiomorphology: Core–Jets–Hotspots–Lobes X-Raymorphology: Nucleus–Cavity–Hotspots Radio-LoudAGN:Classification 2 Radio-LoudAGN:Classification 4 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–25 Classification, II NGC1275:extendedsteep-spectrumemissionpluscompactself-absorbednucleus • 3C123:3C123:opticallythinatallplottedfrequencies • 3C48:self-absorbedbelow100MHz • 3C454.3:superpositionofmanyjetregionswhichbecomeopaqueatdifferentfrequencies • (flat-spectrumradioquasar) FornaxA:Radio(VLA)overlaidonoptical(STScI/POSS-II);Credit:NRAO/AUIandJ.M.Uson Radio-LoudAGN:Classification 5 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–26 Classification, III Classificationbasedonmorphologyandradiospectrum: 1.Powerfuldouble-lobedradiogalaxieswithhotspotsandasteepradiospec- trumfallingtowardhigherfrequencies(Fanaroff-RileyclassII,FRII) 2.Weakersteep-spectrum,double-lobedradiogalaxieswithoutleading hotspots(FRItypes) 3.Core-dominatedflat-spectrumsources(Blazars: quasarsandBLLacobjects) 4.Compactsteep-spectrumsources(CSSsources)andgigahertz-peaked spectrumsources(GPSsources);nolarge-scaleradiostructure;morpholog- icalclassificationterm: compactsymmetricobjects(CSOs)orcompactdou- bles Observingtechniqueandfrequencystronglyaffectssamplecomposition(e.g.,low-frequencyflux- densitylimitedsurveystendtoselectsteep-spectrumsources.Flat-spectrumsourcesareclas- sicaltargetsforVery-Long-BaselineInterferometry(VLBI)observations,whicharesensitiveto compactemission. Radio-LoudAGN:Classification 6 Fanaroff-RileyType1: asymmetric jetswithwideopeningangleendingin plumes M84(3C272.1)(Laing&Bridle,1987): VLA4885MHz,134′′ × 170′′;seealso www.jb.man.ac.uk/atlas/other/3C272P1.html A.Bridle,www.cv.nrao.edu/~abridle/images.htm Fanaroff-RileyType2: powerfullobedominateddoubles;jetsoftenone-sided ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–30 RadioInterferometry: Longerbaselinesandhigherfrequenciesyieldhigherresolution Classification, VII polarizationintwo-sidedjet sources(FR1): upto40% SynchrotronRadiation ⇒ B-fieldorientation: closetocore: B jetaxis • k awayfromcore( 10%jet • ∼ length): B jetaxis ⊥ B-fieldcanchangeorientationagainin knots (B-fieldconfigurationinIC4296; Killeen,Bicknell&Ekers,1986, Fig.25b) Radio-LoudAGN:Classification 10 ImagecourtesyofMPIfR,NRAO/AUIandEarthimagecourtesyoftheSeaWiFSProjectNASA/GSFCandORBIMAGE ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–33 Multifrequency VLBI Observations, I Athigherfrequencies 1.theangularresolutionimproves 2.thestructurechanges: differentparts ofthejetdominatetheemissionat differentfrequencies(superposition toaflatspectrum) polarizationinone-sidedjetsources(FR2): similar 3.emissionshowsupinthecentral toFR1,i.e.,40%andhigher emissiongap;spectralindexα > 2.5 noselfabsorption ⇒ B-fieldorientationinFR2: paralleltojetaxis 4.theabsorptioniscausedbyfree- throughoutthejet freeabsorptioninthecircumnuclear torus;athighfrequencies,thetorus TheTwin-JetinNGC1052observedwiththeVLBA becomestransparent (E-fieldconfigurationinNGC6251,note:B-fieldisperpendicularto E-field!;Perley,Bridle&Willis,1984,Fig.17) at4frequencies;Image:M.Kadler Kamenoetal.(2001);Kadleretal.(2004) Radio-LoudAGN:Classification 13 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–34 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–36 Multifrequency VLBI Observations, II Flat-Spectrum Radio Sources: Blazars Movie: SpinningthedialonNGC1052 Almostallthefluxdensityisconcentrated withinafewmilliarcseconds-sizecompact jet! ImageCourtesy:MOJAVE Imagecourtesy:U.Bach,MPIfR “Roughlyequalnumbersofsteep-spectrumex- 0716+714,BLLacobjectatredshiftz = 0.3 tendeddouble-lobedsourcesandflat-spectrum (Nilssonetal.,2008) Highlyvariable,coredominatedobject objectsthatareunresolvedonarcsecscales.” “Fried-egg”morphology–reallytheend-on (Zensus,1997) http://www.sternwarte.uni-erlangen.de/~kadler/movies/zoom_1052.avi viewofaradiolobe? Radio-LoudAGN:Classification 14 Radio-LoudAGN:Classification 16 ACMAVDLELIMGIAISEFERAIDNEIRRIDCONAXALE 10–37 Superluminal Motion, I VLBIresolution1mas 3C111: Apparentspeedofjet: 5c ∼ Superluminalmotion: Theappar- entvelocitiesofjetfeatures(“blobs”) measuredinmanyAGNjetsoften exceedthespeedoflight. Firstdiscoveredin1971in3C279 (Cohenetal.,1971;Whitneyetal.,1971). Kadleretal.(2008) VLAresolution 1arcsec ∼ JetPropagation 1

Description:
ESII. C. M. LMV. A. AI. AD. R. E. L G. E. 10–1. Jets and Radio Loud AGN Short time scales and high γ-ray luminosities provide and independent
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.