ebook img

IV. Mass-temperature relation of the bright cluster sample PDF

17 Pages·2016·0.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IV. Mass-temperature relation of the bright cluster sample

A&A592,A4(2016) Astronomy DOI:10.1051/0004-6361/201526883 & (cid:2)c ESO2016 Astrophysics Special feature TheXXLSurvey:Firstresults The XXL Survey (cid:2),(cid:2)(cid:2) IV. Mass-temperature relation of the bright cluster sample M.Lieu1,G.P.Smith1,P.A.Giles2,F.Ziparo1,B.J.Maughan2,J.Démoclès1,F.Pacaud3,M.Pierre4,C.Adami5, Y.M.Bahé6,7,N.Clerc8,L.Chiappetti10,D.Eckert9,10,S.Ettori11,12,S.Lavoie13,J.P.LeFevre14,I.G.McCarthy15, M.Kilbinger4,T.J.Ponman1,T.Sadibekova4,andJ.P.Willis7 1 SchoolofPhysicsandAstronomy,UniversityofBirmingham,Edgbaston,Birmingham,B152TT,UK e-mail:[email protected] 2 H.H.WillsPhysicsLaboratory,UniversityofBristol,TyndallAvenue,Bristol,BS81TL,UK 3 ArgelanderInstitutfürAstronomie,UniversitätBonn,53121Bonn,Germany 4 Serviced’AstrophysiqueAIM,CEASaclay,91191Gif-sur-Yvette,France 5 UniversitéAixMarseille,CNRS,LAM(Laboratoired’AstrophysiquedeMarseille)UMR7326,13388Marseille,France 6 Max-Planck-InstitutfürAstrophysik,Karl-SchwarzschildStr.1,85748Garching,Germany 7 InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,CambridgeCB30HA,UK 8 MaxPlanckInstitutfürExtraterrestrischePhysik,Postfach1312,85741GarchingbeiMünchen,Germany 9 DepartmentofAstronomy,UniversityofGeneva,ch.d’Ecogia16,1290Versoix,Switzerland 10 INAF–IASF-Milano,viaE.Bassini15,20133Milano,Italy 11 INAF–OsservatorioAstronomicodiBologna,viaRanzani1,40127Bologna,Italy 12 INFN,SezionediBologna,vialeBertiPichat6\2,40127Bologna,Italy 13 DepartmentofPhysicsandAstronomy,UniversityofVictoria,3800FinnertyRoad,Victoria,BC,V8P1A1,Canada 14 SEDICEASaclay,France 15 AstrophysicsResearchInstitute,LiverpoolJohnMooresUniversity,IC2,146BrownlowHill,LiverpoolL35RF,UK Received3July2015/Accepted20October2015 ABSTRACT Context. The XXL Survey is the largest survey carried out by XMM-Newton. Covering an area of 50 deg2, the survey con- tains ∼450 galaxy clusters out to a redshift ∼2 and to an X-ray flux limit of ∼5×10−15 ergs−1cm−2. This paper is part of the firstreleaseofXXLresultsfocussedonthebrightclustersample. Aims.Weinvestigatethescalingrelationbetweenweak-lensingmassandX-raytemperatureforthebrightestclustersinXXL.The scalingrelationdiscussedinthisarticleisusedtoestimatethemassofall100clustersinXXL-100-GC. Methods.Basedonasubsampleof38objectsthatliewithintheintersectionofthenorthernXXLfieldandthepubliclyavailable CFHTLenSshearcatalog,wederivetheweak-lensingmassofeachsystemwithcarefulconsiderationsofthesystematics.Theclusters lieat0.1 < z< 0.6andspanatemperaturerangeofT (cid:4) 1−5keV.Wecombineoursamplewithanadditional58clustersfromthe literature,increasingtherangetoT (cid:4)1−10keV.Todate,thisisthelargestsampleofclusterswithweak-lensingmassmeasurements thathasbeenusedtostudythemass-temperaturerelation. Results.The mass-temperature relation fit (M ∝ Tb) to the XXL clusters returns a slope b = 1.78+0.37 and intrinsic scatter σlnM|T (cid:4)0.53;thescatterisdominatedbydisturbedclusters.Thefittothecombinedsampleof96cluste−r0s.3i2sintensionwithself- similarity,b=1.67±0.12andσlnM|T (cid:4)0.41. Conclusions. Overall our results demonstrate the feasibility of ground-based weak-lensing scaling relation studies down to cool systemsof∼1keVtemperatureandhighlightthatthecurrentdataandsamplesarealimittoourstatisticalprecision.Assuchweare unabletodeterminewhetherthevalidityofhydrostaticequilibriumisafunctionofhalomass.Anenlargedsampleofcoolsystems, deeperweak-lensingdata,androbustmodellingoftheselectionfunctionwillhelptoexploretheseissuesfurther. Keywords.gravitationallensing:weak–X-rays:galaxies:clusters–galaxies:groups:general–galaxies:clusters:general 1. Introduction (cid:3) Based on observations obtained with XMM-Newton, an ESA sci- Analyticalandnumericalcalculationsbothpredictthatthetem- ence mission with instruments and contributions directly funded by peratureoftheX-rayemittingatmospheresofgalaxygroupsand ESA Member States and NASA. Based on observations made with ofclustersscaleswiththe massoftheirhostdarkmatterhalos, ESOTelescopesattheLaSillaParanalObservatoryunderprogramme 089.A-0666andLP191.A-0268. with M ∝ T3/2 (Kaiser1986;Evrardetal.2002;Borganietal. (cid:3)(cid:3) TheMastercatalogueisavailableattheCDSviaanonymousftpto 2004).Testingthisso-calledself-similarpredictionisoffunda- cdsarc.u-strasbg.fr(130.79.128.5)orvia mentalimportancetoabroadrangeofastrophysicalandcosmo- http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A2 logical problems, including constraining any non-gravitational ArticlepublishedbyEDPSciences A4,page1of17 A&A592,A4(2016) physics that affects the gas, and exploring galaxy clusters as statistical uncertainties, in Sect. 4. We also compare our re- probesofcosmologicalparameters. sultswiththeliteratureinSect.4,andsummariseourresultsin To date, any studies of the mass-temperature relation have Sect.5.WeassumeaWMAP9(Hinshawetal.2013)cosmology employed X-ray observations to measure both the temperature of H0 = 70kms−1Mpc−1,ΩM = 0.28,andΩΛ = 0.72.Allsta- and the mass of galaxy groups and clusters. Assuming hydro- tisticalerrorsarereportedto68%significanceandupperlimits static equilibrium, the self-similar predicted slope value of 1.5 arestatedat3σconfidence. can be derived from the virial theorem. Observational rela- tions, however,generallysteepen from close to the self-similar for hot systems to a slope of ∼1.6–1.7 when cooler systems 2. Sample,dataandanalysis (T <∼ 3 keV) are included (see Böhringer et al. 2012; Giodini 2.1.Surveyandsampledefinition etal.2013,forrecentreviews).Theseresultsaresubjecttosev- eralproblems,mostprominentlythatthemassmeasurementsare The XXL Survey is described in detail by Pierre et al. (2016, based on the assumption that the intracluster gas is in hydro- Paper I, hereafter). This ∼50 deg2 XMM-Newton survey has a static equilibriumandalso thatthe samedata areusedforboth sensitivity of ∼5×10−15 ergs−1 cm−2 in the [0.5–2] keV band temperatureandmassmeasurements,likelyintroducingasubtle thatprovidesawell-definedgalaxyclustersampleforprecision covarianceintotheanalysis. cosmology. The survey is an extension of the 11 deg2 XMM- Independentmeasurementsofmassandtemperature,andre- LSSsurvey(Pierreetal.2004)andconsistsoftwo 25deg2 ar- liance on fewer assumptions, help to alleviate these questions. eas. The XXL-100-GC1 sample is a flux-limited sample based Gravitational lensing mass measurements are useful in this re- on 100 clusters ranked brightest in flux. It is described in de- gard, and have been shown to recover the ensemble mass of tail by Pacaud et al. (2016, Paper II, hereafter), some of clusterstoreasonablygoodaccuracy(Becker&Kravtsov2011; theseclustershavepreviouslybeendescribedintheXMM-LSS Bahéetal.2012),despiteconcernsthatindividualclustermass and XMM-BCS studies (Clerc et al. 2014; Šuhada et al. measurements may be affected by halo triaxiality and projec- 2012). We note that five systems (XLSSC113, 114, 115, tioneffects(e.g.Corless&King2007;Meneghettietal.2010). 550, and 551) were observed in bad pointings that are con- Lensingbasedstudiesofthemass-temperaturerelationhaveso taminated by flaring. Subsequently, the sample was supple- farobtainedslopesthatareconsistentwiththeself-similarpre- mented with five additional clusters: XLSSC091, 506, 516, diction, albeit with large statistical uncertainties (Smith et al. 545 and 548. All systems within the XXL-100-GC sample 2005;Bardeauetal.2007;Hoekstra2007;Okabeetal.2010;Jee are characterised as either C1 or C2 (Clerc et al. 2014). The etal.2011;Mahdavietal.2013).Oneofthelimitationsofthese C1 objects have a high likelihood of detection and exten- studieshasbeenthattheyconcentrateonrelativelyhotclusters, sion. The probability of contamination by spurious detection T >∼4keV. or point sources for these systems is low (<3%), whereas the BuildingontheLeauthaudetal.(2010)weak-lensingstudy C2 objectshave∼50%contamination.TheXXL-100-GCsam- ofthemass-luminosityrelationofgroupsintheCOSMOSsur- ple is estimated to be more than 99% complete down to ∼3× vey, Kettula et al. (2013) recently pushed lensing-based stud- 10−14ergs−1cm−2andtohavespectroscopicredshiftsof0.05≤ ies of the mass-temperature relation into the group regime, z≤1.07(PaperII). T (cid:4) 1−3 keV. Combining ten groups with complementary The mass-temperature relation presented in this paper is measurements of massive clusters from the literature, they ob- based on weak-lensing mass measurements using the Canada- tainedarelationspanningT (cid:4) 1−10keV,withaslopeingood France-Hawaii Telescope Lensing Survey (CFHTLenS) shear agreement with the self-similar prediction. This suggests that catalogue2(Heymansetal.2012;Erbenetal.2013).CFHTLenS the assumption of hydrostatic equilibriummay be less valid in spans a total survey area of ∼154 deg2 that has considerable coolersystemsthanhottersystemssincethediscrepancyisonly overlap with the northern XXL field (Fig. 1). Their shear cat- seen at the coolend of the M –T relation.However,Connor HSE aloguecomprisesgalaxyshapemeasurementsforasourceden- etal.(2014)obtainedaslopesteeperthanthehydrostaticresults sity of 17 galaxiesper arcmin2, as well as u∗g(cid:8)r(cid:8)i(cid:8)z(cid:8)-bandpho- using a sample of 15 poor clusters. Their study was limited to tometry and photometric redshifts for the same galaxies. The clustercoreswithinr (i.e.theradiusatwhichthemeanden- 2500 median photometricredshift of the galaxies in the catalogue is sity of the cluster is 2500 times the critical density of the uni- z =0.75(Hildebrandtetal.2012). median verseattheclusterredshift),incontrasttopreviousresults(e.g. Fifty-twoofthe 100XXL-100-GCsourceslie inthenorth- Kettulaetal.2013)thatwerederivedwithinr ,indicatingthat 500 ern XXL field, of which 45 lie within the CFHTLenS survey themasstemperaturerelationmaydependontheclustercentric area (Fig.1). A few ofthese 45 clusterslie at redshiftsbeyond radiuswithinwhichthemassismeasured. themedianredshiftoftheCFHTLenSshearcatalogue,thussig- We present the mass calibration of the XXL bright cluster nificantlyreducingthenumberdensityofgalaxiesbehindthese sample (XXL-100-GC)based on a new mass-temperaturerela- distant clusters. We therefore limit our analysis to clusters at tion thatwe constrainusingthe largestsample used to datefor z < 0.6, which corresponds to imposing a lower limit on the such studies: 96 groups and clusters spanning X-ray tempera- sourcedensityof∼4arcmin−2(Fig.3).Thisgivesatotalsample tures of T (cid:4) 1−10 keV and a redshift range of z (cid:4) 0.1−0.6. of38galaxyclustersforwhichwehavearedshift,faintgalaxy Thirty-eight of these systems come from XXL-100-GC itself. shapemeasurements,andanX-raytemperature(Table1).All38 WecombinetheXMM-Newtonsurveydataandthehigh-fidelity of these galaxyclusters are classified as C1 with the exception weak-shearcatalogfromtheCFHTLenSsurveytoobtaininde- ofXLSSC114,whichisaC2classsystem. pendenttemperatureandhalomassmeasurements,respectively. Wedescribethesample,data,andanalysis,includingdetailson 1 XXL-100-GCdataareavailableincomputer readableformviathe the weak gravitational lensing analyses, in Sect. 2. In Sect. 3 XXL Master Catalogue browser http://cosmosdb.iasf-milano. we present our main results, the mass-temperature relation of inaf.it/XXL and via the XMM XXL Database http://xmm-lss. XXL-100-GC. We discuss a range of systematic uncertainties in2p3.fr in our analysis, confirming that they are sub-dominant to the 2 www.cfhtlens.org A4,page2of17 M.Lieuetal.:TheXXLSurvey.IV. 4 − 6 − g) e d δ( 8 − 0 1 − 2 1 − 40 38 36 34 32 30 α(deg) Fig.1.OverlapofXXL-100-GCwiththeCFHTLenSW1field.TheboxesareindividualpointingsinCFTHTwithXXL-Northfieldclusters(filled points).TheshadedboxesarepointingsthatfailtheCFHTLenSweak-lensingfieldselectioncriteria(seeSect.4.1). 2.2.X-raytemperatures The temperature of the intracluster medium of each cluster is measuredanddescribedindetailbyGilesetal. (2016,PaperIII, hereafter).Herewe summarisethe keypointspertainingto our analysis. The spectra are extracted using a circular aperture of ra- dius 0.3 Mpc centred on the X-ray positions, with a minimum of5countsbin−1. Pointsourcesare identifiedusingSExtractor and excluded from the analysis; the images are visually in- spectedforanythatmighthavebeenmissed.Radialprofilesof eachsourcewereextractedwithinthe0.5−2keVbandwiththe backgroundsubtracted.Thedetectionradiuswasdefinedasthe radius at which the source is detected to 0.5σ above the back- ground. Background regions were taken as annuli centred on theobservationcentrewithawidthequaltothespectralextrac- Fig.2. Redshift versus X-ray temperature T for the 38 clusters tionregionandtheregionwithinthedetectionradiusexcluded. 300kpc from XXL-100-GC that are located within the CFHTLenS shear cat- Wherethiswasnotpossible,thebackgroundwasmeasuredfrom aloguefootprint. anannuluscentredontheclusterwithinnerradiussettothede- tectionradiusandouterradiusas400arcsec. The X-ray temperaturesspan 1.1keV ≤ T < 5.5keV methodofSantosetal.(2008).Wesummariseafewkeypoints 300kpc (Fig. 2) and are non-core excised owing to the limited angu- oftheanalysishere.TheX-raysurfacebrightnessprofileisex- lar resolutionof XMM-Newton. The temperaturesare extracted tracted within concentric annuli centred on the X-ray peak, it within a fixed physical radius of 0.3Mpc such that they are isbothbackground-subtractedandexposurecorrectedandthen straightforward to calculate from shallow survey data without re-binnedto obtain a minimumsignal-to-noiseratio (S/N) of 3 needing to estimate the size of the cluster. This is the largest in each bin. The profiles are fit using three 3D density pro- radiuswithin which it is possible to measure a temperaturefor file modelswhichare projectedon the skyand convolvedwith thewholeXXL-100-GCsample.Tocheckthesensitivityofour the XMM-Newton point spread function (PSF). Depending on main results to this choice of aperture, we also re-fit the mass- thenumberofbinsinthesurfacebrightnessprofile(n ),amore bin temperature relation discussed in the results section using the orlessflexibleβ-modelisfittothedata:β=2/3isassumedfor temperaturesthatareavailableinlargeraperturesupto0.5Mpc, profiles with n < 3; β is a free parameter for 3 ≤ n ≤ 4; bin bin and find that the systematic differences between the respective a double β model is used for n > 4. The surface brightness bin fitparametersarenegligiblecomparedwiththestatisticalerrors concentrationparameter(CSB) isdefinedastheratioofthein- onthefits. tegrated profile within 40 kpc to that within 400 kpc, CSB = SB(<40kpc)/SB(<400kpc).Thecoolcorestatusisdefinedas 2.3.Coolcorestrength – Non-coolcore:CSB<0.075. The cool core strength of XXL-100-GC is estimated by – Weakcoolcore:0.075≤CSB≤0.155. Démoclès et al. (in prep.) using the concentration parameter – Strongcoolcore:CSB>0.155. A4,page3of17 A&A592,A4(2016) Table1.Clusterpropertiesandmassestimates. Name z T c M M r δr δr/r CSB S/N 300kpc 200 200,WL 500,WL 500,WL 500,WL (keV) (1014h−701M(cid:9)) (1014h−701M(cid:9)) (Mpc) (10−2Mpc) (10−1) (10−2) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) XLSSC 006 0.429 4.8+0.5 2.7 5.3+6.0 3.4+3.7 0.9+0.3 10.1 1.1 8.0±1.0 3.4 −0.4 −2.3 −1.4 −0.2 XLSSC 011 0.054 2.5+0.5 3.4 1.6+2.0 1.1+1.3 0.7+0.2 0.4 0.1 12.7±0.9 3.6 −0.4 −1.1 −0.7 −0.2 XLSSC 022 0.293 2.1+0.1 3.4 0.5+0.9 0.4+0.5 0.5+0.2 4.5 1.0 34.6±2.6 1.5 −0.1 −0.4 −0.2 −0.1 XLSSC 025 0.265 2.5+0.2 3.1 1.7+1.6 1.1+1.0 0.7+0.2 0.0 0.0 27.9±2.7 2.3 −0.2 −1.3 −0.8 −0.2 XLSSC 027 0.295 2.7+0.4 2.9 3.3+3.9 2.1+2.4 0.8+0.2 8.1 1.0 4.7±2.5 3.5 −0.3 −2.1 −1.4 −0.2 XLSSC 041 0.142 1.9+0.1 3.4 1.0+0.9 0.7+0.6 0.6+0.1 1.3 0.2 29.9±2.5 3.1 −0.2 −0.7 −0.5 −0.2 XLSSC 054 0.054 2.0+0.2 3.5 1.1+1.6 0.7+1.1 0.6+0.2 0.5 0.1 11.1±1.3 2.7 −0.2 −0.7 −0.5 −0.2 XLSSC 055 0.232 3.0+0.3 2.8 8.1+7.6 5.2+4.7 1.1+0.3 4.2 0.4 11.3±1.9 3.7 −0.3 −3.1 −2.0 −0.2 XLSSC 056 0.348 3.2+0.5 2.8 4.5+2.7 2.8+1.7 0.9+0.2 6.4 0.7 5.6±1.7 3.4 −0.3 −2.4 −1.5 −0.2 XLSSC 057 0.153 2.2+0.3 3.7 ≤0.9 ≤0.6 ≤0.6 3.0 0.7 17.1±1.8 2.5 −0.1 XLSSC 060 0.139 4.8+0.2 3.2 2.1+1.4 1.4+0.9 0.8+0.1 13.5 1.8 2.3±0.1 4.4 −0.2 −1.5 −1.0 −0.3 XLSSC 061 0.259 2.1+0.5 2.9 3.8+0.9 2.4+0.5 0.9+0.1 2.9 0.3 9.9±3.3 3.8 −0.3 −2.1 −1.3 −0.2 XLSSC 083 0.430 4.5+1.1 2.7 4.0+3.6 2.5+2.2 0.8+0.2 4.1 0.5 7.0±2.4 3.2 −0.7 −2.8 −1.7 −0.3 XLSSC 084 0.430 4.5+1.6 2.7 4.3+3.2 2.7+1.9 0.9+0.2 10.9 1.3 3.0±0.7 2.8 −1.3 −3.2 −2.0 −0.3 XLSSC 085 0.428 4.8+2.0 3.2 ≤2.6 ≤1.21 ≤0.7 0.0 0.0 10.6±4.3 1.7 −1.0 XLSSC 087 0.141 1.6+0.1 3.6 0.5+0.4 0.3+0.3 0.5+0.1 0.9 0.2 41.5±2.9 3.5 −0.1 −0.4 −0.2 −0.2 XLSSC 088 0.295 2.5+0.6 3.1 1.8+1.3 1.2+0.9 0.7+0.1 28.2 4.2 2.7±0.4 2.4 −0.4 −1.5 −0.9 −0.3 XLSSC 090 0.141 1.1+0.1 4.1 ≤0.6 ≤1.2 ≤0.7 0.9 0.3 41.7±4.2 2.4 −0.1 XLSSC 091 0.186 5.1+0.2 2.8 9.7+3.3 6.2+2.1 1.2+0.1 5.0 0.4 2.5±0.1 6.2 −0.2 −2.9 −1.8 −0.1 XLSSC 092 0.432 3.1+0.8 3.2 ≤2.2 ≤1.4 ≤0.7 26.3 7.9 6.9±1.7 2.6 −0.6 XLSSC 093 0.429 3.4+0.6 2.7 5.9+3.5 3.7+2.1 0.9+0.2 2.9 0.3 5.4±1.6 3.8 −0.4 −3.0 −1.8 −0.2 XLSSC 095 0.138 0.9+0.1 3.6 ≤1.0 ≤0.6 ≤0.6 0.0 0.0 40.3±14.9 2.5 −0.1 XLSSC 096 0.520 5.5+2.0 3.5 ≤1.4 ≤0.9 ≤0.6 5.0 1.7 7.3±2.5 1.1 −1.1 XLSSC 098 0.297 2.9+1.0 3.0 2.8+3.6 1.8+2.3 0.8+0.2 2.3 0.3 17.1±6.7 3.1 −0.6 −2.3 −1.5 −0.3 XLSSC 099 0.391 5.1+3.1 3.5 ≤2.2 ≤1.4 ≤0.7 1.9 0.6 6.6±1.8 1.8 −1.5 XLSSC 103 0.233 3.5+1.2 2.8 8.5+4.2 5.4+2.6 1.1+0.2 4.2 0.4 6.9±2.6 5.3 −0.8 −3.0 −1.8 −0.2 XLSSC 104 0.294 4.7+1.5 3.0 2.6+4.1 1.7+2.6 0.8+0.3 14.9 2.0 9.9±3.7 3.7 −1.0 −1.3 −0.9 −0.2 XLSSC 105 0.429 5.2+1.1 2.4 19.8+6.5 12.1+3.9 1.4+0.1 14.3 1.0 3.5±0.7 5.0 −0.8 −7.7 −4.6 −0.2 XLSSC 106 0.300 3.3+0.4 2.8 6.8+3.0 4.3+1.8 1.0+0.1 27.2 2.6 7.0±1.3 4.5 −0.3 −3.3 −2.1 −0.2 XLSSC 107 0.436 2.7+0.4 2.8 2.8+4.8 1.8+3.0 0.7+0.3 0.0 0.0 13.0±2.6 2.4 −0.3 −2.2 −1.4 −0.3 XLSSC 108 0.254 2.2+0.3 3.9 ≤0.9 ≤0.6 ≤0.5 4.0 1.3 14.0±2.5 1.7 −0.2 XLSSC 109 0.491 3.5+1.3 2.6 7.6+6.6 4.7+4.0 1.0+0.2 3.1 0.3 60.5±19.7 3.9 −0.8 −4.5 −2.8 −0.3 XLSSC 110 0.445 1.6+0.1 2.7 4.6+5.3 2.9+3.2 0.9+0.2 17.7 2.0 2.6±0.4 4.0 −0.1 −1.6 −1.0 −0.1 XLSSC 111 0.299 4.5+0.6 2.7 10.1+3.0 6.3+1.8 1.2+0.1 1.6 0.1 13.8±4.5 6.1 −0.5 −2.9 −1.8 −0.1 XLSSC 112 0.139 1.8+0.2 3.4 1.2+0.9 0.8+0.6 0.6+0.1 6.9 1.1 9.3±1.5 2.5 −0.2 −0.8 −0.5 −0.2 XLSSC 113 0.050 1.2+0.0 3.9 0.4+0.6 0.3+0.4 0.5+0.2 0.4 0.1 19.4±2.9 3.5 −0.1 −0.2 −0.2 −0.1 XLSSC 114 0.234 4.7+4.2 3.1 2.1+1.9 1.4+1.2 0.7+0.2 5.5 0.8 5.0±1.9 4.0 −1.9 −1.0 −0.6 −0.1 XLSSC 115 0.043 2.1+0.6 4.3 ≤0.6 ≤0.4 ≤0.5 2.5 0.8 6.9±2.3 3.5 −0.2 Notes.Column1istheclustercatalogueidnumber;Col.2istheclusterredshift;Col.3X-raytemperaturemeasuredwithinanapertureof300kpc; Col.4istheconcentrationparametermeasuredwithinr ;Cols.5and6arefittedestimatesofweak-lensingmasscentredontheX-raycentroid 200,WL andmeasuredwithinfittedr andr respectively.Upperlimitsonmassaregivenat3sigmaconfidence.Columns7and8aretheweak- 200,WL 500,WL lensingr andtheoffsetbetweentheX-raycentroidandtheBCG;Col.9istheBCGoffsetasafractionofr ;Col.10istheCSBparameter 500,WL 500,WL andCol.11isthesignal-to-noiseratioontheweak-lensingshear.PositionsoftheclusterX-raycentroidsarelistedinPaperII,Table1. 2.4.Weakgravitationallensing wherez isthepeakoftherespectivegalaxy’sP(z),zistheclus- s terredshift,δz (3σ)isthe99.7%lowerconfidenceintervalonz , s s We use the full photometric redshift probability distribution, and the last term representsa velocity offsetof 3000kms−1 as P(z),ofeachgalaxyintheCFHTLenSshearcataloguetoiden- a conservative allowance for the velocity width of the cluster tifygalaxiesbehindourclustersample.Galaxiesareselectedas galaxydistributions. backgroundgalaxiesiftheysatisfy The method outlined in Velander et al. (2014) and Miller etal.(2013)isusedtocalibratethegravitationalshearmeasure- z −δz (3σ)>z+0.01, (1) ments.Therawellipticityvalues(e ,e )undergotwocalibration s s 1 2 A4,page4of17 M.Lieuetal.:TheXXLSurvey.IV. Fig.3.Left:numberdensityofbackgroundgalaxiesbehindeachgalaxyclusterversusclusterredshift.Right:weak-lensingshearsignal-to-noise ratioasafunctionofclusterredshift. corrections,amulitiplicativecomponent(m)derivedfromsimu- wherethetangentialshear,e+(r),isthesignalthatcanbemod- lations(Milleretal.2013)andanadditivecomponent(c)derived elledintermsofthetotalmatterdensityprofileofthelens.The fromthedata(Heymansetal.2012).Theobservedellipticitycan cross shear e×(r) is orientated 45◦ with respect to the tangen- bewrittenas tialcomponentandshouldbeconsistentwithzeroasacheckon systematicerrors. eobs =(1+m)eint+c+Δe (2) We extract the shear profile of each cluster within a 0.15−3 Mpc annulus. The inner radial cut helps to amelio- where eint is the intrinsic ellipticity and Δe is the noise on the ratecentringuncertainties,andtheouterradialcutismotivated measurement. bynumericalsimulations(Becker&Kravtsov2011).Thecluster Themultiplicativecomponentmisdependentonbothgalaxy centreistakenastheX-raycentroid.Forreference,themeanoff- sizeandS/Nandgives,onaverage,a6%correction.Theaddi- set between the X-ray centroidand the brightestcluster galaxy tivecomponentcissimilarlydependentonthegalaxysize,and (BCG)is(cid:10)δr(cid:11)=64.7kpc.Ourresultsareunchangedifwecentre the S/N determinedby Lensfit. For the CFHTLenS data(cid:10)c (cid:11) is 1 theshearprofilesontherespectiveBCGs(seeSect.4.1formore consistentwithzeroandc issubtractedfrome foreachgalaxy. 2 2 details). Themultiplicativecorrectionisappliedasanaverageensemble The shear is binned in eight radial bins equally spaced in ofeachbin. log and with a lower limit of 50 galaxiesper radial bin. If this A weighting is also applied that corrects for the geometry threshold is not met, the bin is combined with the next radial ofthe lens-sourcesystem in theformofthe lensingkernelξ = bin. The errors on the shear in each radial bin are estimated DLS/DS, where DLS and DS are the angulardiameterdistances from103bootstrapresampleswithreplacementandincludesthe betweenthelensandthesource,andbetweenthe observerand largescalestructurecovariance(Schneideretal.1998): the source, respectively.This is applied as a ratio between that (cid:4) ofthecluster-galaxysystemandthatofthereferenceη=ξ/ξ . ldl ref CLSS = P (l)J (lθ)J (lθ ) , (7) Thereferenceistakenasthemodesourceredshiftofthesumof ij k 2 i 2 j 2π allbackgroundgalaxyweightedP(z ),i.e.themodeof s whereP (l)istheweak-lensingpowerspectrumasafunctionof k (cid:2)Ngal angular multipole l and J2(lθ) is the second-orderBessel func- n(zs)= wiPi(zs) (3) tionofthefirsttypeatradialbinsθi andθj. i=1 ShearS/NiscalculatedfollowingOkabeetal.(2010)as w20h1e3re,Ewqi.is(8th))eaCpFpHlieTdLteoncSailnibvreartseefvoarrtihaencliekweleihigohotd(Mofilthleermeteaal-. (S/N)2 =(cid:2)Nbin (cid:10)e+(rn)(cid:11)2· (8) σ2 (r ) sured ellipticity and intrinsic shape noise. The calibrated shear n=1 e+ n atadistancerfromtheclustercentrethereforetakestheform Foroursampletheweak-lensingS/Nrangesfrom1≤S/N ≤7. N(cid:3)gal N(cid:3)gal Howeverweincludeallobjectsinthemass-temperaturerelation wiηiγiint wiηi regardlessoftheS/Nvaluetoavoidimposingalow-shearselec- (cid:10)γ(r)cal(cid:11) = i=1 i=1 · (4) tionontopoftheoriginalX-rayselection. N(cid:3)galwη(1+m)N(cid:3)galwη2 We model the shear profile as a (Navarro et al. 1997, i i i i i NFW hereafter) profile following the formalism set out by i=1 i=1 Wright & Brainerd (2000). A Markov chain Monte Carlo Intheweak-lensinglimittheshearcanbeestimatedastheaver- (MCMC) sampler with a Gaussian likelihood is used to fit the agecomplexellipticityγ ≈ (cid:10)e(cid:11),wheree ≡ e1+ie2.Intermsof NFW model to the shear profile. The algorithm returns 5 × tangentialandcross-componentellipticity, 104 samples of the target distribution using a jump proposal based on a Metropolis-Hastings algorithm with a mean accep- e+ = −(cid:14)e−2iφ =−(e2−c2)sin(2φ)−e1cos(2φ) (5) tance rate of 0.57. The autocorrelation length is computed to e× = −(cid:15)e−2iφ =e1sin(2φ)−(e2−c2),cos(2φ) (6) thincorrelatedsampleswithinthechainandincorporatesburn-in A4,page5of17 A&A592,A4(2016) Fig.4.Mass-temperaturerelationfor38clustersdrawnfromXXL-100-GCforwhichweak-shearinformationisavailablefromCFHTLenS.The lineisthehighestposteriordensityfitandtheshadedregionisthecredibleregion.Systemswithupperlimitsonmassareindicatedbyarrowsand plottedat3σconfidence. of150samples.TheGelman-Rubincriterion(Gelman&Rubin 3. Results 1992)iscomputedforthreechainsto ensureconvergence.The Apositivecorrelationbetweenourweak-lensingmassandX-ray massofeachclusteristakenasthemodeoftheposteriorandthe temperature measurements is evident (Fig. 4). In this section, errorsaregivenas68%credibleregionsofthehighestposterior wedefinethescalingrelationmodelthatwewillfittothedata, densityasthisisthebestrepresentationoftheskewedGaussian describe the regression analysis, and present the main results. posteriors. Wedeferconsiderationofpossiblesystematicuncertaintiesand Giventhewiderangeofpossibleclustermass,auniformin log(Jeffreys)prioris used to ensurescale invarianceP(M|I) = comparisonwiththeliteraturetoSect.4. Mln(10116/1013) (1013 ≤ M200 ≤1016 M(cid:9)).Giventhegenerallylow- shear S/N, we fix cluster concentrationto values from a mass- 3.1.XXLmass-temperaturerelation concentrationrelationbasedonN-bodysimulations(Duffyetal. Wemodelthemass-temperaturerelationasapowerlaw: 2008): ⎛ ⎞ (cid:15) (cid:16) c200 =5.71(1+z)−0.47(cid:5)2×1M01220h0−1M(cid:9)(cid:6)−0.084· (9) log10⎜⎜⎜⎜⎝MM50(cid:9)0hE−7(01z)⎟⎟⎟⎟⎠=a+blog10 kTeV (11) (cid:17) We test the sensitivity of our results to the choice of this rela- with intercept a and slope b, where E(z) = Ωm(1+z)3+ΩΛ tionandfindthatitisnotadominantsourceofuncertainty(see describestheevolutionoftheHubbleparameter.Wenotethatby Sect.4.1formoredetails). notallowinganyfreedomintheexponentofE(z),weareassum- To estimate MΔ,WL for each cluster we integrate the NFW ingself-similarevolution.Thisismotivatedbythelargescatter model out to the radius at which the mean density of the halo whichisapparentinourdata,thatprecludesusfromconstrain- isΔρ (z),wherezistheclusterreshift(Table1)andΔ=500: ingevolutionatthistime. crit (cid:4) For the linear regression we use the Gibbs sampler im- rΔ,WL plemented in the multivariate Gaussian mixture model routine MΔ,WL = ρ(r)4πr2dr linmix_err(Kelly 2007)with the default of three Gaussians. 0 (cid:7) (cid:5) (cid:6) (cid:8) Weuse105randomdrawsofthesamplerandtakethefittedpa- = 4πρr3 ln 1+ rΔ,WL − rΔ,WL · (10) rameters as the posterior mode and the error as the 68% high- s s rs rs+rΔ,WL estposteriordensitycredibleinterval.Whenthenumberofdata A4,page6of17 M.Lieuetal.:TheXXLSurvey.IV. Table2.Mass-temperaturerelationfitparametersforEq.(11). Sample Intercept Slope Intrinsicscatter N (a) (b) (σintlnM|T) XXL 13.56+0.16 1.78+0.37 0.53+0.21 38 −0.17 −0.32 −0.17 XXL+COSMOS+CCCP 13.57+0.09 1.67+0.14 0.41+0.07 96 −0.09 −0.10 −0.06 XXLFS 13.67+0.07 1.50 0.48+0.19 38 −0.03 −0.08 XXLcoolcore 13.46+0.19 1.81+0.43 0.64+0.26 21 −0.24 −0.57 −0.23 XXLnon-coolcore 14.18+0.46 0.75+0.76 0.50+0.30 17 −0.39 −0.73 −0.22 XXLundisturbed 13.56+0.15 1.86+0.35 0.34+0.25 19 −0.19 −0.36 −0.20 XXLdisturbed 13.67+0.40 1.49+0.82 0.91+0.28 19 −0.49 −0.89 −0.32 XXLcoolcoreFS 13.59+0.04 1.50 0.72+0.03 21 −0.08 −0.16 XXLnon-coolcoreFS 13.83+0.04 1.50 0.50+0.15 17 −0.17 −0.14 XXLundisturbedFS 13.71+0.09 1.50 0.39+0.16 19 −0.08 −0.13 XXLdisturbedFS 13.62+0.05 1.50 0.75+0.31 19 −0.12 −0.16 Notes.FixedsloperelationsaredenotedbyFS. pointsissmall,theGibbssamplerwillhavedifficultyinreach- scatter. The same is true if we repeat the fits to the two sub- ing convergence. linmix_err also has the option of running samplesholdingtheslopeoftherespectiverelationsfixedatthe asa Metropolis-Hastingsalgorithm,whichismoreefficientfor self-similarvalueofb=1.5(Table2). smallsamplesize.TestsimplementingtheMetropolis-Hastings Second, we use the offset between the X-ray centroid and algorithmgiveconsistentresults. the BCG (Lavoie et al., in prep.), expressed as a fraction We fit the model to the measured values of M ofr ,toclassifyclustersasundisturbedδr/r < 0.05, 500,WL 500,WL 500,WL and T . For some galaxy clusters, the weak-lensing S/N and disturbed δr/r > 0.05. The scatter in the mass- 300kpc 500,WL is so low that the we are only able to obtain an upper limit on temperature relation for undisturbed clusters is less than that M . The posteriors of these systems are truncated by the ofthedisturbedclusters,albeitwithlargeuncertainties.Wesee 500,WL lower bound prior on mass. Despite this, it is important to in- similar results if we hold the slope ofthe relationfixedat self- clude these systems in the fit because they are X-ray detected similar,asabove.Thissuggeststhatthedisturbedclustersdom- at high significance, and to exclude them would add a further inatethescatterintheXXL-100mass-temperaturerelation. selection in addition to the primary X-ray selection. The fit- It is tempting to attribute the large scatter in the mass- tingmethodusedisabletoincorporateupperlimitsascensored temperaturerelationfordisturbedclustersto the physicsof the data using a likelihood that integrates over the censored and cluster merger activity implied by a large value of δr/r . 500,WL uncensored data separately (see Kelly 2007, for more details). Howeverwecautionthatdynamicallyactiveclusterslikelyhave However their implementation is not suitable for our problem more complicated mass distributions than less active (“undis- sincewehavepriorknowledgeoftheX-raydetectionweknow turbed”) clusters. Our ability to constrain reliable cluster mass thatthesesystemsshouldhaveamassgreaterthan1013M(cid:9),flag- measurementsin the 1013 < M500 < 1014M(cid:9) regime with low gingthemascensoreddatawouldcontradictthemasspriorused S/N survey data is likely a function of the complexity of the in fitting the NFW profile. Tests to recoverscaling relation pa- massdistribution.Thismassrangehasnotyetbeenexploredto rameters on simulated toy data show that censoring leads to a anygreatextentbysimulationstudies(e.g.Becker& Kravtsov positivebiasintheslope.Forsystemswherethelowercredible 2011;Bahéetal.2012).We willreturntothisquestioninafu- regionistruncatedbythemasspriorandhenceunderestimated turearticle. wesetthelowermasserrorequaltotheuppermasserror.Inour toymodelteststhisgavetheleastbiasinscalingrelationparam- 3.3.Combinationwithothersamples eters,withbiases<10%. Themass-temperaturerelationbasedonthe38clustersthat To improve the precision and to extend the dynamic range of overlap between the XXL-100-GC and the CFHTLenS shear our mass-temperaturerelation we now include 10 groupsfrom catalog has a slope of b = 1.78+−00..3372, with an intrinsic scatter COSMOS(Kettulaetal.2013)and48massiveclustersfromthe in natural log of mass at fixed temperature of σintlnM|T (cid:4) 0.5 Canadian Cluster Comparison Project (CCCP; Mahdavi et al. (Table2). 2013; Hoekstra et al. 2015) (Fig. 5). The COSMOS groups are X-ray selected and their weak-lensingmasses are based on deep Hubble Space Telescope observations, and follow a sim- 3.2.Coolcorestatusanddynamicaldisturbance ilar analysis method to our own. Unlike our sample, the tem- Weinvestigatewhetherthemass-temperaturerelationfitparam- peratures of the COSMOS systems are core excised. We have etersdependonthestrengthofcoolingintheclusterscoresand therefore measured non-core excised temperatures for the ten thedynamicalstateoftheclusters(Fig.6). COSMOS groupswithin the same 0.3 Mpcmeasurementaper- First,wecollectivelyclassifyweakandstrongcoolcoresas ture using the same analysis process described in Sect. 2.2. cool core systems and fit the mass-temperature relation to this Comparison between these non-core excised temperature and coolcoresubsample,andthenon-coolcoresubsample.There- the core excised temperaturesused by Kettula et al. (2013)re- sults of the fits have large statistical uncertainties and intrinsic vealsabiasof(cid:10)T300kpc/T0.1−0.5r500,WL(cid:11)=0.91±0.05(Fig.7),and A4,page7of17 A&A592,A4(2016) Fig.5.Mass-temperaturerelationfortheextendedsample,including38systemsfromXXL(black),10fromCOSMOS(blue),and48fromCCCP (red).Thesolidlineandlightgrayshadedregionarethebestfitscalingrelationand68%credibleintervalfortheXXL+COSMOS+CCCPsample. ThedashedlineanddarkgreyshadedregionarethebestfitandcredibleregionfortheXXLonlysample.Systemswithupperlimitsonmassare indicatedbyarrowsandplottedat3sigmaconfidence. Fig.6. CSB parameter versus the offset between X-ray centroid and Fig.7. Comparison of core excised X-raytemperatures (Kettulaet al. BCGasafractionofweak-lensingr .Thehorizontaldashedline 2013)andthere-derivedtemperaturesmeasuredwithina0.3Mpcaper- 500,WL atCSB=0.075indicatestheseparationofcoolcoreandnon-coolcore ture.Thedashedlineisequality. classedsystems.Theverticaldashedlineatδr/r =0.05separates 500,WL undisturbed anddisturbedclusters.Thegreyshadedregionshowsthe overlapbetweencoolcoreandundisturbedclusters. CCCPweb-site3,albeitwithina0.5Mpcaperture.Thisislarger thantheaperturethatweuseforourowntemperaturemeasure- ments.GiventhattheCCCPsystemsaremoremassivethanours, wedonotexpectthisdifferenceinaperturetohaveasignificant emphasisetheimportanceofensuringthatthetemperaturesare affectonourresults.Weconfirmthatthisisindeedthecase(see measuredinaconsistentmannerwhencombiningsamples. Sect.4.1formoredetails). We also obtained non-core excised temperatures for the CCCP clusters analysed by Mahdavi et al. (2013) from the 3 http://sfstar.sfsu.edu/cccp/ A4,page8of17 M.Lieuetal.:TheXXLSurvey.IV. Wefitthemass-temperaturerelationtothejointdatasetfol- cuts (Sect. 2.4). Benjamin et al. (2013) use tests with spectro- lowingthe same procedureasappliedto the XXL-onlysample scopic redshifts to find that within the CFHTLenS catalogue in Sect. 3.1. The statistical precision of the fit is much higher the redshifts are most reliable between 0.1 < z < 1.3. This is thanthatoftheXXL-onlyfit,andhasverysimilarcentralvalues duetoafundamentaldegeneracyintheangularcross-correlation for all fit parameters between the two fits (Table 3). The slope method.Atz < 0.1, their contaminationmodeltendsto under- parameterofthejointfitisb=1.67+0.14withanintrinsicscatter predictcontaminationbyhigherredshiftgalaxies.Atz>1.3the −0.10 ofσint(lnM|T) =0.41−+00..0076. predicted contamination by lower redshift galaxies is also un- derestimated.Wecomparedmassesderivedusingallgalaxiesto massesrestrictedtothereliableredshiftrange0.1<z<1.3.The 3.4.MassestimatesforXXL-100-GC massesareimpervioustothetwosourceselectionswitharatio of(cid:10)M0.1<z<1.3/M (cid:11) = 1.13±0.18.Inoursampleonly10% The mass of each member of XXL-100-GC is computed from 500,WL 500,WL the joint XXL+COSMOS+CCCP mass-temperature relation ofthesystemsincludethez<0.1contaminatedgalaxiesandthe (see Table 2). The uncertainties on these masses are estimated low number of z > 1.3 galaxies should contribute little to the bypropagatinguncertaintiesonindividualtemperaturemeasure- shear.Thisincombinationwiththelargestatisticaluncertainties ments,andtheintrinsicscatteronthemass-temperaturerelation. onshearwouldexplaintheagreement. The masses are presented in Paper II, and denoted as M 500,MT Outerfittingradius–Thesystemsconsideredinthisarticleare toindicatethattheyarebasedonthemass–temperaturescaling lowermassthanmostofthoseconsideredbyBecker&Kravtsov relation. (2011).ThustheouterradiustowhichtheNFWmodelisfitted to the measuredshear profilemayextendfurtherintothe infall region than in their simulation study, and thus might bias our 4. Discussion massmeasurements.Weimplementedasimpletestwherebywe InSect.4.1wediscusstheeffectofsystematicuncertaintieson comparedthemassobtainedfromNFWmodelsfittedtothean- our results, and in Sect. 4.2 we compare our results with the nulus0.15−2MpctothosedescribedinSect.2.4.Themeanratio literature. ofthemassesderivedfromthesefitsandthoseuponwhichour resultsarebased(0.15–3Mpc)is1.01±0.17. 4.1.Systematicuncertainties Choiceofmass-concentrationrelation – We adoptedthe Duffy Several sources of systematic uncertainty have been discussed etal.(2008)mass-concentrationrelationforourmassmodelling in the preceding sections. Here we describe the tests that were of the shear signal, which aids comparison with the literature performedtoassesstheamplitudeoftheseuncertainties. (Kettulaetal.2013).Howeverobservationalstudies(e.g.Okabe et al. 2013;Umetsu et al. 2014)indicate thatclusters are more Fittingmethod –We testedtherobustnessofthefittingmethod concentrated than expected from simulations (e.g. Duffy et al. mpfitexy on the resultant scaling parameters using (Williams 2008; Bhattacharya et al. 2013). Hoekstra et al. (2012) show idl etal. 2010).Thisis a variationof the standard fitting tech- that a 20% change in normalisation of the mass-concentration niquempfit(Markwardt2009)thatminimisesaχ2statisticand relation would bias NFW-based masses by ∼5–15%, although iterativelyadjustsforintrinsicscatter.However,itdoesnotcal- recent work by Sereno et al. (2015) suggest the bias could be mpfitexy culate the error on the intrinsic scatter. Using the accounted for by selection effects. As a simple test, we per- XXL+COSMOS+CCCP fit of 96 objects produces a slope of turbed the normalisation of the Duffy et al. (2008) relation by b = 1.71± 0.11, intercept of a = 13.55± 0.09, and intrinsic a factor of 1.31 to bring it into line with the stacked weak- scatter ofσintlnM|T = 0.38,i.e.fullyconsistentwith ourresults lensing analysis of Okabe et al. (2013). The masses that we presentedinSect.3(Table2). computed using this perturbed relation are slightly lower than our Duffy-based masses, although consistent within the errors: Upper limits – To test the sensitivity of our results to the treatment of clusters with upper limits on M we re-fitted (cid:10)MPerturbed/MDuffy(cid:11) = 0.93±0.14.Althoughitispossibletoob- 500,WL tain a mass when allowing concentration to be a free parame- the mass-temperature relation excluding these objects, obtain- ing a marginally shallower slope of b = 1.63 ± 0.13 and ter ((cid:10)Mfree/MDuffy(cid:11) = 0.87 ± 0.14), we did not do this as we an intrinsic scatter of σlnM|T = 0.39 ± 0.06 for the joint were not able to constrain concentration with this data. The XXL+CCCP+COSMOSsampleandb = 1.84±0.38,σlnM|T = slope of the mass-temperature relation fits to the joint sam- 0.30±0.18 for the XXL-only sample – again, consistent with ple, based on our perturbed and free-concentration masses are b =1.75±0.13andb =1.71±0.14.Withintheerrors ourmainresults. perturbed free both are consistent with the Duffy concentration prior results. Centringoftheshearprofile–Clustermassesaredominatedby The XXL-only M–T relation using free-concentration masses statisticalnoisesuchthatwhetherwecentretheshearprofileon hasregressionparametersb=1.77±0.37,a=13.54±0.21,and the BCG or onthe X-raycentroiddoesnotlead to a large sys- σlnM|T =0.38±0.20. tematic uncertainty. There is large scatter between the masses derivedfromthedifferentcentres;however,thebiasisminimal Cosmic shear test – Heymans et al. (2012) compute the ((cid:10)MXray /MBCG (cid:11)= 1.00±0.16)andsodoesnothaveanim- star-galaxy cross-correlation function of objects within the 500,WL 500,WL CFHTLenS catalogue finding an amplitude much higher than pactonourresults.TheBCGcentredfitsreturnaXXL-CCCP- COSMOScombinedMT relationwithslopeb=1.61±0.14and expected from simulations. Approximately 25% the fields fail anintrinsicscatterofσintlnM|T =0.43±0.06. tbhaicskcoisnmtoicasghreeaermteesnttanwditwhhesinmrueljaetcitoends.brTinhgistheaffoebcstesrv∼at4io0n%s Source selection – The photometric redshift uncertainty of of our systems: XLSSC054, 055, 060, 056, 091, 095, galaxies and its contributionto the mass estimation of clusters 096, 098, 099, 103, 104, 105, 107, 108, 110, and in oursample is small (cid:10)dξ/ξ(cid:11) = 0.13and so we used all back- 111. Excluding these systems from our sample does not groundgalaxieswithP(z)measurementsthatsatisfyourredshift significantly change our results; for example a joint fit to the A4,page9of17 A&A592,A4(2016) Fig.8.Left:comparisonofourresultsontheslopeofthemass-temperaturerelationwiththoseintheliterature(Eckmilleretal.2011;Lovisari et al.2015; Sunet al.2009; Vikhlininetal. 2009). Right:comparison of themass of aclusterof temperature T = 3keV at z = 0.3based on mass-temperaturerelationsandthoseintheliterature.Inbothpanels,filledcirclesaresamplesthatuseweak-lensingmasses,opendiamondsare samplesthatusehydrostaticmasses.TheCOSMOS+CCCP+160DandCOSMOS-onlyrelationsarefromKettulaetal.(2013)andtheCFHTLS relationfromKettulaetal.(2015).BChasbeencorrectedforEddingtonbias. remainingXXL clusters, COSMOS, and CCCP (80 systems in each of the correlation coefficients between L–T and fitted the total)yieldsa = 13.43+−00..1039,b = 1.79+−00..1162,σint,lnM|T = 0.42−+00..0067. mass-temperaturerelationforeachofthesesamples.Comparing Thissuggeststhatithasaninsignificanteffectonclusterlensing the bias between the scaling relation parameters measured be- wherePSFresidualsarereducedfromtheradialaveraging.All fore and after the flux cut as a function of the correlation be- CFHTLenS fields are used in both Velander et al. (2014) and tweenL–T showsaweakdependency.Weexpectthecorrelation Kettulaetal.(2015). coefficientbetweenluminosityandtemperaturetobe∼0.3(e.g. Maughan2014).Inourmodelthiscorrespondstolessthan5% Mismatchintemperaturemeasurementapertures–Asdiscussed biasinbothslopeandnormalisation.Kettulaetal.(2015)apply intheresultssection,ourtemperaturemeasurementaperturedif- acorrectionforEddingtonbiastobothmassesandtemperatures fersfromthatusedbyCCCP.Thisshouldnotdramaticallyaffect toasamplesimilartooursintheirscalingrelation.Theirresults ourresults as the temperatureprofile of clustersis shallow and indicate a 10% bias on the slope when uncorrected for; how- forgroups0.3 Mpc is a significantfractionofr500,WL, whereas ever,thisisdetectedat0.7σsignificance.FortheCCCPclusters for the massive clusters in CCCP the same holds at 0.5 Mpc. used in this paper, a selection function model is not possible. Nonetheless, as a test we computed temperatures within the The CCCP sample is selected from a variety of archived data same 0.5Mpc aperture for our clusters, finding that this mea- and various selection criteria. We note that the selection func- surement is feasible for 36 of the 38 XXL clusters, and for tion test above only applies to the XXL-only sample, but will all10COSMOSgroups.Thebestfitslopeparameterandintrin- be modelled comprehensivelyin a future XXL paper,when an sicscatterforthisfullyself-consistentnon-coreexcisedrelation alternativemassiveclustersamplewithawell-definedselection areb=1.61±0.12,andσ(lnM|T) =0.42±0.06.Themismatched functionisavailable. apertureuncertaintyisthereforecomparabletothestatisticaler- rors,anddoesnotalterourresult. Outliers – One particular outlier in our sample is XLSSC 110. ThissystemhasbeenstudiedindetailbyVerdugoetal.(2011) Selection function – The XXL-100-GC sample selection and is particularly interesting for the strong lensing features function needs to account for the flux-limit, survey volume, caused by a merger of three galaxies. For this system the tem- pointingsand more.In the M–T relation this calculationis not perature is particularly low for the estimated mass. If we in- trivial.Wecreatedasimplifiedtoymodeltotestthebiasinmea- stead centre our shear profiles on the merger (corresponding suredslope ona fluxlimitedsampleasafunctionofthecorre- to the BCG) we obtain a 25% higher mass. For this system lation between X-ray luminosity and temperature. For this test thetemperaturemayhavebeenunderestimatedbytheexclusion wetookapopulationof10000groupsandclusterswithmasses of the AGN contaminated emission from the merger. Verdugo (1×1013 < M500 < 1×1015 M(cid:9)) and redshifts(0 < z < 1.5) et al. (2011) use several methods to estimate the mass of this from the Tinker et al. (2008) mass function. We converted the systembutwithinafixedradius.Refittingthejointscalingrela- mass simultaneously to X-ray luminosity using the scaling re- tionexcludingthissystemgivesconstraintsofb = 1.71±0.13, lation in Maughan (2014) and temperature using a relation of a=13.54±0.09,andσlnM|T =0.41±0.06. slope1.5,normalisation13.65.Theseweredrawnfromabivari- ate Gaussian distribution with intrinsic scatter in log of 0.4 Mass bias on XXL-100-GC masses – To test the impact of bi- 10 and 0.3 for luminosity and temperature, respectively, and re- ases on the individually measured weak-lensing masses in the peatedforcorrelationcoefficientsbetweenluminosityandtem- XXL sample on the masses derived from the M–T relation, peraturefrom0to1instepsof0.05.Eachluminositywasthen we perturbed the XXL masses down by increments of 10%, convertedtoafluxandacutat3×10−14 ergss−1 cm−2 wasap- refitted the joint M–T relation, and recomputed the masses pliedtoreplicatetheselectionontheXXL-100-GCsample.We of XXL-100-GC. We find for offsets of 10, 20, and 30% in drew20samplesof100clustersbeforeandafterthefluxcutfor XXL masses, the resulting M–T derivedmasses, M , will 500,MT A4,page10of17

Description:
The mass-temperature relation fit (M ∝ Tb) to the XXL clusters returns a slope b = 1.78+ . We present the mass calibration of the XXL bright cluster.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.