View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Repository IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 1. Introduction, Be and Mg AlexDeVisscher,Editor,Evaluatora) DepartmentofChemicalandPetroleumEngineering,andCentreforEnvironmentalEngineering ResearchandEducation(CEERE),SchulichSchoolofEngineering, UniversityofCalgary,Calgary,AB,T2N1N4Canada JanVanderdeelen,Evaluatorb) DepartmentofAppliedAnalyticalandPhysicalChemistry,FacultyofBioscienceEngineering, GhentUniversity,B-9000Ghent,Belgium ErichKo¨nigsberger,Compilerc) SchoolofChemicalandMathematicalSciences,MurdochUniversity,Murdoch,WA,6150,Australia BulatR.Churagulov,Compiler DepartmentofChemistry,MoscowStateUniversity,Moscow,Russia MasamiIchikuni,CompilerandMakotoTsurumi,Compiler DepartmentofEnvironmentalChemistry,TokyoInstituteofTechnology,Nagatsuda,Yokohama,Japan (Received2December2011;accepted6December2011;publishedonline27March2012) Thealkalineearthcarbonatesareanimportantclassofminerals.Thisvolumecompiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1, the present paper, outlines the procedure adopted in this volume in detail, and presents the beryllium and magnesium carbonates. For the minerals magnesite (MgCO ), nesquehonite (MgCO (cid:2)3H O), and lansfordite 3 3 2 (MgCO (cid:2)5H O),acriticalevaluationispresentedbasedoncurvefitstoempiricaland=or 3 2 thermodynamic models. Useful side products of the compilation and evaluation of the data outlined in the introduction are new relationships for the Henry constant of CO 2 with Sechenov parameters, and for various equilibria in the aqueous phase including the dissociation constants of CO (aq) and the stability constant of the ion pair MCO0ðaqÞ 2 3 (M¼alkalineearthmetal).Thermodynamicdataofthealkalineearthcarbonatesconsist- ent with two thermodynamic model variants are proposed. The model variant that describes the Mg2þ(cid:3)HCO(cid:3) ion interaction with Pitzer parameters was more consistent 3 with the solubility data and with other thermodynamic data than the model variant that described the interaction with a stability constant.VC 2012 American Instituteof Physics. [doi:10.1063/1.3675992] Keywords: aqueoussolution;berylliumcarbonate;magnesiumcarbonate;solubility;thermodynamics. CONTENTS 1.2.4. Ambient CO mole fraction and 2 altitude correction of total pressure.. 5 1. Preface.................................... 3 1.3. Evaluations............................ 6 1.3.1. Empirical equations for solubility... 6 1.1. Scope of the volume.................... 3 1.3.2. Thermodynamic model for solubility 7 1.2. Unit conversions for compilations ........ 3 1.3.2.1. Model equations for open 1.2.1. Density of pure water ............. 4 system................... 8 1.2.2. Density of electrolyte solutions..... 5 1.3.2.2. Model equations for closed 1.2.3. Influence of dissolved gases on system................... 9 water density..................... 5 1.3.2.3. The Pitzer ion interaction formalism ................ 10 1.3.2.4. Some thoughts on the a)Electronicmail:[email protected]. calcium bicarbonate b)Electronicmail:[email protected]. c)Electronicmail:[email protected]. ion pair .................. 10 VC 2012AmericanInstituteofPhysics. 1.3.3. Thermodynamic data.............. 11 0047-2689/2012/41(1)/013105/67/$47.00 013105-1 J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 013105-2 DEVISSCHERETAL. 1.3.3.1. Solubility of CO .......... 11 3. Sechenov coefficients for CO in various 2 2 1.3.3.2. Salting out of CO ......... 12 electrolyte solutions,34 together with fitted 2 1.3.3.3. Fugacity of the gas phase... 13 values.................................... 12 1.3.3.4. Dissociation constants of 4. Single-ion Sechenov coefficients and Pitzer k carbonic acid ............. 15 parameters for CO in electrolytes, with 2 1.3.3.5. Ionization constant of temperature dependence .................... 13 water .................... 18 5. Enthalpy and entropy of the first dissociation 1.3.3.6. Metal-carbonate ion of CO at 298.15 K estimated from different 2 pairing................... 18 sources................................... 15 1.3.3.7. Other ion pairs............ 23 6. Values of (cid:3)lg(K ) from the Harned and 1 1.3.4. Independent thermodynamic data ... 25 Davis50 experiments obtained with different 1.3.5. Solubility in salt solutions: a SIT data analysis techniques .................... 17 approach ........................ 26 7. Enthalpy and entropy of the second 1.4. Remaining issues....................... 26 dissociation of CO at 298.15 K estimated 2 2. Solubility of Beryllium Carbonate ............ 27 from different sources...................... 18 2.1. Critical evaluation of the solubility of 8. Stability constants of alkaline earth beryllium carbonate in aqueous systems... 27 bicarbonate ion pairs....................... 19 2.2. Data for the solubility of beryllium 9. Stability constants of alkaline earth carbonate carbonate in aqueous systems............ 27 ion pairs.................................. 21 3. Solubility of Magnesium Carbonate........... 27 10. Pitzer parameters for M(HCO ) ............. 22 3 2 3.1. Critical evaluation of the solubility of 11. Stability constants of alkaline earth hydroxide magnesium carbonate in aqueous ion pairs.................................. 24 systems ............................... 27 12. Single-electrolyte Pitzer parameters for 3.1.1. Overview of solubility data ........ 28 M(OH)2.................................. 25 3.1.2. Analytical methods used for 13. Two-electrolyte ion interactions ............. 25 dissolved magnesium 14. Overview of magnesium carbonate solubility determination .................... 30 data in aqueous systems.................... 28 3.1.3. Magnesite ....................... 30 15. Data collected for the evaluation of the 3.1.3.1. MgCO þH OþCO ...... 30 solubility of magnesite in the system 3 2 2 3.1.3.2. MgCO þH OþCO MgCO þH OþCO ...................... 31 3 2 2 3 2 2 þNaCl .................. 33 16. Evaluation of magnesite solubility in the 3.1.3.3. MgCO þH O............ 33 system MgCO þH OþCO ................ 32 3 2 3 2 2 3.1.3.4. MgCO þH Oþsalt....... 34 17. Data collected for the evaluation of the 3 2 3.1.4. Nesquehonite..................... 35 solubility of MgCO in the system 3 3.1.4.1. MgCO (cid:2)3H OþH O MgCO þH OþCO þNaCl ............... 33 3 2 2 3 2 2 þCO ................... 35 18. Data collected for the evaluation of the 2 3.1.4.2. MgCO (cid:2)3H OþH OþCO solubility of magnesite in the system 3 2 2 2 þsalt.................... 39 MgCO þH O ............................ 33 3 2 3.1.4.3. MgCO (cid:2)3H OþH O....... 39 19. Comparison of magnesite solubility in the 3 2 2 3.1.4.4. MgCO (cid:2)3H OþH O system MgCO þH O with model 3 2 2 3 2 þsalt.................... 42 predictions................................ 34 3.1.5. Lansfordite ...................... 42 20. Data collected for the evaluation of the 3.1.5.1. MgCO (cid:2)5H OþH O solubility of MgCO in the system 3 2 2 3 þCO ................... 42 MgCO þH OþNaCl ..................... 34 2 3 2 3.1.6. Conclusion....................... 44 21. Data collected for the evaluation of the 3.2. Data for the solubility of magnesium solubility of MgCO in the system 3 carbonate in aqueous systems............ 45 MgCO þH OþNa SO ................... 34 3 2 2 4 Acknowledgments .......................... 66 22. Data collected for the evaluation of the 4. References................................. 66 solubility of MgCO3 in the system MgCO þH OþNa CO ................... 35 3 2 2 3 List of Tables 23. Data collected for the evaluation of the 1. Thermodynamic properties of the dissolution solubility of MgCO in the system 3 of CO at 25 (cid:4)C derived from different semi- MgCO þH OþNaNO .................... 35 2 3 2 3 empirical equations ........................ 11 24. Data collected for the evaluation of the 2. Henry constant of CO predicted in this study solubility of MgCO in the system 2 3 and by Crovetto32 ......................... 12 MgCO þH OþMgCl .................... 35 3 2 2 J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions IUPAC-NISTSOLUBILITYDATASERIES.95-1 013105-3 25. Data collected for the evaluation of the system 1. Preface MgCO (cid:2)3H OþH OþCO , and fit with 3 2 2 2 empirical model........................... 36 1.1. Scopeofthevolume 26. Evaluation of nesquehonite solubility in the Solubilities of alkaline earth metal carbonates in water system MgCO (cid:2)3H OþH OþCO .......... 40 3 2 2 2 and aqueous solutions are of interest in many areas such as 27. Data collected for the evaluation of the biology, geology, hydrology, medicine, and environmental solubility of MgCO in the system 3 sciences.Ofparticularsignificanceistheinteractionbetween MgCO (cid:2)3H OþH OþCO þNa CO ....... 42 3 2 2 2 2 3 alkaline earth metal carbonates and carbon dioxide during 28. Data collected for the evaluation of the CO storageinundergroundaquifers. 2 solubility of nesquehonite in the system This volume contains compilations and evaluations of the MgCO (cid:2)3H OþH O....................... 42 3 2 2 solubilitiesofthealkalineearthcarbonatesinwaterandsim- 29. Comparison of nesquehonite solubility in the ple electrolyte solutions. Solid phases containing mixed car- system MgCO (cid:2)3H OþH O with model 3 2 2 bonates or mixed carbonates and hydroxides, solubilities in predictions................................ 42 mixed or non-aqueous solvents, solubilities in supercritical 30. Data collected for the evaluation of the water,andsolubilitiesinseawaterareexcluded.Thevolume solubility of lansfordite in the system isorganizedasfollows: MgCO (cid:2)5H OþH OþCO ................. 43 3 2 2 2 31. Evaluation of lansfordite solubility in the Part1(thispaper):Introduction,Be,Mg system MgCO (cid:2)5H OþH OþCO .......... 44 Part2:Ca 3 2 2 2 Part3:Sr,Ba,Ra Literature through 2009 was searched. For each of beryl- List of Figures lium carbonate and radium carbonate, only one reference is 1. Solubility of magnesite in MgCO þH O 3 2 available, and the solubilities given are doubtful. For magne- þCO systems divided by the cubic root of 2 sium carbonate about 25 references are available. Data are the equilibrium CO partial pressure.......... 31 2 available for three mineralogical types: the anhydrous salt 2. Solubility constants of magnesite derived from MgCO (magnesite), the trihydrate MgCO (cid:2)3H O (nesque- 3 3 2 solubility data in the system honite),andthepentahydrateMgCO (cid:2)5H O(lansfordite).For MgCO þH OþCO with Model 1.......... 31 3 2 3 2 2 calcium carbonate, about a hundred references were found 3. Solubility constants of magnesite derived from covering three well-defined crystallographical forms of anhy- solubility data in the system drous salt (calcite, aragonite, and vaterite) and two hydrates, MgCO þH OþCO with Model 2.......... 32 3 2 2 the monohydrate (monohydrocalcite) and the hexahydrate 4. Solubility of magnesite in the system (ikaite).Therearefewerthan20referenceseachforstrontium MgCO þH O measured and predicted with 3 2 carbonate(strontianite)andbariumcarbonate(witherite). Model 1 and Model 2...................... 33 5. Solubility of nesquehonite in MgCO (cid:2)3H O 3 2 1.2. Unitconversionsforcompilations þH OþCO systems divided by the cubic 2 2 root of the equilibrium CO2 partial The general equations for unit conversions are given in pressure................................... 38 the Introduction to the Solubility Data Series.1,2 For many 6. Solubility constants of nesquehonite derived conversions, like from mol l(cid:3)1 to mol kg(cid:3)1,a density of the from solubility data in the system liquidsolutionisneeded. MgCO3(cid:2)3H2OþH2OþCO2 with Model 1.... 39 The conversion from amount concentration to molality in 7. Solubility constants of nesquehonite derived an aqueous system containing a dissolved salt and dissolved from solubility data in the system CO isgivenby 2 MgCO (cid:2)3H OþH OþCO with Model 2.... 39 3 2 2 2 8. Solubility of nesquehonite in the system 1000 csalt MgCO3(cid:2)3H2OþH2O measured and predicted msalt ¼ moll(cid:3)1 ; with Model 1 and Model 2.................. 42 molkg(cid:3)1 qsolution(cid:3) Msalt csalt (cid:3) MCO2 cCO2 9. Solubility of lansfordite in kgm(cid:3)3 kgkmol(cid:3)1moll(cid:3)1 kgkmol(cid:3)1moll(cid:3)1 MgCO3(cid:2)5H2OþH2OþCO2 systems divided (1) by the cubic root of the equilibrium CO 2 partial pressure. ........................... 43 with m the molality of the salt, c its amount concentra- salt salt 10. Solubility constants of lansfordite derived tion,q thesolutiondensity,M themolarmassofthe solution salt from solubility data in the system salt,M themolarmassofCO ,andc itsconcentration. CO2 2 CO2 MgCO (cid:2)5H OþH OþCO with Model 1.... 43 If multiple salts are dissolved, each salt will result in a term 3 2 2 2 11. Solubility constants of lansfordite derived inthedenominatorofEq.(1). from solubility data in the system InsystemsopentoCO (g),thedominantdissolvedspecies 2 MgCO (cid:2)5H OþH OþCO with Model 2.... 44 inequilibriumwithanalkalineearthcarbonateisthealkaline 3 2 2 2 J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 013105-4 DEVISSCHERETAL. earth metal ion, and bicarbonate, unlike systems in the ab- excess of 5%, when the partial pressure is 40 bar. Even sence of added CO , where the dominant species are the saltingoutneedstobeaccountedforinsomeextremecases, 2 metal and the carbonate ions. Hence, in open systems the especially when working with nesquehonite or lansfordite. valueofM applicableinEq.(1)is62gmol(cid:3)1largerthan Not accounting for this effect would overestimate the salt the value of the metal carbonate. Improper use of Eq. (1) dissolved CO concentration, and the molality. If none of 2 leads to errors in excess of 5% at a concentration of these precautions are taken, the error made can be in excess 1moll(cid:3)1,whichoccursinthecaseofnesquehoniteandlans- of 10%. Hence, the nature of the dissolved salt, the dissolu- forditeathighCO partialpressures. tionof CO andits salting out were appropriately accounted 2 2 The dissolved CO concentration in open systems is on for. 2 theorder of 0.035moll(cid:3)1perbar ofCO partialpressureat When mass concentrations analyzed as MCO 2 3 25 (cid:4)C, and is strongly temperature dependent. Hence, not (M¼alkalineearthmetal)aretobeconvertedtomolalitiesin accounting for dissolved CO can also generate errors in systemsopentoCO (g),theappropriateequationis 2 2 q (cid:2)M 1000 MCO3 MCO3 mmMoðlHkCgO(cid:3)3Þ12 ¼qsolution(cid:3)MMðHCO3Þ2qMgClO(cid:3)31(cid:2)MgMmCoOl3(cid:3)(cid:3)1 MCO2 cCO2 : (2) gl(cid:3)1 gmol(cid:3)1 gl(cid:3)1 gmol(cid:3)1 gmol(cid:3)1moll(cid:3)1 Solubility of CO2 and salting out are discussed in later q¼ qsat : (4) sections. Aq (cid:5)ðkgm(cid:3)3Þ 1(cid:3) sat lnð1þBðp=kPa(cid:3)p =kPaÞÞ v B 1.2.1. Densityofpurewater The saturated vapor pressure p in Eq. (4) was also taken v Astandardequationofstateforfluidwaterwasdeveloped fromWagnerandPruß,3 byWagnerandPruß3thataccuratelypredictsallwaterprop- eardtvieasntiangaewofidtehirsanagpeproofatcehmipsetrhaatturtehseaenqduaptrieosnsuforersd.eTnhseitdyisis- pv ¼pcexp(cid:3)Tc(cid:6)a1hþa2h1:5þa3h3þa4h3:5 T an implicit one, making density calculations inconvenient (cid:4) forcompilationpurposes.Therefore,anapproximateexplicit þa h4þa h7:5(cid:7) ; (5) 5 6 equation was developed. The starting point of the approach is the explicit equation suggested by Wagner and Pruß3 for with the density of liquid water at the saturated vapor pressure, p ¼22064kPa(criticalpressure) q ,asafunctionoftemperature,whichisvalidfromthetri- c sat T ¼647.096K(criticaltemperature) plepointtothecriticalpointofwater, c a ¼(cid:3)7.85951783 1 (cid:3) a ¼1.84408259 2 qsat ¼qc 1þb1h1=3þb2h2=3þb3h5=3þb4h16=3 a3¼(cid:3)11.7866497 a ¼22.6807411 (cid:4) 4 þb5h43=3þb6h110=3 ; (3) a5¼(cid:3)15.9618719 a ¼1.80122502 6 Equation (4) with 4th-order polynomials in h for A and B where were fitted to predictions of the Wagner and Pruß3 equation q ¼322kgm(cid:3)3(criticaldensity) c of state in the temperature range 273.15–473.15 K and the h¼1(cid:3)T=T c pressurerangefromp to20000kPa.ThecoefficientsAand v T ¼647.096K(criticaltemperature) c BinEq.(4)resultingfromthisfitare b ¼1.99274064 1 b2¼1.09965342 A¼a0þa1hþa2h2þa3h3þa4h4; (6) b ¼(cid:3)0.510839303 3 b ¼(cid:3)1.75493479 with 4 b ¼(cid:3)45.5170352 a ¼7.4242997(cid:5)10(cid:3)9 5 0 b ¼(cid:3)6.74694450(cid:5)105 a ¼(cid:3)5.3019784(cid:5)10(cid:3)8 6 1 Thewaterdensitywasthencorrectedforpressureusingan a ¼1.6188583(cid:5)10(cid:3)7 2 equationbasedonTait’slaw,butwithtemperature-dependent a ¼(cid:3)2.3371482(cid:5)10(cid:3)7 3 coefficientsAandB, a ¼1.3239697(cid:5)10(cid:3)7 4 J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions IUPAC-NISTSOLUBILITYDATASERIES.95-1 013105-5 B¼b þb hþb h2þb h3þb h4 (7) 1.2.3. Influenceofdissolvedgasesonwater 0 1 2 3 4 density b ¼6.1180105(cid:5)10(cid:3)5 0 Kell7 investigated the influence of dissolved N , O , Ar, b ¼(cid:3)4.4068335(cid:5)10(cid:3)4 2 2 1 and CO on the densityof water.The combinedeffect of N , b ¼1.3633547(cid:5)10(cid:3)3 2 2 2 O , and Ar was found to be about 0.0003% and can be b ¼(cid:3)2.0035442(cid:5)10(cid:3)3 2 3 ignored.TheeffectofCO onthesolutiondensitydependson b ¼1.1496256(cid:5)10(cid:3)3 2 4 the temperature and the CO partial pressure. Its estimation The consistency of Eq. (4) with the Wagner and Pruß3 2 requiresavalueoftheapparentmolarvolumeofCO (aq).As equation of state is 0.004% (0.04 kg m(cid:3)3) or better in the 2 CO isafairlyidealsoluteinthepressurerangeofinterest,it entirerangetested. 2 is assumed that apparent molar volume equals partial molar volume. Kell7 reviewed the literature available at the time, 1.2.2. Densityofelectrolytesolutions andtentativelyputforwardavalueof38cm3mol(cid:3)1,withlit- erature values ranging from 28 to 38 cm3 mol(cid:3)1. This range Densities of electrolyte solutions were calculated with the was confirmedbyHne˘dkovsky` et al.,9whoreportedapparent methodofKrumgalzetal.,4basedonthePitzermodel.When molar volumes for a wide temperature range. However, they datawasunavailableinRef.4,dataofKrumgalzetal.5valid found a pronounced temperature dependence. Their values at 25 (cid:4)C were used, with pure water density data at the tem- compare well with other studies in the literature and are peratureofinterest.Intheirmodel,Krumgalzetal.4usedthe largely consistent with the Wagner and Pruß3 equation of somewhat obsolete pure water density calculations of Kell6 state.10Whentheirdataat25–200(cid:4)Carefittedtoaparabolic because those data or very similar values were used in most equationinT=K,thefollowingisobtained: experimental determinations of electrolyte solution densities. Inthis work,thenewlyderivedequationswere usedbecause V =ðcm3mol(cid:3)1Þ¼58:309(cid:3)0:19758ðT=KÞ theKell6equationislimitedto1atmpressure. / At 273.15–373.15 K and 101.325 kPa, the deviation þ0:00038030ðT=KÞ2: (8) between the Wagner and Pruß3 equation of state and the Kell6 equation is up to about 0.015 kg m(cid:3)3 (standard devia- When this equation is applied at 0 (cid:4)C and 25 (cid:4)C, values of tion0.0061kgm(cid:3)3).ThedeviationbetweentheWagnerand 32.7 and 33.2 cm3 mol(cid:3)1 are obtained, respectively. These Pruß3 equation of state and the new equation is up to about valuescomparewellwithvaluesofthepartialmolarvolume 0.0062kgm(cid:3)3(standarddeviation0.0046kgm(cid:3)3).Thedif- suggested by Weiss11 (32.360.5 cm3 mol(cid:3)1), Barbero ference betweentheKell6model andthenewequationisup et al.12 (32.861.2 cm3 mol(cid:3)1), and Spycher et al.13 to about 0.017 kg m(cid:3)3 (standard deviation 0.0090 kg m(cid:3)3). (32.661.3 cm3 mol(cid:3)1). Based on these values, densities Hence, the choice to use the new equation for water density were calculated at 0 (cid:4)C (CO solubility at partial pressure 1 2 with the Krumgalzet al.4 model for electrolyte solution den- bar about 0.075 mol kg(cid:3)1) and at 25 (cid:4)C (CO solubility at 2 sity introduces a negligible inconsistency. Kell7 presented a partial pressure 1 bar about 0.033 mol kg(cid:3)1). At 0 (cid:4)C, the comprehensive equation for water density, including pres- density effect is negligible (<0.1 kg m(cid:3)3) for partial pres- sureeffectsforupto10atm.Becauseofthelimitedpressure suresbelow0.12bar,but isashighas0.85kgm(cid:3)3ata par- range,thisequationwasnotinvestigatedinanydetail. tial pressure of 1 atm. At p(CO )¼12.5 bar, the error 2 To test the error introduced by applying the Krumgalz introduced by ignoring the density effect is as large as 1%. model tohighpressures,predictions withthe model for NaCl At 25 (cid:4)C, the density effect is negligible (<0.1 kg m(cid:3)3) for solutionswerecomparedwithvaluestabulatedbyRogersand partialpressuresbelow0.28bar,andis0.36kgm(cid:3)3atapar- Pitzer.8Atatmosphericpressure,themodelpredicteddensities tialpressureof1bar. upto0.16kgm(cid:3)3lowerthanthevaluesaretabulatedbyRog- The calculation of the solubility of CO is discussed in 2 ersandPitzer.8At20000kPa,themodelpredictionswereup Sec.1.3.3. to2.5kgm(cid:3)3abovethetabulatedvalues(NaCl(aq)hasaneg- ative apparent compressibility). Hence, unit conversions for 1.2.4. AmbientCO molefractionandaltitude concentrated electrolyte solutions at high pressures should be 2 correctionoftotalpressure made with great care. However, in dilute solutions (m<0.1 molkg(cid:3)1)theerrorisacceptable(<0.11kgm(cid:3)3). In many studies total pressure is not reported, or simply Even when solubilities of alkaline earth carbonates in pure reported as atmospheric pressure. Neither is CO mole frac- 2 water are converted from mol l(cid:3)1 to mol kg(cid:3)1, it is useful to tion in the gas phase mentioned in some older studies, or accountforchangesinsolutiondensity.Forinstance,thesolu- merely indicated as “ambient.” However, barometric pres- bility of the anhydrous CaCO polymorphs is around suredependsonaltitude,andtheambientCO molefraction 3 2 0.01 mol kg(cid:3)1 at 25 (cid:4)C and p(CO )¼1 atm. The dominant has increased considerably in the last 150 years. Hence, 2 ions in solution are Ca2þ and HCO (cid:3). The density of a 0.01 approximationswererequiredtodealwithsuchcases. 3 molkg(cid:3)1Ca(HCO ) solutionisabout998.33kgm(cid:3)3,whereas Barometric pressure p can be estimated with reasonable 32 thedensityofpurewaterisabout997.04kgm(cid:3)3.Notaccount- accuracy using a single, constant temperature, using the fol- ingforthiseffectwouldintroduceanerrorofabout0.13%. lowingequation: J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 013105-6 DEVISSCHERETAL. (cid:3) (cid:4) Mgh themetalcarbonatetoeliminateCO .Thismethodhasthe p¼p exp (cid:3) ; (9) 2 0 RT potential toeliminateCO evolved fromthe dissolution of 2 the metal carbonate, or, conversely, trap CO dissolved 2 in which p is the barometric pressure at sea level (assumed prior to adding the metal carbonate due to the alkaline na- 0 to be 101 325 Pa), M is the molar mass of air (0.029 ture of the minerals. Either way, the system is undefined kg mol(cid:3)1), g is the acceleration due to gravity (9.80665 m becausethetotalcarbonateconcentrationisunknown. s(cid:3)2), h is the altitude of the measurement (m), and R is the • Empirical equations were fitted to the data, and outliers idealgasconstant(8.314472Jmol(cid:3)1K(cid:3)1).Usingatempera- weredetectedandeliminated. tureof15(cid:4)C(288.15K)leadstotheapproximateequation, • A simple thermodynamic model was developed for the MCO þH OandMCO þH OþCO data(M¼Mg,Ca, 3 2 3 2 2 p=kPa¼101:325 expð(cid:3)0:00012h=mÞ: (10) Sr,Ba).Themodelwasusedtoderiveasolubilityconstant of the alkaline earth carbonate for each measurement. The Unlessambienttemperatures areextreme,thepotentialerror solubility constants are then plotted versus temperature. of Eq. (10) is less than the natural variation of the ambient Outliers and data with spurious trends were eliminated. barometricpressuresuptoaltitudesofwellabove1000m. Some data points rejected by the empirical model turned Ambient CO concentrations have been measured at 2 outtobefairlyaccuratewhenconsideredwiththethermo- Mauna Loa, Hawaii, since 1958,14 and from Antarctic ice dynamic model. In such cases, the data points were cores by Etheridge et al.15 Recently the validity of the ice reverted to accepted status. The MCO þH O data were core measurements was confirmed by Siegenthaler et al.16 3 2 more difficult to evaluate than the MCO þH OþCO IcecoredataofEtheridgeetal.15weresystematicallybelow 3 2 2 data. Hence, the MCO þH OþCO data were evaluated 3 2 2 the Mauna Loa data by about 0.5–1 ppm (parts per million first, and thermodynamic solubility constant correlations by mole fraction). The standard deviation between the ice were fitted. These were introduced in the MCO þH O 3 2 coredataandtheMaunaLoadatawastypicallyabout1–1.5 model, and the data were evaluated by comparison with ppm.Thedatafrombothsourceswere pooledandempirical themodelresults. equations were fitted to the concentration to obtain relation- • For some cases, the consistency between the data sets was shipswithyear.Theresultswereasfollows: checked against independent thermodynamic data. For the specific case of calcite, aragonite, and vaterite, all data 1800(cid:3)1939: yðCO Þ=ppm 2 were treated as a single data set, using thermodynamic ¼274:70þ5:803 datatoconvertallsolubilityconstantstocalcite. (cid:5)expð0:0131073 ðt=year(cid:3)1800ÞÞ The empirical equations and the thermodynamic model 1940(cid:3)1952: yðCO Þ=ppm¼310:6 are discussed below. We stress that the model is used as a 2 1953(cid:3)2004: yðCO Þ=ppm toolforevaluating data,notasanendofitsown.Hence,we 2 do not recommend any model. Thermodynamic data pre- ¼277:03þ1:2806 sented are data either predicted by this particular model, or (cid:5)expð0:0214357 ðt=year(cid:3)1800ÞÞ: mostconsistentwiththemodel,andshouldnotbeconstrued (11) as“reference”thermodynamicdata. Thenumberofdatapointsforthethreeperiodsis30,3,and 68.Thestandarddeviationbetweenthemodelandthedatais 1.3.1. Empiricalequationsforsolubility 1.1 ppm, 0.75 ppm, and 1.2 ppm, respectively. When neces- sary,theaboveequationswereusedtoestimateambientCO For an empirical equation to be a useful tool in the detec- 2 concentrations. tionofoutliersinsolubilitydata,itisnecessarythattheequa- Johnston and Walker17 pointed out that ambient air has tionhas a realistic temperature andpressure dependencein a variable CO concentration, which leads to a serious loss of widerangeofconditions,withalimitednumberofadjustable 2 accuracy when used in the determination of the solubility parameters. To that effect, an equation that mimics some constantofanalkalineearthcarbonate.Theyrecommendthe thermodynamic aspects of alkaline earth carbonate solubility use of synthetic air-CO mixtures. Hence, experiments with was selected. De Visscher and Vanderdeelen18 argued that 2 ambientairshouldbetreatedwithcautionevenwhenplausi- the solubility (s) of an alkaline earth carbonate is approxi- bleestimatesasgivenaboveareused. matelyproportionaltothecubicrootoftheCO fugacity: 2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4K K K a fðCO Þ 1.3. Evaluations s=ðmolkg(cid:3)1Þ¼ 3 s c 1 w 2 ; (12) K c c2 bar 2 M2þ HCO(cid:3) Thecompileddatawereevaluatedinvariouswaysinclud- 3 ingthefollowing: where K is the solubility constant of MCO , K is the solu- s 3 c • Data obtainedwithfaultyorsuspiciousmethodology were bility constant of CO , K and K are the first and second 2 1 2 rejected.Anexampleisboilingthesuspensionafteradding acid dissociation constant of CO =carbonic acid, f(CO ) is 2 2 J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions IUPAC-NISTSOLUBILITYDATASERIES.95-1 013105-7 thefugacityofCO ,andthecvaluesareactivitycoefficients. pV ¼RTð1þapÞ (15) 2 m Hence,thelogarithmofthesolubilitycanbewrittenas is used, then the relationship between fugacity and partial ! (cid:3) (cid:4) (cid:3) (cid:4) s 1 4K K K a 1 fðCO Þ pressureis lg ¼ lg s c 1 w þ lg 2 : molkg(cid:3)1 3 K c c2 3 bar 2 M2þ HCO(cid:3) 3 (cid:3) (cid:4) (cid:3) (cid:4) fðCO Þ pðCO Þ a pðCO Þ (13) lg 2 ¼lg 2 þ 2 : (16) bar bar lnð10Þ bar Byassuminganequationoftheformaþb=TþclgTforthe firstlogarithmontheright-handsideofEq.(13),anequation If it is assumed that a is linearly dependent on temperature, ofthefollowingformisobtained: thenthefollowingequationisobtained: (cid:3) (cid:4) (cid:3) (cid:4) (cid:3) (cid:4) s fðCO Þ c T lg ¼aþblg 2 þ þdlg : (cid:3)fðCO Þ(cid:4) (cid:3)pðCO Þ(cid:4) molkg(cid:3)1 bar T=K K lg 2 ¼lg 2 þbpðCO Þ=bar bar bar 2 (14) þcðT=KÞðpðCO Þ=barÞ: (17) 2 Note that the fitting parameters (a, b, …) in the equations in this section are not meant to have the same meaning in each SubstitutioninEq.(14)leadstoanequationoftheform, equation.Whenidealgasbehaviorisassumed,thefugacitycan (cid:3) (cid:4) (cid:3) (cid:4) be considered equal to the partial pressure. However, when s pðCO Þ pðCO Þ lg ¼aþblg 2 þc 2 suchanequationisadopted,allthenon-idealitiesofthesystem molkg(cid:3)1 bar bar are absorbed in parameter b (which should approximate 1=3). TpðCO Þ e (cid:3)T(cid:4) þd 2 þ þf lg : (18) Preliminary tests with nesquehonite (MgCO3(cid:2)3H2O) solubility K bar T=K K data in the MgCO þH OþCO system showed that this led 3 2 2 to an unrealistically large value of b (0.38), making the equa- Equation (18) showed a more realistic value of b (0.347) in tionunreliableforuseinanextendedpressurerange.Makingb thepreliminaryanalysiswithnesquehonite,andwasretained temperaturedependentdidnotsolvetheproblembecauseitled fortheevaluation. to an unrealistically large temperature dependence of b with the MgCO þH OþCO dataset. Instead, a more realistic 3 2 2 1.3.2. Thermodynamicmodelforsolubility assumptionrelatingfugacitytopartialpressurewasused.When asecond-ordervirialequationofstateoftheform, Thefollowingreactionsareconsideredinthemodel: MCO (cid:2)xH OðcrÞÐM2þðaqÞþCO2(cid:3)ðaqÞþxH OðlÞ K ¼ðM2þÞðCO2(cid:3)Þaxðm(cid:4)Þ(cid:3)2; (19) 3 2 3 2 s 3 w CO ðgÞÐCO ðaqÞ K ¼ðCO ðaqÞÞf(cid:3)1ðCO ðgÞÞðf(cid:4)Þðm(cid:4)Þ(cid:3)1; (20) 2 2 c 2 2 CO ðaqÞþH OðlÞÐHþðaqÞþHCO(cid:3)ðaqÞ K ¼ðHþÞðHCO(cid:3)ÞðCO ðaqÞÞ(cid:3)1a(cid:3)1ðm(cid:4)Þ(cid:3)1; (21) 2 2 3 1 3 2 w HCO(cid:3)ðaqÞÐHþðaqÞþCO2(cid:3)ðaqÞ K ¼ðHþÞðCO2(cid:3)ÞðHCO(cid:3)Þ(cid:3)1ðm(cid:4)Þ(cid:3)1; (22) 3 3 2 3 3 H OðlÞÐHþðaqÞþOH(cid:3)ðaqÞ K ¼ðHþÞðOH(cid:3)Þa(cid:3)1ðm(cid:4)Þ(cid:3)2; (23) 2 w w M2þðaqÞþOH(cid:3)ðaqÞÐMOHþðaqÞ K ¼ðMOHþÞðM2þÞ(cid:3)1ðOH(cid:3)Þ(cid:3)1ðm(cid:4)Þ; (24) MOHþ M2þðaqÞþCO2(cid:3)ðaqÞÐMCO0ðaqÞ K ¼ðMCO0ÞðM2þÞ(cid:3)1ðCO2(cid:3)Þ(cid:3)1ðm(cid:4)Þ; (25) 3 3 MCO0 3 3 3 M2þðaqÞþHCO(cid:3)ðaqÞÐMHCOþðaqÞ K ¼ðMHCOþÞðM2þÞ(cid:3)1ðHCO(cid:3)Þ(cid:3)1ðm(cid:4)Þ: (26) 3 3 MCOþ 3 3 3 J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 013105-8 DEVISSCHERETAL. In Eqs. (19)–(26), round brackets denote activities, f denotes By substitution of Eq. (29), the following equations can be fugacity,a referstowateractivity,m(cid:4) isthestandardactivity derived: w (1molkg(cid:3)1),andf(cid:4) isthestandardfugacity(1atmwasused aass danataopwtieorneacloemqupailteiodnininatthme).eTvahleualatisotne,qausattihoenewxiasstetnrecaeteodf (cid:6)HCO(cid:3)(cid:7)¼rKffiffiffiffisffiKffiffifficffiffiKffiffiffi1ffiffif1=2ðCO2Þawð1(cid:3)xÞ=2ðm(cid:4)Þ3=2; (36) this ion pair has been subject to continuing debatefor almost 3 K2 ðf(cid:4)Þ(cid:6)M2þ(cid:7)1=2 50 years. The CO dissolution reaction (Eq. (20)) was only 2 consideredintheso-calledopensystem(seeSec.1.3.2.1). (cid:6)CO2(cid:3)(cid:7)¼K ðm(cid:4)Þ2 ; (37) 3 sax(cid:6)M2þ(cid:7) 1.3.2.1. Model equations for open system. By open w system,wemeantheMCO þH OþCO systemcontaining 3 2 2 asolidMCO3phase, agas phase containing aknown partial ðOH(cid:3)Þ¼K rffiffiffiffiffiffiKffiffiffisffiffiffiffiffiffiffi ðf(cid:4)Þaðw1(cid:3)xÞ=2 ðm(cid:4)Þ3=2; (38) pressure of CO2, and an aqueous phase in equilibrium with w KcK1K2f1=2ðCO Þ(cid:6)M2þ(cid:7)1=2 thetwootherphases. 2 The condition of charge neutrality in the aqueous phase leadstothefollowingequation: ðMOHþÞ 2½M2þ(cid:6)þ½MOHþ(cid:6)þ½MHCOþ3(cid:6)þ½Hþ(cid:6) ¼KMOHþKwrffiKffiffiffiffiKffiKffiffiffisffiffiKffiffiffiffiffi(cid:6)M2fþ1=(cid:7)21ð=C2aOwð1(cid:3)ÞxÞ=2ðf(cid:4)Þ1=2ðm(cid:4)Þ1=2; ¼½HCO(cid:3)(cid:6)þ2½CO2(cid:3)(cid:6)þ½OH(cid:3)(cid:6) (27) c 1 2 2 3 3 (39) Thisequationiswrittenintermsofactivities: K K 2(cid:6)M2þ(cid:7) ðMOHþÞ (cid:6)MHCOþ(cid:7) ðHþÞ (cid:6)MCO0(cid:7)¼ MCO03 sðm(cid:4)Þ; (40) þ þ 3 þ 3 ax c c c c w M2þ MOHþ MHCOþ Hþ 3 ¼(cid:6)HCO(cid:3)3(cid:7)þ2(cid:6)CO23(cid:3)(cid:7)þðOH(cid:3)Þ: (28) (cid:6)MHCOþ3(cid:7) cHCO(cid:3)3 cCO23(cid:3) cOH(cid:3) ¼K rffiKffiffiffisffiKffiffifficffiffiKffiffiffi1ffiffif1=2ðCO2Það1(cid:3)xÞ=2(cid:6)M2þ(cid:7)1=2ðm(cid:4)Þ1=2: Tocalculatesolubility,eachterminthisequationwillbecal- MHCOþ3 K2 ðf(cid:4)Þ w culated in terms of the free metal ion activity (M2þ). First a (41) relationship between free metal ion activity and hydrogen ionactivityisderivedfromEqs.(19)–(22), SubstitutionintoEq.(28)leadstothefollowing: ðHþÞ¼rKffiffiffifficffiKffiffiffiffi1ffiffiKffiffiffi2ffiffif1=2ðCO2Það1þxÞ=2(cid:6)M2þ(cid:7)1=2ðm(cid:4)Þ1=2: 2(cid:6)M2þ(cid:7) K K rffiffiffiffiffiffiKffiffiffiffiffiffiffiffiffiffiað1(cid:3)xÞ=2(cid:6)M2þ(cid:7)1=2 Ks ðf(cid:4)Þ1=2 w c þ McOHþ w K KsK w f1=2ðCO Þ ðf(cid:4)Þ1=2 M2þ MOHþ c 1 2 2 (29) The following relations can be derived from the reaction (cid:5)ðm(cid:4)Þ1=2þKMHCOþ3 rffiKffiffiffisffiKffiffifficffiffiKffiffiffi1ffiffif1=2ðCO Það1(cid:3)xÞ=2 c K 2 w equilibria: MHCOþ 2 3 (cid:6)HCO(cid:3)(cid:7)¼K K fðCO2Þawðm(cid:4)Þ2; (30) (cid:5)(cid:6)M2þ(cid:7)1=2ðm(cid:4)Þ1=2þ 1 rffiKffiffifficffiKffiffiffiffi1ffiffiKffiffiffi2ffiffif1=2ðCO2Þ 3 c 1 ðf(cid:4)ÞðHþÞ cHþ Ks ðf(cid:4)Þ1=2 (cid:6)CO23(cid:3)(cid:7)¼KcK1K2ðffð(cid:4)CÞOðH2ÞþaÞw2ðm(cid:4)Þ3; (31) (cid:5)awð1þxÞ=2(cid:6)M2þ(cid:7)1=2ðm(cid:4)Þ1=2 1 rffiKffiffiffiffiKffiffiffiffiffiKffiffiffiffiffif1=2ðCO Það1(cid:3)xÞ=2 K a ¼ s c 1 2 w ðm(cid:4)Þ3=2 ðOH(cid:3)Þ¼ ðHwþwÞðm(cid:4)Þ2; (32) cHCO(cid:3)3 K2 ðf(cid:4)Þ1=2(cid:6)M2þ(cid:7)1=2 a (cid:6)M2þ(cid:7) 2Ks ðm(cid:4)Þ2 ðMOHþÞ¼KMOHþKw wðHþÞ ðm(cid:4)Þ; (33) þcCO2(cid:3)axw(cid:6)M2þ(cid:7) 3 (cid:6)MCO0(cid:7)¼K K K K fðCO2Þaw(cid:6)M2þ(cid:7)ðm(cid:4)Þ2; (34) þ Kw rffiffiffiffiffiffiKffiffiffisffiffiffiffiffiffiffi ðf(cid:4)Þaðw1(cid:3)xÞ=2 ðm(cid:4)Þ3=2: (42) 3 MCO03 c 1 2 ðf(cid:4)ÞðHþÞ2 cOH(cid:3) KcK1K2f1=2ðCO2Þ(cid:6)M2þ(cid:7)1=2 (cid:6)MHCOþ(cid:7)¼K K K fðCO2Þaw(cid:6)M2þ(cid:7)ðm(cid:4)Þ: (35) This is a fourth-order polynomial in (M2þ)1=2. After rear- 3 MHCOþ3 c 1 ðf(cid:4)ÞðHþÞ rangement,oneobtains J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions IUPAC-NISTSOLUBILITYDATASERIES.95-1 013105-9 0KMOHKwrffiffiffiffiffiffiKffiffiffisffiffiffiffiffiffiffiðf(cid:4)Þ1=2aðw1(cid:3)xÞ=2þKMHCOþ3 rffiKffiffiffisffiKffiffifficffiffiKffiffiffi1ffiffif1=2ðCO2Það1(cid:3)xÞ=21 (cid:6)M2þ(cid:7)2 2 (cid:6)M2þ(cid:7)3=2BB cMOHþ KcK1K2 f1=2ðCO2Þ cMHCOþ K2 ðf(cid:4)Þ1=2 w CC þ B 3 C ðm(cid:4)Þ2 cM2þ ðm(cid:4)Þ3=2 B@þ 1 rffiKffiffifficffiKffiffiffiffi1ffiffiKffiffiffi2ffiffif1=2ðCO2Það1þxÞ=2 CA cHþ Ks ðf(cid:4)Þ1=2 w : (43) (cid:6)M2þ(cid:7)1=2 1 rffiKffiffiffiffiKffiffiffiffiffiKffiffiffiffiffif1=2ðCO Þ K rffiffiffiffiffiffiKffiffiffiffiffiffiffiffiffiffiðf(cid:4)Þ1=2að1(cid:3)xÞ=2! (cid:3) s c 1 2 að1(cid:3)xÞ=2þ w s w ðm(cid:4)Þ1=2 cHCO(cid:3) K2 ðf(cid:4)Þ1=2 w cOH(cid:3) KcK1K2 f1=2ðCO2Þ 3 2K 1 (cid:3) s ¼0 c ax CO2(cid:3) w 3 This equation has one positive real root, (M2þ)1=2(m(cid:4))(cid:3)1=2, low, equilibration can take weeks or months. Also, due to which can be obtained by iteration. The solubility of the thelowsolubilityofmostMCO þH Osystems,recrystalli- 3 2 metalcarbonate,s,canbecalculatedas zation is extremely slow, which increases the risk of crystal size effects. For these reasons, the evaluation of the open s¼½M2þ(cid:6)þ½MOHþ(cid:6)þ½MHCOþ(cid:6)þ½MCO0(cid:6): (44) systemwasconductedfirst,andclosedsystemmeasurements 3 3 were evaluated by comparison with model predictions using Substitutionoftheappropriateequationsleadsto K valuesobtainedintheopensystemevaluation. s Again the charge balance was used as a starting point (cid:6)M2þ(cid:7) K K rffiffiffiffiffiffiKffiffiffiffiffiffiffiffiffiffiað1(cid:3)xÞ=2(cid:6)M2þ(cid:7)1=2 (Eq. (28)). This time a second balance is needed, as the s¼ þ MOH w s w amountofalkalineearthmetalinthesolutionmustequalthe c c K K K f1=2ðCO Þ M2þ MOHþ c 1 2 2 amountoftotalcarbonate, (cid:5)ðf(cid:4)Þ1=2ðm(cid:4)Þ1=2 þKMHCOþ3 rffiKffiffiffisffiKffiffifficffiffiKffiffiffi1ffiffif1=2ðCO2Það1(cid:3)xÞ=2(cid:6)M2þ(cid:7)1=2ðm(cid:4)Þ1=2 ½M2þ(cid:6)þ½MOHþ(cid:6)þ½MHCOþ3(cid:6)þ½MCO03(cid:6) cMHCOþ3 K2 ðf(cid:4)Þ1=2 w ¼½CO2ðaqÞ(cid:6)þ½HCO(cid:3)3(cid:6)þ½CO23(cid:3)(cid:6) þKMCO03Ksðm(cid:4)Þ: (45) þ½MHCOþ3(cid:6)þ½MCO03(cid:6): (46) ax w Twospecies contain bothametalatomandacarbonatespe- Equations(43)and(45)calculatethesolubilityofanalkaline cies,andcanbeleftoutofthebalance.Theequationiswrit- earthcarbonate for agiven setof equilibrium constants(and tenintermsofactivities, hence the temperature), including K, and the fugacity of s CO2. In practice, our intention was to derive a value of Ks (cid:6)M2þ(cid:7) ðMOHþÞ ðCO ðaqÞÞ (cid:6)HCO(cid:3)(cid:7) (cid:6)CO2(cid:3)(cid:7) for each solubility measurement. For that purpose, the value þ ¼ 2 þ 3 þ 3 : c c c c c of s was determined for different values of Ks, and Ks was M2þ MOHþ CO2 HCO(cid:3)3 CO23(cid:3) determinedfromsbyiteration.Withineachiteration,theac- (47) tivity coefficients and the water activity need to be known. They were calculated with the Pitzer formalism, but for that AlltheactivitiesinEqs.(28)and(47)arewrittenintermsof theconcentrationofallthespeciesneedtobeknown.Hence, the M2þ activity and the Hþ activity, in order to obtain two an iteration within the iteration was needed where Eq. (43) equationswithtwounknowns, was solved with provisional values of the activity coeffi- cients, and the resulting concentrations were entered in the (cid:6)HCO(cid:3)(cid:7)¼ Ks ðHþÞ ðm(cid:4)Þ; (48) Pitzer equations to obtain activity coefficients for the next 3 K ax(cid:6)M2þ(cid:7) 2 w iteration,untilconvergencewasreached. 1.3.2.2. Model equations for closed system. By (cid:6)CO23(cid:3)(cid:7)¼Ksax(cid:6)M12þ(cid:7)ðm(cid:4)Þ2; (49) closedsystem,wemeantheMCO þH Osystemcontaining w 3 2 a solid MCO phase and an aqueous phase. Experimentally 3 K a this system is much more challenging than the open system ðOH(cid:3)Þ¼ w wðm(cid:4)Þ2; (50) ðHþÞ because contamination of CO from the surroundings can 2 influencethesolubilitymarkedly.Somestudiesattemptedto a (cid:6)M2þ(cid:7) minimize this effect by stripping the solution with a CO2- ðMOHþÞ¼KMOHþKw wðHþÞ ðm(cid:4)Þ; (51) free gas after addition of MCO . However, this leads to a 3 system that cannot be described as MCO3þH2O. Such sys- K ðHþÞ2 temswereevaluatedwithgreatcaution,orrejected.Because ðCO ðaqÞÞ¼ s ; (52) 2 K K a1þx(cid:6)M2þ(cid:7) thedissolution rateoftheMCO3þH2Osystemisextremely 1 2 w J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions 013105-10 DEVISSCHERETAL. (cid:6)MCO0(cid:7)¼K K 1 ðm(cid:4)Þ; (53) with 3 MCO03 saxw (cid:3) pffiIffi 2 (cid:9) pffiffi(cid:10)(cid:4) XX (cid:6)MHCOþ(cid:7)¼KMHCOþ3KsðHþÞ: (54) F¼(cid:3)A/ 1þbpffiIffiþbln 1þb I þ mcmaB0ca 3 K ax c a 2 w X X X X þ m m /0 þ m m /0 : (59) c>c0 c c0 cc0 a>a0 a a0 aa0 SubstitutionoftheaboveequationsintoEq.(47),andsolving forthemetalionactivity,leadsto Intheaboveequations,thesubscriptsaandcrefertoanions vuuuffiffiffiffiffiffiKffiffiffisffiffiðffiHffiffiffiffiþffiffiffiÞffi2ffiffiffiffiffiffiffiffiffiþffiffiffiffiKffiffiffiffisffiðffiffiHffiffiffiþffiffiffiÞffiffiðffiffimffiffiffi(cid:4)ffiffiÞffiffiffiþffiffiffiffiffiKffiffiffisffiffiðffiffimffiffiffi(cid:4)ffiffiÞffiffi2ffiffi aanndd cZat(i¼onPs,aremspazeactþivPelyc;mzcizics)tihseachmaergaseunreumofbetrheofchioanrgie, (cid:6)M2þ(cid:7)¼uuuK1K2cCO21aw1þx K K2cHKCO(cid:3)3aaxw cCO23(cid:3)axw: (55) bminoalarlyitiyo.nBiinjtaenrdacCtiiojnarpeasrianmgleet-eerlefocrtrioolnystewpiathraamcehtearrsg,e/oijfitshea t þ MOHþ w wðm(cid:4)Þ samesign,w isaternaryioninteractionparameter,andk c c ðHþÞ ijk ni M2þ MOHþ isanion-neutralspeciesinteractionparameter. Substitution of the same equations in the charge balance Bij and B0ij are functions of ionic strength and depend on Eq.(28)leadsto two input parameters, bðij0Þ and bðij1Þ. Parameters Cij are writ- ten in terms of input parameters C/. The parameters / are 2(cid:6)M2þ(cid:7) K K a (cid:6)M2þ(cid:7) written in terms of input parameteirjs h . Details, as weiljl as þ MOHþ w w ðm(cid:4)Þ ij c c ðHþÞ comprehensive tables of ion interaction parameters, are M2þ MOHþ givenbyPitzer.23Anabridgedversionofthemodeldescrip- þKMHCOþ3KsðHþÞþðHþÞ tion is given in Pitzer.24 The Pitzer parameters used in this c K ax c MHCOþ 2 w Hþ volumearegivenbelow(Secs.1.3.3.6and1.3.3.7). 3 ¼ KsðHþÞ ðm(cid:4)Þþ 2Ks ðm(cid:4)Þ2 Intheequations,A/istheDebye-Hu¨ckelparameter,andb K2cHCO(cid:3)3axw(cid:6)M2þ(cid:7) cCO23(cid:3)axw(cid:6)M2þ(cid:7) gisivaencobnystBanrta,dtlaekyeanntdoPbietze1r.,22.5ManedthboydsAtrochcearlcaunladteWAa/nga.r2e6 K a þ w w ðm(cid:4)Þ2: (56) Thelatterschemewasusedhere.Thedifferencebetweenthe c ðHþÞ OH(cid:3) two schemes is negligible for the conditions considered in thisreview. BysubstitutingEq.(55)intoEq.(56),anequationin(Hþ)is obtained, which can be solved iteratively. Once (Hþ) is known,(M2þ)canbecalculated,aswellastheconcentration 1.3.2.4. Some thoughts on the calcium bicarbonate ion pair. The existence of the calcium bicarbonate ofallthespecies.Again,anadditionaliterationisrequiredto (CaHCOþ)ionpair(andotheralkalineearthbicarbonateion calculate the activitycoefficientsandthe water activity. The 3 pairs) has been subject to controversy for several decades. solubility predicted with the model is compared with meas- Asdiscussedbelow(Sec.1.3.3.6),moststudiesconductedat uredvaluesforevaluation. low ionic strength point at the existence of these ion pairs (e.g.,PlummerandBusenberg27),whereasstudiesconducted 1.3.2.3. The Pitzer ion interaction formalism. Ac- cording to the Pitzer framework,19–22 the activity coefficient at higher ionic strength do not point at any ion pairing (e.g., Pitzeretal.,28HeandMorse29).DeVisscherandVanderdee- ofacationMandananionXcanbedescribedasfollows: len30showedthatsomecalciumcarbonatesolubilitydataare lnc ¼z2FþXm ð2B þZC Þ consistent with the existence of the calcium bicarbonate ion X X c cX cX pair,whereasothersolubilitydataareinconsistentwithsuch c ! anionpair.Theirassumptionisthatcrystaldefects(e.g.,sur- X X þ m 2/ þ m w face charge) could explain why some solubility data are a Xa c cXa a c seemingly inconsistent with the existence of the calcium bi- X X carbonateionpair. þ m m w c>c0 c c0 cc0X Whatmayresolvetheinconsistencyinthedataistoassume XX X þjzXj mcmaCcaþ2 mnknX; (57) that the ion pair exists, but is so weak that it disintegrates at c a n elevated ionic strength. This could be described mathemati- X callybymeansofspecificioninteractioncoefficientsbetween lnc ¼z2Fþ m ð2B þZC Þ M M a Ma Ma CaHCOþ and the dominant counter ion (e.g., Cl(cid:3)). Harvie a ! etal.31f3ollowedthisapproachforMgOHþ.Giventhe specu- X X lativenatureofthisapproach,itwasnotadoptedhere,butthe þ m 2/ þ m w c Mc a Mca MHCOþ ion pair was included in the above thermodynamic c a 3 X X models as an optional species in this volume with a stability þ m m w a>a0 a a0 Maa0 constant, as opposed to using Pitzer parameters for the XX X þz m m C þ2 m k ; (58) M2þ(cid:3)HCO(cid:3) interaction. The model variant with a MHCOþ M c a ca n nM 3 3 c a n ion pair (no M(HCO ) Pitzer parameters) will be denoted 3 2 J.Phys.Chem.Ref.Data,Vol.41,No.1,2012 Downloaded 27 Mar 2012 to 132.163.193.247. Redistribution subject to AIP license or copyright; see http://jpcrd.aip.org/about/rights_and_permissions
Description: