ebook img

Iterative Block Tensor Singular Value Thresholding for Extraction of Low Rank Component of Image Data PDF

0.98 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Iterative Block Tensor Singular Value Thresholding for Extraction of Low Rank Component of Image Data

ITERATIVEBLOCKTENSORSINGULARVALUETHRESHOLDINGFOREXTRACTION OFLOWRANKCOMPONENTOFIMAGEDATA LongxiChen YipengLiu CeZhu SchoolofElectronicEngineering/CenterforRobotics/CenterforInformationinMedicine UniversityofElectronicScienceandTechnologyofChina(UESTC),Chengdu,611731,China emails: [email protected],{yipengliu,eczhu}@uestc.edu.cn 7 1 ABSTRACT 0 2 Tensorprincipalcomponentanalysis(TPCA)isamulti-linearextensionofprincipalcomponentanalysiswhichconvertsasetofcor- related measurements into several principal components. In this paper, we propose a new robust TPCA method to extract the principal n componentsofthemulti-waydatabasedontensorsingularvaluedecomposition. Thetensorissplitintoanumberofblocksofthesame a size. The low rank component of each block tensor is extracted using iterative tensor singular value thresholding method. The principal J componentsofthemulti-waydataaretheconcatenationofallthelowrankcomponentsofalltheblocktensors. Wegivetheblocktensor 5 incoherenceconditionstoguaranteethesuccessfuldecomposition. Thisfactorizationhassimilaroptimalitypropertiestothatoflowrank 1 matrixderivedfromsingularvaluedecomposition. Experimentally,wedemonstrateitseffectivenessintwoapplications,includingmotion separationforsurveillancevideosandilluminationnormalizationforfaceimages. ] V C IndexTerms— tensorprincipalcomponentanalysis,tensorsingularvaluedecomposition,lowranktensorapproximation,blocktensor . s 1. INTRODUCTION c [ Thehigh-dimensionaldata,alsoreferredtoastensors,arisenaturallyinanumberofscenarios,includingimageandvideoprocessing,and 1 datamining[1]. However,mostofthecurrentprocessingtechniquesaredevelopedfortwo-dimensionaldata[2]. Theprincipalcomponent v analysis(PCA)isoneofthemostwidelyusedoneintwo-dimensionaldataanalysis[3]. 3 TherobustPCA(RPCA),asanextensionofPCA,isaneffectivemethodinmatrixdecompositionproblems[4]. Supposewehavea 4 matrixX ∈Rn1×n2 ,whichcanbedecomposedasX =L0+S0,whereL0isthelowrankcomponentofthematrixandS0isthesparse 0 component. TheRPCAmethodhasbeenappliedtoimagealignment[5],surveillancevideoprocessing[6],illuminationnormalizationfor 4 faceimages[7]. Inmostapplications,theRPCAmethodshouldflattenorvectorizethetensordatasoastosolvetheprobleminthematrix. 0 Itdoesn’tusethestructuralfeatureofthedataeffectivelysincetheinformationlossinvolvesintheoperationofmatricization. . 1 Tensor robust principal component analysis (TRPCA) has been studied in [8, 9] based on the tensor singular value decomposition (t- 0 SVD).Theadvantageoft-SVDovertheexistingmethodssuchascanonicalpolyadicdecomposition(CPD)[10]andTuckerdecomposition 7 [11]isthattheresultinganalysisisvernyclosetothatofmatrixanalysis[12]. Similarly,supposewearegivenatensorX ∈Rn1×n2×n3 and 3 1 itcanbedecomposedintolowrankcomponentandsparsecomnponent.Wecnanwriteitas n n 3 n 3 n 3 v: n = n X =+Ln0+S0, + +n (1) i 1 c c c X whereL denotesthelowrankcomponent,andS isthespa1rsecomponen2tofthetensor. Fnig. 1istheillustrationforTRPCA.In[8]the 0 0 r problem(1)istransformedtotheconvexonptimizationmodel: 2 a min(cid:107)L (cid:107) +λ(cid:107)S (cid:107) , s.t.X =L +S , (2) 0 ∗ 0 1 0 0 L0,S0 where(cid:107)L (cid:107) isthetensornuclearnorm(seesection2forthedefinition),(cid:107)S (cid:107) denotesthe(cid:96) -norm. Inthepaper[9]theproblem(1)is 0 ∗ 0 1 1 transformedtoanotherconvexoptimizationmodelas: min(cid:107)L (cid:107) +λ(cid:107)S (cid:107) , s.t.X =L +S , (3) 0 ∗ 0 1,1,2 0 0 L0,S0 = + Fig.1:IllustrationofTRPCA. I I  J ,I  J I  J 1 3 3 1 1 3 3 I  J 2 2 J I 1 1 I I J 2 2 2 Fig.2:Illustrationoftheconcatenationofblocktensors. 1,1 1,2 1,q n 3  n 2,1 2,2 2,q 1 n 2 z,1 z,2 z,q Fig.3:Illustrationoftheblocktensordecompositionmodel. where(cid:107)S (cid:107) isdefinedasΣ (cid:107)S (i,j,:)(cid:107) .Thetwomethodssolvethetensordecompositionproblembasedonthet-SVD. 0 1,1,2 i,j 0 F The lowrank andsparse matrix decompositionhas beenimproved by the[13]. The mainidea is incorporating multi-scale structures withlowrankmethods.Theadditionalmulti-scalestructurescanobtainamoreaccuraterepresentationthanconventionallowrankmethods. Inspiredbythiswork,wenoticethatthesparsecomponentinmatrixisblock-distributedinsomeapplications,e.g. shadowandmotionin videos.Fortheseimageswefinditismoreeffectivetoextractthelowrankcomponentsinaanothersmallerscaleofimagedata.Herewetry toextractlowrankcomponentsinblocktensordatathatisstackedbysmallscaleofimagedata.Andwhenwedecomposethetensordatainto manysmallblocks,itiseasytoextracttheprincipalcomponentinsomeblocksthathavefewsparsecomponents. Wemodelourtensordata astheconcatenationofblocktensorsinsteadofsolvingtheRPCAproblemasawholebigtensor.Fig.2istheillustrationofconcatenationof blocktensors. Basedontheabovemotivation,wedecomposethewholetensorintoconcatenationofblocksofthesamesize,thenweextractlowrank componentofeachblockbyminimizingthetubalrankofeachblocktensor. Fig. 3istheillustrationofourmethod. Andwegetlowrank componentofthewholetensorbyconcatenatingallthelowrankcomponentsoftheblocktensors.Theproposedmethodcanbeusedtosome conventionalimageprocessingproblems,includingmotionseparationforsurveillancevideos(Section4.1)andilluminationnormalization forfaceimages(Section4.2).Theresultsofnumericalexperimentsdemonstratethatourmethodoutperformstheexistingmethodsintermof accuracy. 2. NOTATIONSANDPRELIMINARIES Inthissection,wedescribethenotationsanddefinitionsusedthroughoutthepaperbriefly[14,15,16,17]. Athird-ordertensorisrepresentedasA,andits(i,j,k)-thentryisrepresentedasA .A(i,j,:)denotesthe(i,j)-thtubalscalar.A(i,: i,j,k ,:),A(:,j,:)andA(:,:,k)arethei-thhorizontal,j-thlateralandk-thfrontalslices,respectively.(cid:107)A(cid:107) = (cid:113)(cid:80) |a |2 and(cid:107)A(cid:107) = F i,j,k ijk ∞ max |a |tensorkindsoftensornorms. i,j,k ijk Wecanviewathree-dimensionaltensorofsizen ×n ×n asann ×n matrixoftubes. Aˆisatensorwhichisobtainedbytaking 1 2 3 1 2 thefastFouriertransform(FFT)alongthethirdmodeofA.ForacompactnotationwewilluseAˆ=fft(A,[],3)todenotetheFFTalongthe thirddimension.Inthesameway,wecanalsocomputeAfromAˆusingtheinverseFFT(IFFT). Definition2.1(t-product)[12]Thet-productE =A∗Bof A∈Rn1×n2×n3 andB∈Rn2×n4×n3 isan n1×n4×n3tensor.The(i,j)-th tubeof E isgivenby (cid:88)n2 E(i,j,:)= A(i,k,:)•B(k,j,:), (4) k=1 where•denotesthecircularconvolutionbetweentwotubesofsamesize. Definition2.2(conjugatetranspose)[14]TheconjugatetransposeofatensorAofsizen ×n ×n isthen ×n ×n tensorAT 1 2 3 2 1 3 obtainedbyconjugatetransposingeachofthefrontalsliceandthenreversingtheorderoftransposedfrontalslicesfrom2ton . 3 Definition2.3(identitytensor)[14]TheidentitytensorI ∈Rn×n×n3 isatensorwhosefirstfrontalsliceisthen×nidentitymatrixand allotherfrontalslicesarezero. Definition2.4(orthogonaltensor)[14]AtensorQisorthogonalifitsatisfies QT∗Q=Q∗QT =I. (5) Definition2.5(f-diagonaltensor)[14]Atensoriscalledf-diagonalifeachofitsfrontalslicesisadiagonalmatrix. Definition2.6(t-SVD)[14]ForA∈Rn1×n2×n3 ,thet-SVDof Aisgivenby A=U∗S∗VT (6) whereU andVareorthogonaltensorsofsizen ×n ×n andn ×n ×n respectively,andSisaf-diagonaltensorofsizen ×n ×n . 1 1 3 2 2 3 1 2 3 We can obtain this decomposition by computing matrix singular value decomposition (SVD) in the Fourier domain, as it shows in Algorithm1.Fig.4illustratesthedecompositionforthethree-dimensionalcase. Algorithm1:t-SVDfor3-waydata Input:A∈Rn1×n2×n3 D←fft(A,[],3), fori=1ton ,do 3 [U,S,V]=svd(D(:,:,i)), Uˆ(:,:,i)=U, Sˆ(:,:,i))=S, Vˆ(:,:,i)=V, endfor U ←ifft(Uˆ,[],3), S ←ifft(Sˆ,[],3), V ←ifft(Vˆ,[],3), Output:U,S,V n n n n 3 3 3 3 = * * n n n n 2 1 1 1 n n n n 2 2 1 2 Fig.4:Illustrationofthet-SVDofann ×n ×n tensor. 1 2 3 Definition2.7(tensormulti-rankandtubalrank)[9]Thetensormulti-rankof A ∈ Rn1×n2×n3 isavectorr ∈ Rn3 withitsi-thentry astherankofthei-thfrontalsliceof Aˆ,i.e.r =rank(Aˆ(:,:,i)).Thetensortubalrank,denotedbyrank (A),isdefinedasthenumberof i t nonzerosingulartubesof S,whereSisfrom A=U∗S∗VT,i.e. rank (A)=#{i:S(i,i,:)(cid:54)=0}=maxr (7) t i i Definition2.8(tensornuclearnorm: TNN)[9]ThetensornuclearnormofA∈Rn1×n2×n3 denotedby(cid:107)A(cid:107)∗ isdefinedasthesumof thesingularvaluesofallthefrontalslicesof Aˆ. TheTNNof A isequaltotheTNNof blkdiag(Aˆ). Hereblkdiag(Aˆ)isablockdiagonal matrixdefinedasfollows:  Aˆ(1)   Aˆ(2)  blkdiag(Aˆ)= ... , (8) Aˆ(n3) whereAˆ(i)isthei-thfrontalsliceof Aˆ,i=1,2,...,n . 3 Definition2.9(standardtensorbasis)[12]Thecolumnbasis,denotedas˚e ,isatensorofsizen×1×n withits(i,1,1)-thentryequaling i 3 to1andtherestequalingto0.Naturallyitstranspose˚eTiscalledrowbasis. i 3. ITERATIVEBLOCKTENSORSINGULARVALUETHRESHOLDING Wedecomposethewholetensorwhichsatisfiestheincoherenceconditionsintomanysmallblocksofthesamesize.Andthethirddimension of the block size should be the same as the third dimension of the tensor. That is to say, given an input tensor X ∈ Rn1×n2×n3 and its correspondingblocksize, weproposeamulti-blocktensormodelingthatmodelsthetensordataX astheconcatenationofblocktensors. Andeachblocktensorcanbedecomposedintotwocomponents,i.e. X =L +S , p=1,··· ,P,whereL andS denotethelowrank p p p p p componentandsparsecomponentofblocktensorX respectively. p AsobservedinRPCA,thelowrankandsparsedecompositionisimpossibleinsomecases[4]. Similarly,wearenotabletoidentifythe lowrankcomponentandsparsecomponentifthetensorisofbothlowrankandsparsity.Similartothetensorincoherenceconditions[8],we assumetheblocktensordataL ineachblocksatisfiessomeblocktensorincoherenceconditionstoguaranteesuccessfullowrankcomponent p extraction. Definition 3.1 (block tensor incoherence conditions) For Lp ∈ Rn×n×n3, assume that rankt(Lp) = r and it has the t-SVD Lp = Up∗Sp∗VpT,whereUp ∈Rn×r×n3 andVp ∈Rn×r×n3 satisfyUpT∗Up =IandVpT∗Vp =I,andSp ∈Rr×r×n3 isanf-diagonaltensor. ThenL satisfiesthetensorincoherenceconditionswithparameterµif p (cid:114) µr max (cid:107)UT∗˚e (cid:107) (cid:54) (9) i=1,...,n p i F nn3 (cid:114) µr max (cid:107)VT∗˚e (cid:107) (cid:54) (10) j=1,...,n p j F nn3 and (cid:114) µr (cid:107)U ∗VT(cid:107) (cid:54) (11) p p ∞ n2n2 3 Theincoherenceconditionguaranteesthatforsmallvaluesofµ,thesingularvectorsarenotsparse. ThenthetensorLp ∈ Rn×n×n3 canbe decomposedintolowrankcomponentandsparsecomponent. Forextractingthelowrankcomponentfromeveryblock,weprocessthetensornuclearnormofL ,i. e. (cid:107)L (cid:107) =(cid:107)blkdiag(Lˆ )(cid:107) . p p TNN p ∗ HerewecanusesingularvaluethresholdingoperatorintheFourierdomaintoextractthelowrankcomponentoftheblocktensor[18,19]. Theproposedmethodiscallediterativeblocktensorsingularvaluethresholding(IBTSVT).Thethresholdingoperatorusedhereisthesoft oneD asfollows: τ D (L )=sign(blkdiag(Lˆ ))(|blkdiag(Lˆ )|−τ) , (12) τ p p p + where“() ”keepsthepositivepart. + AfterweextractthelowrankcomponentL = L (cid:1)L (cid:1)···(cid:1)L ,where(cid:1)denotesconcatenationoperation,wecangetthesparse 1 2 P componentofthetensorbycomputingtheS =X −L.SeeAlgorithm2indetails. Algorithm2:IBTSVT Input:tensordataX ∈Rn1×n2×n3 Initialize:givenµ,η,(cid:15),τ,and blocktensorsX ofsizen×n×n ,p=1,··· ,P p 3 whilenotconvergeddo 1.Updateη:=η×µ, 2.Updateτ :=τ/η, 3.ComputeX :=D (X ),p=1,··· ,P. p τ p endwhile: (cid:107)X −X (cid:107) /(cid:107)X (cid:107) ≤(cid:15)at(k+1)-thstep. k+1 k F k F Output:L=X (cid:1)X (cid:1)···(cid:1)X 1 2 P Inourmethod,theblocksizecan’tbetoolarge.Thelargesizeoftheblockwillmakethesparsepartcontainsomelowrankcomponent. Andifthesizeoftheblockistoosmall,thecomputationaltimewillbelong. Becausethenumberoft-SVDsislarge. Generally,wecan chooseourblocksize2×2×n . 3 Inouralgorithm,wechooseµ = 1.8,η = 1,(cid:15) = 10−2. Butthethresholdingparameterτ isdifficulttodetermine. Herewecanget √ avaluebyexperience. Asdiscussedin[8],thethresholdingparametercouldbeτ = 1/ nn foreveryblock. Thisvalueisfordenoising 3 √ probleminimagesorvideos,wherethenoiseisuniformlydistributed. Butfordifferentapplications,itshouldbedifferentfrom1/ nn . 3 Because in these applications, the sparse component in data is not uniformly distributed, such as shadow in face images and motion in surveillancevideos. 4. EXPERIMENTALRESULTS Inthissection,weconductnumericalresultstoshowtheperformanceofthemethod.WeapplyIBTSVTmethodontwodifferentrealdatasets thatareconventionallyusedinlowrankmodel: motionseparationforsurveillancevideos(Section4.1)andilluminationnormalizationfor faceimages(Section4.2). 4.1. MotionSeparationforSurveillanceVideos Insurveillancevideo,thebackgroundonlychangesitsbrightnessoverthetime,anditcanberepresentedasthelowrankcomponent. And theforegroundobjectsarethesparsecomponentinvideos. Itisoftendesiredtoextracttheforegroundobjectsfromthevideo. Weusethe proposedIBTSVTmethodtoseparatetheforegroundcomponentfromthebackgroundone. We use the surveillance video data used in [6]. Each frame is of size 144×176 and we use 20 frames. The constructed tensor is √ X ∈R144×176×20andtheselectedblocksizeis2×2×20.Thethresholdingparameterisτ =20/ nn . 3 Fig. 5 shows one of the results. We can find that IBTSVT method correctly recovers the background, while the sparse component correctlyidentifiesthemovingpedestrians.Itshowstheproposedmethodcanrealizemotionseparationforsurveillancevideos. Fig.5: IBTSVTonasurveillancevideo. (a)originalvideo; (b)lowrankcomponentthatisvideobackground; (c)sparsecomponentthat representstheforegroundobjectsofvideo. 4.2. Illuminationnormalizationforfaceimages Thefacerecognitionalgorithmsaresensitivetoshadoworocclusionsonfaces[7],andit’simportanttoremoveilluminationvariationsand shadowonthefaceimages.Thelowrankmodelisoftenusedforfaceimages[20]. Inourexperiments,weusetheYaleBfacedatabase[7].Eachfaceimageisofsize192×168with64differentlightingconditions.We √ constructthetensordataX ∈R192×168×64andchoosetheblocksize2×2×64.Wesetthethresholdingparameterτ =20/ nn . 3 Wecomparetheproposedmethodwithmulti-scalelowrankmatrixdecompositionmethod[13]andlowrank+sparsemethod[4]. Fig. 6showsoneofthecomparisonresults. TheIBTSVTmethodcanresultinalmostshadow-freefaces. Incontrast,theothertwomethodscan onlyrecoverthefaceswithsomeshadow. Inordertofurtherillustratetheeffectofshadoweliminationintherecoveredfaceimages,wecarryonfacedetectionwiththerecovered datafromdifferentmethods. Inourexperiments,weemploythefacedetectionalgorithmViola-Jonesalgorithm[21]todetectthefacesand theeyes.TheViola-Jonesalgorithmisaclassicalalgorithmwhichcanbeusedtodetectpeople’sfaces,noses,eyes,mouths,andupperbodies. InthefirstexperimentweputallfaceimagesintooneimageofJPGformat. Thenweusethealgorithmtodetectfacesinthenewlyformed image.Inthesecondexperiment,weusethealgorithmtodetecttheeyesofeveryfaceimage.ThesecondandthirdcolumnsofTable1show thedetectionaccuracyratiosofViola-Jonesalgorithmwithdifferentrecoveredfaceimages. Wetesthowlongthethreemethodsprocessthe 64faceimagesascanbeseeninthefourthcolumn.TheIBTSVTcanimprovetheefficiencybyparallelprocessingoftheblocktensors.From theresultofTable1,wecanfindourmethodgivesthebestdetectionperformance,becauseremovingshadowoffaceimagesishelpfulfor facedetection. facedetection eyedetection Time(s) Originalimage 0.297 0.58 NULL Lowrank+sparsity 0.375 0.70 10 Multiscalelowrank 0.359 1.00 4472 IBTSVT 0.844 1.00 715 Table1:TheaccuracyratiosoffacesandeyesdetectionbyViola-Jonesalgorithmandthecomputationaltimetoprocessfaceimages. Fig.6: Threemethodsforfacewithunevenillumination: (a)originalfaceswithshadows;(b)lowrank+sparsemethod;(c)multi-scalelow rankdecomposition;(d)IBTSVT. 5. CONCLUSIONS Inthispaper,weproposedanovelIBTSVTmethodtoextractthelowrankcomponentofthetensorusingt-SVD.TheIBTSVTisagoodway toutilizethestructuralfeatureoftensorbysolvingTPCAprobleminblocktensorform.Wehavegiventhetensorincoherenceconditionsfor blocktensordata.Forapplications,weconsideredmotionseparationforsurveillancevideosandilluminationnormalizationforfaceimages, andnumericalexperimentsshoweditsperformancegainscomparedwiththeexistingmethods. 6. ACKNOWLEDGMENT ThisworkissupportedbyNationalHighTechnologyResearchandDevelopmentProgramofChina(863,No. 2015AA015903),National NaturalScienceFoundationofChina(NSFC,No. 61602091,No. 61602091),theFundamentalResearchFundsfortheCentralUniversities (No. ZYGX2015KYQD004, No. ZYGX2015KYQD004), and a grant from the Ph.D. Programs Foundation of Ministry of Education of China(No.20130185110010). 7. REFERENCES [1] T.G.KoldaandJ.Sun, “Scalabletensordecompositionsformulti-aspectdatamining,” inIEEEInternationalConferenceonData Mining.IEEE,2008,pp.363–372. [2] J.Friedman,T.Hastie,andR.Tibshirani,Theelementsofstatisticallearning,vol.1,SpringerseriesinstatisticsSpringer,Berlin,2001. [3] I.Jolliffe, PrincipalComponentAnalysis, NewYork:Springer,2002. [4] E.J.Cande`s,X.Li,Y.Ma,andJ.Wright, “Robustprincipalcomponentanalysis,” JournaloftheACM,vol.58,no.3,pp.1–73,2011. [5] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL: robust alignment by sparse and low-rank decomposition for linearly correlatedimages,” IEEETransactionsonPatternAnalysisandMachineIntelligence,vol.34,no.11,pp.2233–2246,2010. [6] L. Li, W. Huang, I. Y. H. Gu, and Q. Tian, “Statistical modeling of complex backgrounds for foreground object detection,” IEEE TransactionsonImageProcessing,vol.13,no.11,pp.1459–72,2004. [7] A.S.Georghiades,P.N.Belhumeur,andD.J.Kriegman, “Fromfewtomany: Illuminationconemodelsforfacerecognitionunder variablelightingandpose,” IEEETransactionsonPatternAnalysisandMachineIntelligence,vol.23,no.6,pp.643–660,2001. [8] C.Lu,Y.ChenJ.Feng,W.Liu,Z.Lin,andS.Yan, “Tensorrobustprincipalcomponentanalysis:Exactrecoveryofcorruptedlow-rank tensorsviaconvexoptimization,” inTheIEEEConferenceonComputerVisionandPatternRecognition,June2016. [9] Z.Zhang,G.Ely,S.Aeron,N.Hao,andM.Kilmer, “Novelmethodsformultilineardatacompletionandde-noisingbasedontensor- svd,” ComputerScience,vol.44,no.9,pp.3842–3849,2014. [10] A.Cichocki,D.Mandic,L.DeLathauwer,G.Zhou,Q.Zhao,C.Caiafa,andH.A.Phan, “Tensordecompositionsforsignalprocessing applications:Fromtwo-waytomultiwaycomponentanalysis,” IEEESignalProcessingMagazine,vol.32,no.2,pp.145–163,2014. [11] L.DeLathauwer,B.DeMoor,andJ.Vandewalle, “Amultilinearsingularvaluedecomposition,” SIAMJournalonMatrixAnalysisand Applications,vol.21,no.4,pp.1253–1278,2000. [12] Z.ZhangandS.Aeron, “Exacttensorcompletionusingt-svd,” arXivpreprintarXiv:1502.04689,2015. [13] F.OngandM.Lustig, “Beyondlowrank+sparse: Multiscalelowrankmatrixdecomposition,” IEEEJournalofSelectedTopicsin SignalProcessing,vol.10,no.4,pp.672–687,2015. [14] M.E.KilmerandC.D.Martin, “Factorizationstrategiesforthird-ordertensors,” LinearAlgebraanditsApplications,vol.435,no.3, pp.641–658,2011. [15] K.Braman, “Third-ordertensorsaslinearoperatorsonaspaceofmatrices,” LinearAlgebraandItsApplications,vol.433,no.7,pp. 1241–1253,2010. [16] M. E. Kilmer, E. Misha, K. Braman, N. Hao, and R. C. Hoover, “Third-order tensors as operators on matrices: a theoretical and computationalframeworkwithapplicationsinimaging,” SIAMJournalonMatrixAnalysisandApplications,vol.34,no.1,pp.148– 172,2013. [17] T.G.KoldaandB.W.Bader, “Tensordecompositionsandapplications,” SIAMReview,vol.66,no.4,pp.294–310,2005. [18] J.F.Cai,E.J.Cande`s,andZ.Shen, “Asingularvaluethresholdingalgorithmformatrixcompletion,” SIAMJournalonOptimization, vol.20,no.4,pp.1956–1982,2008. [19] G.A.Watson, “Characterizationofthesubdifferentialofsomematrixnorms,” LinearAlgebraandItsApplications,vol.170,no.6,pp. 33–45,1992. [20] R. Basri and D. W. Jacobs, “Lambertian reflectance and linear subspaces,” IEEE Transactions on Pattern Analysis and Machine Intelligence,vol.25,no.2,pp.218–233,2003. [21] P.ViolaandM.Jones,“Rapidobjectdetectionusingaboostedcascadeofsimplefeatures,”inComputerVisionandPatternRecognition. IEEE,2001,vol.1,pp.I–511.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.