ebook img

ISO Science Legacy: A Compact Review of ISO Major Achievements PDF

435 Pages·2005·9.731 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ISO Science Legacy: A Compact Review of ISO Major Achievements

ISO SCIENCE LEGACY A Compact Review of ISO Major Achievements Coverfigures: Background ISOCAMimageoftheRhoOphiuchiCloud, Abergeletal.AstronomyandAstrophysics315,L329 Leftinserts,fromtoptobottom: 170 μm ISOPHOT map of the Small Magellanic Cloud (40(cid:2)(cid:2) pixel size, 1(cid:2) resolution)fromWilkeetal.,A&A401,873–893(2003). 2–200 micron composite spectrum of the Circinus galaxy obtained with the SWS and LWS spectrometers showing a plethora of atomic, ionic and molecular spectral,alongwithvarioussolid-statefeaturesfromdustgrainsofdifferentsizes inVermaetal.thisvolume. Water vapour spectral lines detected in the atmospheres of all four giant planets andTitan,inCernicharoandCrovisier,thisvolume. CristallinesilicatesdetectedbyISOindifferentenvironments,instars(youngand old)andincometHale-BoppinMolsterandKemper,thisvolume. Purerotationalhydrogenlinesobservedtowardsthemolecularhydrogenemission peakoftheRhoOphiuchifilamentinHabart,thisvolume. ISOSCIENCELEGACY ACompactReviewofISOMajorAchievements Editedby CATHERINECESARSKY EuropeanSouthernObservatory, Garching,Munich, Germany and ALBERTOSALAMA EuropeanSpaceAgency, Madrid, Spain ReprintedfromSpaceScienceReviews,Volume119,Nos.1–4,2005 A.C.I.P.CataloguerecordforthisbookisavailablefromtheLibraryofCongress ISBN:1-4020-3843-7 PublishedbySpringer P.O.Box990,3300AZDordrecht,TheNetherlands SoldanddistributedinNorth,CentralandSouthAmerica bySpringer, 101PhilipDrive,Norwell,MA02061,U.S.A. Inallothercountries,soldanddistributed bySpringer, P.O.Box322,3300AHDordrecht,TheNetherlands Printedonacid-freepaper AllRightsReserved (cid:2)c 2005Springer Nopartofthematerialprotectedbythiscopyrightnoticemaybereproducedor utilisedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recordingorbyanyinformationstorageand retrievalsystem,withoutwrittenpermissionfromthecopyrightowner PrintedintheNetherlands TABLEOFCONTENTS Foreword vii GENERAL FRANKMOLSTERandCISKAKEMPER/CrystallineSilicates 3–28 JOSE´ CERNICHARO and JACQUES CROVISIER / Water in Space: The WaterWorldofISO 29–69 EMILIEHABART,MALCOLMWALMSLEY,LAURENTVERSTRAETE, STEPHANIE CAZAUX, ROBERTO MAIOLINO, PIERRE COX, FRANCOISBOULANGERandGUILLAUMEPINEAUDESFOREˆTS/ MolecularHydrogen 71–91 DAVID ELBAZ / Understanding Galaxy Formation with ISO Deep Surveys 93–119 SOLARSYSTEM THIERRY FOUCHET, BRUNO BE´ZARD and THERESE ENCRENAZ / ThePlanetsandTitanObservedbyISO 123–139 THOMASG.MU¨LLER,PE´TERA´BRAHA´MandJACQUESCROVISIER/ Comets,AsteroidsandZodiacalLightasSeenbyISO 141–155 STARSandCIRCUMSTELLARMATTER BRUNELLA NISINI, ANLAUG AMANDA KAAS, EWINE F. VAN DISHOECK and DEREK WARD-THOMPSON / ISO Observations of Pre-StellarCoresandYoungStellarObjects 159–179 DARIOLORENZETTI/Pre-MainSequenceStarsSeenbyISO 181–199 MARIEJOURDAINDEMUIZON/DebrisDiscsAroundStars:The2004 ISOLegacy 201–214 JORIS A. D. L. BLOMMAERT, JAN CAMI, RYSZARD SZCZERBA and MICHAELJ.BARLOW/LateStagesofStellarEvolution 215–243 INTERSTELLARMEDIUM ALAIN ABERGEL, LAURENT VERSTRAETE, CHRISTINE JOBLIN, RENE´LAUREIJSandMARC-ANTOINEMIVILLE-DESCHEˆNES/The CoolInterstellarMedium 247–271 ELSPEETERS,NIEVESLETICIAMART´IN-HERNA´NDEZ,NEMESIOJ. RODR´IGUEZ-FERNA´NDEZand XANDERTIELENS/HighExcitation ISMandGas 273–292 EMMANUELDARTOIS/TheIceSurveyOpportunityofISO 293–310 OURLOCALUNIVERSE... MARCSAUVAGE,RICHARDJ.TUFFSand CRISTINAC.POPESCU/ NormalNearbyGalaxies 313–353 APRAJITA VERMA, VASSILIS CHARMANDARIS, ULRICH KLAAS, DIETERLUTZand MARTINHAAS/ObscuredActivity:AGN,Quasars, StarburstsandULIGsObservedbytheInfraredSpaceObservatory 355–407 ...ANDBEYOND SEB OLIVER and FRANCESCA POZZI / The European Large Area ISO Survey 411–423 LEO METCALFE, DARIO FADDA and ANDREA BIVIANO / ISO’s ContributiontotheStudyofClustersofGalaxies 425–446 FOREWORD Building upon pioneering work in the 1960’s and 1970’s using ground-based, rocket- and balloon-borne systems, the realm of infrared astronomy was fully opened by the first cryogenic telescope in space – IRAS, launched in 1983. Over itsten-monthlifetime,IRASsurveyedalmostthewholeskyinfourbroadinfrared bands. This survey permitted the first evaluations of the total energy emitted by varioussystemsinourgalaxyandinthelocaluniverse.However,itcouldnotad- dressthedetailedmechanismsandprocessesresponsiblefortheemissiondetected, nor the exploration of the distant universe. IRAS results graphically illustrated to astronomerstheneedforsensitiveinfraredobservatories,allowingdetailedspatial and spectroscopic study of specific targets. All over the world, high priority was assignedtocooledspaceinfraredtelescopes. Following the Japanese IRTS mission, the first major satellite of this type to fly was ESA’s Infrared Space Observatory (ISO). Launched in November 1995, ISO completed almost 30000 scientific observations in its 2.5-year operational lifetime. Making use of its four sophisticated and versatile scientific instruments (acamera,aphotopolarimeterandtwospectrometers),ISOprovidedastronomers withawealthofdataofunprecedentedsensitivityatinfraredwavelengthsfrom2.5 to240μm.ISOhasmade,andcontinuestomake,lastingcontributionstoallareas ofastronomy,fromthesolarsystemtothefrontiersofcosmology,unravellingthe historyoftheuniverse.Between1996and2004,over1200papersappearedinthe refereedliteraturebasedonISOdata. NASA’sSpitzerSpaceTelescope,launchedeightyearslater,hasenhancedcapa- bilitiescomparedtoISOand,onceagain,infraredastronomersareofferedmatchless observing opportunities. However, the published ISO results and the ISO archive remainavaluableresourceforresearchwork.Theyprovideguidelinesforstudies not only with Spitzer but also with future facilities, such as ASTRO- F, SOFIA, Herschel,JWSTandALMA. With the Spitzer Space Telescope now in full operations, we thought that it would be beneficial to the astronomical community to have at hand, in a single volume,areviewofthemaindiscoveriesowedtotheISOsatellite.Wedidnotask theISOfoundingfathersandmotherstowritethearticles,butinsteadturnedmostly towardsyoungerastronomerswhosecareershavebeenstronglyinfluencedbyISO. Thearticleshavebeenrefereedbyourselvesorbyotherscientistsatourrequest.The bookisorganisedasfollows:first,overviewsoffourmajorthemesinvestigatedwith ISO(crystallinesilicates,molecularhydrogen,deepsurveys;waterintheuniverse), andthenthirteenchaptersreviewingISOsciencefromthesolarsystemtothedistant universe.ItisnotpossibletogatherinonebookalltheadvancesduetoISO,butwe hopethatthiscompendiumofover480pageswillgivetheessenceoftheoriginal resultsobtainedbythefirstfull-fledgedspaceinfraredobservatory. CatherineCesarskyandAlbertoSalama Guesteditors GENERAL CRYSTALLINESILICATES FRANKMOLSTER1,∗andCISKAKEMPER2 1ESTEC/ESA,Keplerlaan1,2201AZNoordwijk,TheNetherlands 2(SpitzerFellow)DepartmentofPhysicsandAstronomy,UCLA,475PortolaPlaza,LosAngeles, CA90095-4705;Presentaddress:UniversityofVirginia,DepartmentofAstronomy,P.O.Box3818, Charlottesville,VA22903-0818,USA ∗ ( Authorforcorrespondence:E-mail:[email protected]) (Received16July2004;Acceptedinfinalform2November2004) Abstract. OneofthebigsurprisesoftheInfraredSpaceObservatory(ISO)hasbeendiscoveryof crystallinesilicatesoutsideourownSolarsystem.Itwasgenerallyassumedbeforethatallcosmic silicatesinspacewereofamorphousstructure.ThankstoISOweknownowthatcrystallinesilicates areubiquitousintheGalaxy(exceptforthediffuseISM)andsometimeseveninverylargequantities (>50%ofthesmalldustparticles).Theevolutionofthecrystallinesilicatesisstillnotcompletely clarified,butthecombinationoftheoreticalmodelingandobservationshavealreadyshedlighton theirlife-cycle.TheabsenceofcrystallinesilicatesinthediffuseISMprovidesuswithinformation aboutthedustamorphizationrateintheISM. Keywords: crystallinesilicates,infraredastronomy 1. Introduction Before the Infrared Space Observatory (ISO) opened the mid- and far-infrared rangeforhigh-resolutionspectroscopy,itwasgenerallyassumedthatcosmicdust silicateswereofamorphousstructure.Thecrystallinesilicates,thehighlyordered counterpartsoftheamorphoussilicates,wereonlyknowntobepresentonearth,in thesolarsystemincomets(Hanneretal.,1994;Hanner,1996),InterplanetaryDust Particles(IDPs)(MacKinnonandRietmeijer,1987;Bradleyetal.,1992)andinthe dust disk of β-Pictoris (Knacke et al., 1993; Fajardo-Acosta and Knacke, 1995), alsoacrystallineolivinefeaturewasreportedinthepolarized10μmspectrumof AFGL2591(Aitkenetal.,1988).ApartfromthecrystallinesilicatesintheIDP’s, that were found with the aid of transmission electron microscopy and only later confirmed by infrared spectroscopy (Bradley et al., 1992), in all other cases the crystalline silicate features were found by infrared spectro(polari)metry around 10μm. Withthepresentdayknowledgeitisrelativelyeasytounderstandwhycrystalline silicates were only discovered to be ubiquitous after ISO was operational. Before ISO was launched the primary MIR/FIR window for observations was around 10μm. And although the crystalline silicates do have strong features in this area, they are in general overwhelmed by emission from the much more abundant and SpaceScienceReviews(2005)119:3–28 DOI:10.1007/s11214-005-8066-x (cid:4)C Springer2005 4 F.MOLSTERANDC.KEMPER warmer amorphous silicates. Furthermore, most of the crystalline silicates have a (relatively) low temperature (<150K), which suppresses the intrinsically strong crystalline silicate features in the 10μm region. Thanks to the extended wave- length range (up to 200μm) of the spectrographs on board ISO, the composition of the cold (<150K) dust, which has the top of its SED at wavelengths above 15μm, could be studied in detail for the first time. With ISO, crystalline silicates have been found around young stars (Waelkens et al., 1996), comets (Crovisier et al., 1997), and evolved stars (Waters et al., 1996) (see Figure 2), but not con- vincingly so in the interstellar medium. The presence of the crystalline silicates in the different galactic environments will be discussed in Section 2. The proper- tiesofthecrystallinesilicateswillbediscussedinSection3.InSection4wewill discuss the crystalline silicate (trans-)formation and destruction processes based on the ISO (and other astronomical) observations in comparison with laboratory measurements. 2. TheUbiquitousPresenceofCrystallineSilicates 2.1. WHAT ARE SILICATES? Silicatesarethemostcommonformofmineralsinthesolarsystem,andprobably alsobeyond.Chemically,theyconsistofsilicatetrahedras(SiO )whicharecom- 4 bined with metal cations, such as Mg2+ or Fe2+ in a lattice structure. In ordered (crystalline) lattice structures, the tetrahedras can share their oxygen atoms with othertetrahedrastoformdifferenttypesofsilicates:olivines:(Mg,Fe,...) SiO , 2 4 pyroxenes: (Mg, Fe,...)SiO or quartz: SiO . In case of unordered (amorphous) 3 2 structures,thenumberofsharedoxygen-atomsmayvaryforeachsilica-anion(see Figure1).ThereaderisreferredtoforinstanceKleinandHurlbut(1993)formore backgroundreadingonmineralogy. Spectroscopically,allsilicates,amorphousandcrystallinealike,willshowres- onances around 10 and 20 μm in the mid-infrared, due to the Si O stretching and the O Si O bending mode arising from the silica-tetrahedras. Alignment of the tetrahedras may cause sharp peaked resonances, whereas amorphous silicates willshowabroadfeaturewhichcanbeseenasablendofsuchsharpresonances. Crystallinesilicatescanalsobedistinguishedfromamorphoussilicatesduetothe presenceoflatticemodesatλ (cid:2) 25μm,seeFigure1. The formation temperature determines whether a silicate grain becomes crys- talline or amorphous. If silicates are formed above the glass temperature (T ), glass then there is enough mobility in the silicate to from the crystalline, energetically mostfavorable,latticestructure.However,whenthesilicatescondenseatlowertem- peratures,suchmobilityisnotpresent,andthegrainsolidifiesinamorphousform. Amorphous grains can become crystalline by annealing (crystallization through heating) or vaporization and recondensation above the glass temperature. Hence,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.