ebook img

Investigation of deposition conditions and annealing treatments on sputtered ZnO:Al thin films PDF

204 Pages·2017·54.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Investigation of deposition conditions and annealing treatments on sputtered ZnO:Al thin films

Investigation of deposition conditions and annealing treatments on sputtered ZnO:Al thin films: Material properties and application to microcristalline silicon solar cells Coralie Charpentier To cite this version: Coralie Charpentier. Investigation of deposition conditions and annealing treatments on sputtered ZnO:Al thin films: Material properties and application to microcristalline silicon solar cells. Plasma Physics [physics.plasm-ph]. Ecole Polytechnique X, 2012. English. ￿NNT: ￿. ￿pastel-00801746￿ HAL Id: pastel-00801746 https://pastel.archives-ouvertes.fr/pastel-00801746 Submitted on 18 Mar 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The`se pr´esent´ee en vue d’obtenir le grade de Docteur de l’Ecole Polytechnique Sp´ecialit´e Science des Mat´eriaux par Coralie Charpentier [email protected] Investigation of deposition conditions and annealing treatments on sputtered ZnO:Al thin films: Material properties and application to µc-Si:H solar cells Th`ese soutenue le 20 D´ecembre 2012 devant le jury compos´e de: Prof. Farzaneh Arefi-Khonsari Pr´esidente du jury Dr. Ang´elique Bousquet Rapporteur Prof. Daniel Bellet Rapporteur Prof. Daniel Lincot Examinateur Dr. Fabien Paumier Examinateur Dr. Bruno Delahaye Examinateur Dr. Thierry Emeraud Invit´e Dr. Patricia Prod’homme Co-encadrante Prof. Pere Roca i Cabarrocas Directeur de th`ese Contents Introduction 1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1 Fundamentals on TCOs and ZnO:Al thin films 13 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.1 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.2 Chemical etching behaviour . . . . . . . . . . . . . . . . . . . . . . 16 1.3 Thermodynamic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Energy band structure . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.2 Carrier transport mechanisms . . . . . . . . . . . . . . . . . . . . . 18 1.5 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.1 Dielectric function . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.2 Transmittance and reflectance spectra . . . . . . . . . . . . . . . . 24 1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Growth and Characterization techniques of ZnO:Al thin films 31 2.1 Deposition and post-deposition treatments . . . . . . . . . . . . . . . . . . 32 2.1.1 RF magnetron sputtering of ZnO:Al thin films . . . . . . . . . . . . 32 2.1.2 Post-deposition treatments . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.3 Etching process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1.4 PECVD silicon deposition . . . . . . . . . . . . . . . . . . . . . . . 37 2.1.5 Back contact deposition . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 Characterization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.1 Structural characterizations . . . . . . . . . . . . . . . . . . . . . . 39 2.2.2 Morphological characterizations . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Optical characterizations . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.4 Electrical characterizations . . . . . . . . . . . . . . . . . . . . . . . 54 2.2.5 Solar cell characterizations . . . . . . . . . . . . . . . . . . . . . . . 57 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 i 3 Optimization of ZnO:Al thin film deposition 67 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Influence of the argon pressure . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.1 Effect on deposition rate . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2.2 Effect on microstructural properties . . . . . . . . . . . . . . . . . . 71 3.2.3 Effect on morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.4 Effect on opto-electronic properties . . . . . . . . . . . . . . . . . . 76 3.3 Influence of the substrate temperature . . . . . . . . . . . . . . . . . . . . 77 3.3.1 Effect on microstructural properties . . . . . . . . . . . . . . . . . . 77 3.3.2 Effect on morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.3 Effect at low thickness . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.4 Effect on opto-electronic properties . . . . . . . . . . . . . . . . . . 81 3.4 Discussion and correlation with the growth mechanisms . . . . . . . . . . . 82 3.4.1 Structure evolution with increasing argon pressure and substrate temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.2 Structure evolution with increasing thickness . . . . . . . . . . . . . 84 3.4.3 Optimum of the opto-electronic properties . . . . . . . . . . . . . . 88 3.5 Influence of the RF sputtering power . . . . . . . . . . . . . . . . . . . . . 90 3.5.1 Effect on deposition rate . . . . . . . . . . . . . . . . . . . . . . . . 90 3.5.2 Effect on microstructural properties . . . . . . . . . . . . . . . . . . 90 3.5.3 Effect on morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.5.4 Effects on opto-electronic properties . . . . . . . . . . . . . . . . . . 91 3.6 Influence of the oxygen partial pressure . . . . . . . . . . . . . . . . . . . . 92 3.6.1 Effect on opto-electronic properties . . . . . . . . . . . . . . . . . . 93 3.7 Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.8 Fundamental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.8.1 Optical modelling of free electrons . . . . . . . . . . . . . . . . . . . 96 3.8.2 Temperature-dependent conductivities . . . . . . . . . . . . . . . . 99 3.8.3 Conclusion: comparison of the deposition parameters . . . . . . . . 100 3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4 Post-deposition treatments 109 4.1 Thermal annealing treatments . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.1.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . 112 4.1.3 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.1.4 Electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.1.5 Microstructural properties through ex-situ studies . . . . . . . . . 120 4.1.6 Microstructural properties through in-situ studies . . . . . . . . . . 121 4.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.2 Laser annealing treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.2.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.3 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.4 Electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.2.5 Morphological properties . . . . . . . . . . . . . . . . . . . . . . . . 135 4.2.6 Microstructural properties . . . . . . . . . . . . . . . . . . . . . . . 135 ii 4.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5 Integration of ZnO:Al films in microcrystalline silicon solar cells 147 5.1 Wet chemical etching step . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1.2 Influence of the argon pressure and the substrate temperature . . . 149 5.1.3 Influence of the RF sputtering power and initial thickness . . . . . 152 5.1.4 Influence of the oxygen partial pressure . . . . . . . . . . . . . . . . 155 5.1.5 Influence of the etching time . . . . . . . . . . . . . . . . . . . . . . 157 5.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.2 Integration in µc-Si:H solar cells . . . . . . . . . . . . . . . . . . . . . . . . 158 5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.2.2 Effect of the sputtering parameters . . . . . . . . . . . . . . . . . . 159 5.2.3 Effect of the post-deposition treatments . . . . . . . . . . . . . . . 162 5.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Conclusion and perspectives 177 List of publications 181 iii List of Figures 1 Renewable energy share of global final energy consumption in 2010 [7]. . . 1 2 Renewable power capacities (except hydropower) for European Union and the top seven countries in 2011 [7]. . . . . . . . . . . . . . . . . . . . . . . 2 3 Solar PV total world installed capacities between 2000 and 2011 [3]. . . . . 3 4 Market shares of top 15 solar PV module Manufacturers in 2011 [7]. . . . . 3 5 Evolution of the best research cell efficiencies for the different technologies (NREL, revised in December 2012) . . . . . . . . . . . . . . . . . . . . . . 4 6 pin configuration and corresponding schematic energy band diagram, with E the Fermi level, CB the conduction band, and VB the valence band. . . 5 F 7 ZnO:Al thin film deposited on glass substrate: As-deposited (a) and after a wet chemical etching step of 60 s (b). . . . . . . . . . . . . . . . . . . . . 6 1.1 Wurtzite crystal structure with oxygen atoms (yellow) and zinc atoms (grey) (a). Model for etching mechanism by acidic and alkaline solutions on polar ZnO faces (b) [22]. Orientations and associated directions of the wurtzite structure shown as a projection on the (001) basal plane (c) [34]. . 15 1.2 Schematic energy band structure of conventional TCO materials, with I , p Φ, E , E , E , E , and E , the ionization potential, work function, g0 vac C V F intrinsic band gap, vacuum level, conduction band minimum, valence band maximum, and Fermi level respectively [25]. . . . . . . . . . . . . . . . . . 17 1.3 Schematic band diagram of successive grains of length L and charge carrier trap density N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 t 1.4 Schematic band diagrams depending on the carrier concentration. . . . . . 21 1.5 ExperimentalHallmobilitydataofHagemarket al.[20,27]incomparisonto the theoretical lattice mobility µ . The crystals were vapor-phase grown, theo not intentionally doped, with a carrier density between 1 and 3×1016 cm-3 at RT. The contributions to the total mobility by the individual scattering processes: acoustic µ and polar-optical µ phonon, piezoelectric µ Hac Hop Hpie and ionized impurity scattering µ are also shown as dashed or dotted lines. 22 Hii 1.6 Optical spectra of typical ZnO:Al thin film. . . . . . . . . . . . . . . . . . 24 1.7 Schematic band structure for undoped (a) and heavily doped (b) ZnO. k F is the Fermi wave vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 Schematic representation of a RF magnetron sputtering system. . . . . . . 33 2.2 Schematic representation of the Alliance concept DP 650 system. . . . . . 34 2.3 Schematic representation of the Cameleon system. . . . . . . . . . . . . . . 35 v 2.4 Picture of the Excico laser annealing system. . . . . . . . . . . . . . . . . . 36 2.5 (a) Schema of laser irradiation of a 5 × 5 cm ZnO:Al sample at different fluences in J/cm2 and (b) picture of the irradiated sample. . . . . . . . . . 36 2.6 Picture of the ARCAM reactor (a) and schematic representation of one of the plasma chambers of the ARCAM reactor (b). . . . . . . . . . . . . . . 37 2.7 Schematic representation of θ-2θ configuration for XRD measurements. . . 39 2.8 ResultsfromXRDmeasurements: XRDprofileofZnO:Alfilmdepositedon glass substrate (a) and Williamson-Hall plots of films deposited at various temperatures (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.9 (a) First Brillouin zone of the wurtzite lattice, and (b) phonon dispersion relationsforZnOatroomtemperaturealongthemainsymmetrydirections. The white points indicate the phonons frequencies determined by Raman spectroscopy [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.10 Atomic vibrations associated to optical modes in wurtzite ZnO for zone center phonons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.11 Raman study: (a) Schematic representation of the Raman configuration ¯ used, in the Z(XY,XY)Z geometry, and (b) resulting Raman spectra of ZnO:Al film deposited on glass substrate. Allowed Raman modes are marked by dot vertical lines. The asterisks indicate additional modes. . . . 45 2.12 Atomic Force Microscope: (a) Schematic representation and (b) forces be- tween the tip and the sample. The red curve corresponds to the average force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.13 Schematic representation of the (a) configuration for total transmittance, and the (b) configuration for total reflectance, with integrating sphere. . . 49 2.14 Schematic representation of the (a) configuration for transmittance at 0◦, and the (b) configuration for reflectance at 8◦, with the ARTA accessory. . 50 2.15 Standard ellipsometer: (a) Schematic representation and (b) Representa- tion of a PSA comprising a photoelastic modulator (PEM) and a linear analyzer (A), set respectively at azimuths M and A. . . . . . . . . . . . . . 51 2.16 Schematic representation of the optical setup of a general Mueller ellip- someter. The Stokes formalisms has been used to represent the polariza- tion properties of light. In the framework of Stokes formalisms the optical properties of the PSG, sample and PSA can be represented by matrices. . . 52 2.17 Experimental (blue dots) and best-fitted (red line) spectroscopic Mueller matrices of a silicon wafer coated with a thermal SiO film of thickness 92 2 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.18 Schematic representation of the Hall effect. . . . . . . . . . . . . . . . . . . 54 2.19 Schematic representation of the van der Pauw configuration for the resis- tance (a) R = V /I , or (b) R = V /I . . . . . . . . . . . 55 AB,DC DC AB BC,AD AD BC 2.20 Schematic representation of the in-situ resistance system. . . . . . . . . . . 56 2.21 J(V) curve of µc-Si:H thin film solar cell. Efficiency η, fill factor FF, open circuit voltage V and short-circuit current density J are indicated, as OC SC well as the maximum power point MPP. . . . . . . . . . . . . . . . . . . . 57 3.1 Evolution of deposition rate of ZnO:Al thin films versus gas pressure. . . . 70 3.2 XRD profiles of ZnO:Al films deposited at various working pressures (a) and crystallite size (b) and strain (c) estimated from Williamson-Hall plots for ZnO:Al films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 vi 3.3 Raman spectra of ZnO:Al films deposited at various working pressures. . . 72 3.4 Fits of the A -LO band from Raman spectra of ZnO:Al films deposited at 1 various argon pressures: (a) 0.01 Pa, (b) 0.12 Pa, (c) 0.32 Pa, (d) 1.3 Pa, and (e) 2.2 Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5 TEM study on ZnO:Al films deposited at various pressures: Cross section bright field for film deposited at 0.01 Pa (a) and 2.2 Pa (b), Dark field on 002 spot for film deposited at 0.01 Pa (c) and 2.2 Pa (d), and diffraction pattern of the area (white circles) for film deposited at 0.01 Pa (e) and 2.2 Pa (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6 Theoretical diffraction pattern from the zone axis [010] and experimental diffraction pattern from ZnO:Al thin film deposited at 0.01 Pa near the substrate with an angular spreading in the growth direction [002]. . . . . . 75 3.7 Sequenceofdiffractionfromsubstrateinterface(a)tosurface(f)forZnO:Al thin film deposited at 0.01 Pa. . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.8 AFM images of the ZnO:Al films deposited at various of gas pressures: (a) 0.01 Pa, (b) 0.12 Pa, (c) 0.32 Pa and (d) 1.3 Pa. . . . . . . . . . . . . . . . 76 3.9 Opto-electronic properties of ZnO:Al thin films deposited at various pres- sures: (a) Resistivity (black curve), Hall mobility (red curve) and carrier concentration (blue curve). The gray area corresponds to the electrical optimum. (b) Transmittance spectra. . . . . . . . . . . . . . . . . . . . . . 77 3.10 XRD profiles of ZnO:Al films deposited at various substrate temperatures (a) and crystallite size and strain (b) estimated from Williamson-Hall plots for ZnO:Al films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.11 Raman spectra of ZnO:Al films deposited at various substrate temperatures. 78 3.12 Fit of the A -LO band from Raman spectra of ZnO:Al films deposited at 1 various substrate temperatures: (a) room temperature, (b) 100 ◦C, (c) 260 ◦C, and (d) 325 ◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.13 AFM images of the ZnO:Al films deposited at various substrate tempera- tures: (a) RT, (b) 100 ◦C, (c) 260 ◦C and (d) 325 ◦C. . . . . . . . . . . . . 79 3.14 XRD profiles of 50 nm thick ZnO:Al films deposited at RT and 325 ◦C (a), and AFM images of the ZnO:Al films deposited at RT (b), and 325 ◦C (c). 80 3.15 High resolution plan view TEM images of early stage film growth of 50 nm thick ZnO:Al film deposited at RT and 0.12 Pa. . . . . . . . . . . . . . . . 80 3.16 Opto-electronic properties of the ZnO:Al thin films deposited at various substrate temperatures: (a) Resistivity (black curve), Hall mobility (red curve)andcarrierconcentration(bluecurve). Thedashedareacorresponds to the electrical optimum. (b) Transmittance spectra. . . . . . . . . . . . . 81 3.17 Thornton structure zone model correlating the argon pressure and the substrate temperature to the microstructural properties of the sputtered films [51,52] (a). When increasing the argon pressure from 0.01 Pa to 2.2 Pa, the structure transits from zone T. to zone I. (b) and (c).. . . . . . . . 82 3.18 Thornton structure zone model correlating the argon pressure and the substrate temperature to the microstructural properties of the sputtered films [51,52] (a). When increasing the substrate temperature from room temperature to 325 ◦C, the structure transits from zone I. to zone T. (b) and (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 vii

Description:
par. Coralie Charpentier [email protected] . 5.1.3 Influence of the RF sputtering power and initial thickness . 152 . 3.1 Evolution of deposition rate of ZnO:Al thin films versus gas pressure 70. 3.2 XRD
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.