ebook img

Introduction to the theory of Gibbs point processes PDF

0.31 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to the theory of Gibbs point processes

Introduction to the theory of Gibbs point processes DEREUDREDavid 7 1 0 2 n a J 7 2 Abstract The Gibbs point processes (GPP) constitute a large class of point pro- cesseswithinteractionbetweenthepoints.Theinteractioncanbeattractive,repul- ] R sive, dependingon geometricalfeatures whereas the null interaction is associated P totheso-calledPoissonpointprocess.Inafirstpartofthismini-course,wepresent . several aspects of finite volume GPP defined on a bounded window in Rd. In a h secondpart,weintroducethemorecomplicatedformalismofinfinitevolumeGPP t a defined on the full space Rd. Existence, uniqueness and non-uniqueness of GPP m arenon-trivialquestionswhichwetreatherewithcompletelyself-containedproofs. [ TheDLRequations,theGNZequationsandthevariationalprinciplearepresented 1 as well. Finally, in a last part, we investigate the estimation of parameters. The v main standard estimators (MLE, MPLE, Takac-Fiksel and variational estimators) 5 arepresentedandweprovetheirconsistency.Forsakeofsimplicity,duringallthe 0 mini-course,weconsideronlythecaseoffiniterangeinteractionandthesettingof 1 markedpointsisnotpresented. 8 0 . 1 0 Introduction 7 1 : Thespatialpointprocessesarewellstudiedobjectsinprobabilitytheoryandstatis- v i tics for modelling and analysing spatial data which appear in several disciplines X asstatisticalmechanics,materialscience,astronomy,epidemiology,plantecology, r seismology, telecommunications, and others [1, 11]. There exist many models of a suchrandompointsconfigurationsinspaceandthemostpopularoneissurelythe Poissonpointprocess.Itcorrespondstothenaturalwaytoproduceindependentlo- cationsofpointsinspacewithoutinteraction.Fordependentrandomstructure,we can mentionfor instance the Cox processes, determinantalpointprocesses, Gibbs pointprocesses,etc.Noneofthemisestablishedasthemostrelevantmodelforap- DEREUDREDavid,UniversityLille1,e-mail:[email protected] 1 2 DEREUDREDavid plications.Actuallythechoiceofthemodeldependsonthenatureofthedataset,the knowledgeof(physicalorbiological)mechanismsproducingthepattern,theaimof thestudy(theoretical,appliedornumerical). Inthismini-course,wefocusonGibbspointprocesses(GPP)whichconstitutea largeclassofpointsprocesses,abletofitseveralkindsofpatternsandwhichprovide aclearinterpretationoftheinteractionbetweenthepoints,suchasattractionorre- pulsiondependingontheirrelativeposition.Notethatthisclassisparticularlylarge sinceseveralpointprocessescanberepresentedasGPP(see[23,32]forinstance). ThemaindisadvantageofGPPisthecomplexityofthemodelduetoanintractable normalizedconstantwhichappearinthelocalconditionaldensities.Thereforetheir analyticalstudiesareingeneralbasedonimplicitequilibriumequationswhichlead to complicated and delicate analysis. Moreover the theoretical results, which are needed to investigate the Gibbs point process theory, are scattered across several publications or books. The aim of this mini-course is to provide a solid and self- containedtheoreticalbaseforunderstandingdeeplytheGibbspointprocesstheory. Theresultsareingeneralnotexhaustivebutthemainideasandtoolsarepresented infollowingmodernandrecentdevelopments.Themainstrongrestrictionherein- volvestherangeoftheinteractionwhichisassumedtobefinite.Theinfiniterange interactionrequirestheintroductionoftemperedconfigurationspacesandforsake of simplicity we decidedto avoid this levelof complexity.The mini-courseis ad- dressedforMasterandPhdstudentsandalsoforresearcherswhichwanttodiscover or investigatethe domain.The manuscriptis based on a minicourse givenduring theconferenceofGDR3477ge´ome´triestochastique,atuniversityofNantesinApril 2016. In a first section, we introduce the finite volume GPP on a bounded window L Rd. They are simply definedas pointprocesses inL whose the distributions ⊂ areabsolutelycontinuouswithrespecttothePoissonpointprocessdistribution.The unnormalized densities have the following form zNe b E where z and b are posi- − tiveparameters(calledrespectivelyactivityandinversetemperature),Nthenumber ofpointsandE anenergyfunction.Clearlythesedistributionsfavour(orpenalize) configurationswithlow(orhigh)energyE.Thisdistortionstrengthensasb islarge. Theparameterzallowstotunethemeannumberofpoints.Thissettingisrelatively simplesincealltheobjectsaredefinedexplicitly.Howevertheintractablenormal- izationconstantiseveraproblemandmostofquantitiesarenotcomputable.Several standard notions (DLR and GNZ equations, Ruelle’s estimates, etc) are treated in thisfirstsectionasapreparationforthemorecomplicatedsettingofinfinitevolume GPP developed in the second section. Note that we do not present the setting of markedGibbspointprocessesinordertokeepthenotationsassimpleaspossible. Howeveralltheresultscanbeeasilyextendedinthiscase. Inasecondsection,we presentthetheoryofinfinitevolumeGPPinRd.There areseveralmotivationsforstudyingsuchinfinitevolumeregime.First,theGPPare thestandardmodelsinstatisticalphysicsformodellingsystemswithalargenumber of interactingparticles(around1023 accordingto the Avogadro’snumber).There- fore the case, where the number of particles is infinite, is an idealization of this setting and furnishes microscopic descriptions of gas, liquid or solid. The macro- IntroductiontothetheoryofGibbspointprocesses 3 scopicquantitiesasthedensityofparticles,thepressure,themeanenergyarecon- sequentlyeasilydefinedbymeanvaluesorlawsoflargenumbers.Secondly,inthe spatialstatisticcontext,theasymptoticpropertiesofestimatorsortestsareobtained whentheobservationwindowtendstothefullspaceRd.Thisstrategyrequiresthe existenceofinfinitevolumemodels.Finally,sincetheinfinitevolumeGPParesta- tionary(shiftinvariant)inRd,severalpowerfultools,astheergodictheoremorthe centrallimitTheoremformixingfield,areavailableinthisinfinitevolumeregime. TheinfinitevolumeGibbsmeasuresaredefinedbyacollectionofimplicitDLR equations (Dobrushin, Lanford and Ruelle). The existence, uniqueness and non- uniqueness are non trivial questions which we treat deeply with self-contained proofs in this second section. The phase transition between uniqueness and non uniquenessis one ofthe mostdifficultconjecturesin statistical physics.Thisphe- nomenon is expected to occur for all standard interactions although it is proved rigorouslyonlyforfewmodels.Theareainteractionisoneofsuchmodelandthe completeproofofits phasetransitionisgivenin themini-course.TheGNZequa- tions,thevariationalprinciplearediscussedaswell. Inthelast section,we investigatetheestimationof parameterswhichappearin the distribution of GPP. For sake of simplicity we deal only with the activity pa- rameter z and the inverse temperature b . We present several standard procedures (MLE,MPLE,Takacs-Fikselprocedure)andanewvariationalprocedure.Weshow theconsistencyofestimators,whichhighlightsthatmanytheoreticalresultsarepos- sibleinspiteoflackofexplicitcomputations.WewillseethattheGNZequations playacrucialroleinthistask.Forsakeofsimplicitytheasymptoticnormalityisnot presentedbutsomereferencesaregiven. Letusfinishthisintroductionbygivingstandardreferences.HistoricallytheGPP have been introduced for statistical mechanics considerations and an unovoidable reference is the book by Ruelle [46]. Important theoretical contributions are also developedintwo LectureNotes[19,45]byGeorgiiandPreston.Fortherelations between GPP and the stochastic geometry, we can mention the book [8] by Chiu etal.andforspatialstatisticandnumericalconsiderations,thebookbyMøllerand Waagepetersen[41]isthestandardreference.Letusmentionalsothebook[50]by vanLieshoutontheapplicationsofGPP. Contents IntroductiontothetheoryofGibbspointprocesses ................... 1 DEREUDREDavid 1 FinitevolumeGibbspointprocesses ......................... 6 1.1 Poissonpointprocess .............................. 6 1.2 Energyfunctions .................................. 7 1.3 FiniteVolumeGPP ................................ 10 1.4 DLRequations.................................... 12 1.5 GNZequations.................................... 13 1.6 TheRuelle’sestimates ............................. 15 2 InfinitevolumeGibbspointprocesses ........................ 16 2.1 Thelocalconvergencesetting ....................... 17 2.2 AnaccumulationpointPz,b ......................... 18 2.3 ThefiniteRangeproperty........................... 20 2.4 DLRequations.................................... 21 2.5 GNZequations.................................... 23 2.6 Variationalprinciple ............................... 25 2.7 Anuniquenessresult............................... 27 2.8 Anon-uniquenessresult............................ 30 3 Estimationofparameters. .................................. 35 3.1 Maximumlikelihoodestimator ...................... 35 3.2 Takacs-Fikselestimator ............................ 37 3.3 Maximumpseudo-likelihoodestimator ............... 40 3.4 Solvinganunobservableissue....................... 41 3.5 Avariationalestimator ............................. 43 References..................................................... 46 5 6 Contents 1 FinitevolumeGibbs pointprocesses Inthisfirstsection wepresentthe theoryofGibbspointprocessona boundedset L Rd.AGibbspointprocess(GPP)isapointprocesswithinteractionsbetween ⊂ thepointsdefinedviaanenergyfunctionalonthespaceofconfigurations.Roughly speakingtheGPPproducesrandomconfigurationsforwhichtheconfigurationswith low energy have more chance to appear than the configurationswith high energy (seedefinition2).InafirstSection1.1werecallsuccinctlysomedefinitionsofpoint processtheoryandweintroducedthereferencePoissonpointprocess.Theenergy functions are discussed in Section 1.2 and the definiton of finite volume GPP is giveninSection1.3.Somefirstpropertiesarepresentedaswell.ThecentralDLR equationsandGNZequationsaretreatedinSections1.4and1.5.Finallywefinish the first section by giving the Ruelle’s estimates in the setting of superstable and lowerregularenergyfunctions. 1.1 Poissonpointprocess In this first section, we describe succinctlythe setting of pointprocesstheoryand weintroducethereferencePoissonpointprocess.Wegiveonlythemaindefinitions andconceptsandweadvice[11,36]forageneralpresentation. ThespaceofconfigurationsC isdefinedasthesetoflocallyfinitesubsetsinRd; C = g Rd,gL :=g L isfiniteforanyboundedsetL Rd . { ⊂ ∩ ⊂ } Notethatweconsideronlythesimplepointconfigurations,whichmeansthatthe pointsdonotoverlap.WedenotebyC thespaceoffiniteconfigurationsinC and f CL isthespaceoffiniteconfigurationsinsideL Rd. The space C is equipped with the sigma-fiel⊂d FC generating by the counting functionsNL forallboundedmeasurableL Rd,whereNL :g #gL .Soapoint processG issimplyameasurablefunctionfr⊂omanyprobabilitys7→pace(W ,F,P)to (C,FC). Asusual,thedistribution(orthelaw)ofapointprocessG isdefinedby theimageofPto(C,FC)bytheapplicationG .WesaythatG hasafiniteintensity ifforanyboundedsetL ,thefollowingexpectationm (L ):=E(NL (G ))isfinite.In thiscase,m isasigma-finitemeasurecalledintensitymeasureofG .Whenm =zl d, wherel d istheLebesguemeasureonRd andz 0apositivereal,wesaysimply thatG hasafiniteintensityz . ≥ ThemainclassofpointprocessesisthefamilyofPoissonpointprocesseswhich furnishthenaturalwaytoproduceindependentpointsinspace.Let m beasigma- finitemeasureinRd.APoissonpointprocesswithintensitym isapointprocessG suchthatforanyboundedL inRd,thesebothpropertiesoccur TherandomvariableNL (G )isdistributedfollowingaPoissondistributionwith • parameterm (L ). Contents 7 Giventheevent NL (G )=n thenpointsinGL areindependentanddistributed • followingthedis{tributionm L }/m (L ). The distribution of such Poisson pointprocess is denotedby p m . When the in- tensity m =zl d, we say that the Poisson point process is stationary (or homoge- neous)with intensityz >0.Itsdistributionisdenotedbyp z .Foranymeasurable setL Rd, we denote by p z the distribution of a Poisson pointprocess with in- L tensity⊂zl d whichisalsothedistributionofastationaryPoissonpointprocesswith L intensityz restrictedtoL .Forsakeofbrevity,p andp L denotethedistributionof Poissonpointprocesseswithintensityz =1. 1.2 Energy functions Inthissection,wepresenttheenergyfunctionswiththestandardassumptionswhich weassumeduringalltheminicourse.Thechoicesofenergyfunctionscomefrom two main motivations. First, the GPP are natural models in statistical physics for modellingcontinuuminteractingparticlessystems. In general,in these setting the energyfunctionisasumoftheenergycontributionofallpairsofpoints(seeexpres- sion(1)).TheGPParealsousedinspatialstatistictofitthebestaspossiblethereal datasets. So, in a first step, the energyfunctionis chosen by the user with respect tothecharacteristicsofthedataset.Thentheparametersareestimatedinasecond step. Definition1. Anenergyfunctionisameasurablefunction H:C R +¥ f 7→ ∪{ } suchthatthefollowingassumptionshold H isnon-degenerate: • H(0/)<+¥ . Hishereditary:foranyg C andx g then f • ∈ ∈ H(g )<+¥ H(g x )<+¥ . ⇒ \{ } H isstable:thereexistsaconstantAsuchthatforanyg C f • ∈ H(g ) ANRd(g ). ≥ The stability implies that the energyis superlinear. If the energy function H is positivethenthechoiceA=0worksbutintheinterestingcases,theconstantAis negative.Thehereditarymeansthatthesetofallowedconfigurations(configurations withfiniteenergy)isstable whenpointsareremoved.Thenon-degeneracyisvery natural.Withoutthisassumption,theenergywouldbeequaltoinfinityeverywhere 8 Contents (byhereditary). 1)Pairwise interaction.Letusstartbythemostpopularenergyfunctionwhich isbasedonafunction(calledpairpotential) j :R+ R +¥ . → ∪{ } Thepairwiseenergyfunctionisdefinedforanyg C by f ∈ H(g )= (cid:229) j (x y). (1) | − | x,y g { }⊂ Note that such energy function is trivially hereditary and non-degenerate. The stability is more delicate and we refer to general results in [46]. However if j is positivetheresultisobvious. A standard example coming from statistical physics is the so-called Lennard- Jones pair potential where j (r)=ar 12+br 6 with a>0 and b R. In the in- − − teresting case b<0, the pair potentialj (r) is positive (repulsive)f∈or small r and negative(attractive)forlarger.ThestabilityisnotobviousandisprovedinPropo- sition3.2.8in[46]. TheStraussinteractioncorrespondsto thepairpotentialj (r)=1 (r) where [0,R] R>0isasupportparameter.Thisinteractionexhibitsaconstantrepulsionbetween theparticlesasdistancesmallerthanR.Thissimplemodelisverypopularinspatial statistics. Themulti-Straussinteractioncorrespondstothepairpotential k j (r)=(cid:229) a1 , i ]Ri 1,Ri] i=1 − where (a) is a sequence of real numbersand 0=R <R <...<R a se- i 1 i k 0 1 k quence of in≤c≤reasing real numbers. Clearly, the pair potential exhibits a constant attractionorrepulsionatdifferentscales.TheStabilityoccursprovidedthatthepa- rametera islargeenough[46]. 1 2)Energyfunctionscomingfrom geometricalobjects.Severalenergyfunctions are based on local geometrical characteristics. The main motivation is to provide random configurations such that special geometrical features appear with higher probabilityundertheGibbsprocessesthantheoriginalPoissonpointprocess.Inthis paragraphwe give examplesrelated to the Delaunay-Voronoidiagram. Obviously othergeometricalgraphstructurescouldbeconsidered. Letusrecallthatforanyx g C theVoronoicellC(x,g )isdefinedby f ∈ ∈ C(x,g )= w Rd, suchthat y g x w x y . ∈ ∀ ∈ | − |≤| − | n o TheDelaunaygraphwithverticesg isdefinedinconsideringtheedges Contents 9 D(g )= x,y g suchthatC(x,g ) C(y,g )=0/ . { }⊂ ∩ 6 n o See[39]forageneralpresentationontheDelauany-Voronoitessellations. Afirstgeometricenergyfunctioncanbedefinedby H(g )= (cid:229) 1C(x,g)isboundedj (C(x,g )), (2) x g ∈ wherej isanyfunctionfromthespaceofpolytopesinRd toR.Examplesofsuch functionsj aretheArea,the(d 1)-Hausdorffmeasureoftheboundary,thenum- − beroffaces,etc...Clearlytheseenergyfunctionsarenon-degenerateandhereditary. Thestabilityholdsassoonasthefunctionj isboundedfrombelow. Another kind of geometric energy function can be constructed via a pairwise interactionalongtheedgesoftheDelaunaygraph.Letusconsiderafinitepairpo- tentialj :R+ R.Thentheenergyfunctionisdefinedby 7→ H(g )= (cid:229) j (x y) (3) | − | x,y D(g) { }⊂ whichisagainclearlynon-degenerateandhereditary.TheStabilityoccursindi- mension d =2 thanks to the Euler’s formula. Indeed the number of edges in the Delaunaygraphislinear withrespectto thenumberof vertices.Thereforethe en- ergy function is stable as soon as the pair potential j is bounded from below. In higherdimensiond>2,thestabilityismorecomplicatedandnotveryunderstood. Obviously,ifj ispositive,thestabilityoccurs. Let us give a last exampleof geometricenergyfunctionwhich is notbased on theDelaunay-Voronoidiagrambutonagerm-grainstructure.ForanyradiusR>0 wedefinethegerm-grainstructureofg C by ∈ L (g )= B(x,R), R x g [∈ where B(x,R) is the closed ball centredat x with radius R. Severalinteresting en- ergyfunctionsarebuiltfromthisgerm-grainstructure.FirsttheWidom-Rowlinson interactionissimplydefinedby H(g )=Area(L (g )), (4) R wherethe”Area”issimplytheLebesguemeasurel d.Thismodelisverypopular since itisoneofafew modelsforwhichthephasetransitionresultisproved(see Section 2.8).Thisenergyfunctionis sometimescalled Area-interaction[4, 51]. If theAreafunctionalisreplacedbyanylinearcombinationoftheMinkowski’sfunc- tionalsweobtaintheQuermassinteraction[13]. Anotherexampleistherandomclusterinteractiondefinedby H(g )=Ncc(L (g )), (5) R 10 Contents where Ncc denotes the functionalwhich counts the number of connected compo- nents.Thisenergyfunctionisintroducedfirstin[7]foritsrelationswiththeWidom- Rowlinsonmodel.Seealso[16]forageneralstudyintheinfinitevolumeregime. 1.3 FiniteVolumeGPP LetL Rd suchthat0<l d(L )<+¥ .Inthissectionwedefinethefinitevolume GPPo⊂nL andwegiveitsfirstproperties. Definition2. The finite volume Gibbs measure on L with activity z>0, inverse temperatureb 0andenergyfunctionH isthedistribution ≥ PLz,b = Z1z,b zNL e−b Hp L , (6) L whereZLz,b ,calledpartitionfunction,isthenormalizationconstant zNL e−b Hdp L . A finite volumeGibbspointprocess(GPP) onL with activity z>0, inversetem- R perature b 0 and energy function H is a point process on L with distribution Pz,b . ≥ L Note that Pz,b is well-defined since the partition function Zz,b is positive and L L finite.Indeed,thankstothenondegeneracyofH ZLz,b p L (0/)e−b H({0/})=e−l d(L )e−b H({0/})>0 ≥ andthankstothestabilityofH ZLz,b e−l d(L )+(cid:229) ¥ (ze−b Al d(L ))n =el d(L )(ze−bA−1)<+¥ . ≤ n! n=0 Inthe case b =0, we recoverthatPz,b isthe Poisson pointprocessp z. So the L L activityparameterzisthemeannumberofpointsperunitvolumewhentheinterac- tionisnull.Whentheinteractionisactive(b >0),Pz,b favourstheconfigurations L withlowenergyandpenalizestheconfigurationswithhighenergy.Thisdistortion strengthensasb islarge. Therearemanymotivationsfortheexponentialformofthedensityin(6).Histor- icallyitisduetothefactthatthefinitevolumeGPPsolvesthevariationalprinciple ofstatisticalphysics.IndeedPz,b istheuniqueprobabilitymeasurewhichrealizethe L minimumofthefreeexcessenergyequalstothemeanenergyplustheentropy.Itex- pressesthecommonideathattheequilibriumstatesinstatisticalphysicsminimize theenergyandmaximizesthe”disorder”.Thisresultispresentedin thefollowing proposition.RecallfirstthattherelativeentropyofaprobabilitymeasurePonCL withrespecttothePoissonpointprocessp z isdefinedby L

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.