ebook img

Introduction to Polyphasic Dispersed Systems Theory: Application to Open Systems of Microorganisms’ Culture PDF

210 Pages·2016·3.789 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Polyphasic Dispersed Systems Theory: Application to Open Systems of Microorganisms’ Culture

Jacques Thierie Introduction to Polyphasic Dispersed Systems Theory Application to Open Systems of Microorganisms’ Culture Introduction to Polyphasic Dispersed Systems Theory Jacques Thierie Introduction to Polyphasic Dispersed Systems Theory Application to Open Systems ’ of Microorganisms Culture 123 JacquesThierie Brussels Belgium ISBN978-3-319-27852-0 ISBN978-3-319-27853-7 (eBook) DOI 10.1007/978-3-319-27853-7 LibraryofCongressControlNumber:2015958331 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland To Ilya Prigogine, my former professor, promoter, and research director, who taught me that even in the most rigorous science, freedom to create and to think must remain autonomous. To my wife, for her abnegation and her patience. Contents 1 General Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 General Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Definition of a Polyphasic Dispersed System (PDS). . . . . . . . . . . 11 2.2 Characteristic Volume and Pseudohomogeneity. . . . . . . . . . . . . . 14 2.3 Reaction Concentration and Pseudohomogeneity . . . . . . . . . . . . . 20 2.3.1 Consequences of the Definition of Pseudohomogeneity . . . 21 2.3.2 Phase Density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 Phase Volume Relationship . . . . . . . . . . . . . . . . . . . . . . 23 2.3.4 Relationship Between R- and E-Concentrations. . . . . . . . . 23 2.4 Mass Balances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Note Concerning the Variational Term Appearing in (2.4.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 The Grouping Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6 Comment on a Certain Relativity in Writing the Mass Balance . . . 32 2.6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.2 Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7 Influence of Phase Density on Concentrations Calculation. . . . . . . 37 2.7.1 Two-Phase System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.7.2 Numerical Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.7.3 Critical Biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.7.4 The Case of a Gaseous Phase. . . . . . . . . . . . . . . . . . . . . 42 2.8 The Variation of the Internal Composition of a Microorganism with the Growth Rate Is a Consequence of the Mass Conservation Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 vii viii Contents 3 Continuous Culture: The Chemostat. . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 General Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Historical Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 The New Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 The Chemostat and Monod’s Model. . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 The Beginnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.2 Summary Presentation of the Chemostat. . . . . . . . . . . . . . 51 3.2.3 Monod’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.4 Stability of Steady States . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 The Chemostat in PDS Theory . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 The General Mass Balance. . . . . . . . . . . . . . . . . . . . . . . 60 3.3.2 The Biphasic Chemostat. . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.3 Steady States in Simple Situations. . . . . . . . . . . . . . . . . . 64 3.3.4 Partial, Specific Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.5 The Water Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.6 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4 The Concept of Maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.4 Substrate Recycling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4.5 Practical Considerations. . . . . . . . . . . . . . . . . . . . . . . . . 87 3.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.4.7 Additional Considerations. . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.8 Should the Concept of Maintenance Be Abandoned?. . . . . 93 3.5 Threshold Phenomena, Signals in Cells, and Metabolic Pathway Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.5.1 Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.5.3 Model with One Pathway n = 1 . . . . . . . . . . . . . . . . . . . 95 3.5.4 Model with Two Pathways n = 2 . . . . . . . . . . . . . . . . . . 96 3.5.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.5.6 Implicit Mass Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.5.7 Explanation of Specific Rate. . . . . . . . . . . . . . . . . . . . . . 101 3.5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.5.9 Remarks on the Coupling of Maintenance Energy and the Metabolic Switch. . . . . . . . . . . . . . . . . . . . . . . . 123 3.6 The Crabtree Effect in Saccharomyces cerevisiae. . . . . . . . . . . . . 124 3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.6.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.7 Respiro-Fermentative Phenomena in Bacterial Flocs. . . . . . . . . . . 156 3.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 3.7.2 Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . 157 Contents ix 3.7.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3.7.4 Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 3.7.5 Estimation of Subtrate in the Medium . . . . . . . . . . . . . . . 166 3.7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 4 General Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.1 About the Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.2 On the Subject of the Applications. . . . . . . . . . . . . . . . . . . . . . . 178 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Appendix A.1: Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Appendix A.2: Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Appendix A.3: Specific Growth Rate for the Whole . . . . . . . . . . . . . . . 197 Appendix A.4: Cancelling of Interphasic Exchange Fluxes at the System Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Appendix A.5: Consideration about the Micellian Variational Term . . . 203 Chapter 1 General Introduction Lerefuspositifd’égarerladiscussiondanslesespacesvidesde l’abstractionsetraduitchezlebiologisteparunengagement extrêmementméthodiquedanslavoiedel’expérimentation,et celatrèsgénéralementsouslaformedel’expérimentation causale.Ons’efforcededémonterunmécanisme,deramener sonfonctionnementàunschémad’oùsetrouve–trèsjustement –excluetouteréférenceàunsystèmedeconceptsabstraits préconçus.Maiscetteprécipitationàexpliquer,àtriompher d’unproblème–quiesttrèsgénéralementunproblèmed’infime détail–exclutunevertuépistémologiquequ’ilfautbienretenir commefondamentale,ladisponibilitéthéorétique. FrançoisMeyer,(in1967;Ref.1986). Thebiologist’spositiverefusaltogetentangledintheundefined spaceofabstractionleadstoaverysystematiccommitment toexperimentation,inmostcasesintheformofcausal experiments.Hestrivestodismantleamechanism,tosumupits functioninginapatternexcluding–andrightlyso–any referencetoapreconceivedsystemofabstractnotions. However,suchahastyendeavourtoexplain,overcomea problem–typicallyonlyamatterofinsignificantdetail–results intheexclusionofapivotalepistemologicalprinciple,thatof thetheoreticopportunity. TranslationaccordingtoMeyer.(ThankstoProf.M.-F.Boeve, IamgratefulforherhelpwiththeEnglishtranslation.) Intheirintroductiontothebook,“TheBiotechnologyRevolution?”(Fransmanetal. 1995),theauthorsplacebiotechnologyinthe“newtechnologicalparadigm,”along with microelectronics, IT, and new materials. In this particular context (that of the newparadigm),biotechnologymustobviouslybemadeupofthesamepartsasnew (ormodern)biotechnology(justasitisforexample,definedsocioeconomicallyby Freeman 1995). It is not made up of the group of separate (bio)techniques, essentially fermentation, that have accompanied humanity for centuries, even for millennia, and which have given us alcohols, cheeses, sauerkraut, and so many other foods. Whether modern biotechnology is a real technological revolution, or not, is however beside the point. What attracts us more from the incontestable rise of the ©SpringerInternationalPublishingSwitzerland2016 1 J.Thierie,IntroductiontoPolyphasicDispersedSystemsTheory, DOI10.1007/978-3-319-27853-7_1 2 1 GeneralIntroduction phenomenon is the evidence, within the domain of ideas, of the status of life sciences. Both socially and economically, considerable advances in medicine, food-processing, and in environmental studies obviously still conferred an unimaginableimportancetobiologyuptothenineteenthcenturyandevenuptothe beginning of the twentieth century. However, this does not constitute a change in the paradigm (in the sense of “disciplinary matrix” from Kuhn (Chalmers 1988; Kuhn1983)).Theinterveningmodificationofnatureinthescienceoflivingthings is linked to its rise to the rank of technology. Basically, biotechnology associates living things and the process of production that has been mastered (for example). Thus appeared a pluridisciplinary approach that integrated materials that were essentially biological (biochemistry, microbiology…) andtechniquesthat couldbe qualifiedasphysicochemical.Thesetechniquesdisplayfeaturesthatarethefruitof alongevolutionandtheyareboththeoreticalandquantitative.Inreality,itisoften the theorization of a group of phenomena that makes them quantifiable. So, biotechnologyappearstousastheemergenceofapluridisciplinarymaterialwhere the constraints on technical and economical performances are going to extend the properties of quantification and theorization of the “hard sciences” to the descrip- tion of living things. Of course, the rough outline of such a step preceded the demands of modern biotechnology. As Chalmers (1988) pointed out, “From the Kuhn’s point of view, the type of factors that contribute to the facts that cause changes of the scientific paradigmisasubjectofpsychologicalandsociologicalresearch.”Withoutwanting to make a historical record of this attempt, we can perhaps bring back to mind a notable event that ended in 1937 when Ludwig Von Bertalanffy presented his “general theory of systems” to the University of Chicago. He relates, “Unfortunately,atthistime,thebiologicaltheorieswerenotwellreceivedandIwas frightenedbythe‘clamoroftheBeotians’asthemathematicianGaussusedtosay. Ileftmybrothsinadrawerandit wasonly afterthewarthatmyfirstpublications onthesubjectappeared(VonBertalanffy1973).Somefortyyearslater,theSociété française de biologie théorique, (French Society of Biological Theory) that held a “seminar [proposing] reflection on the basis and justification of discourse explaining living things” (Lück 1985). So there was from (let’s say) the failure of Von Bertalanffy to the present day, a considerable development in the attitudes of biologists (but not of all biologists) to an attempt to theorize their field of knowl- edge. At present, the reduction of complex systems to formulae (Nicolis and Prigogine1989)throughoutthephysicsofnonequilibriumandnonlineardynamics opened a considerable heuristic space to biologists in a form that could be defined (in a broad sense) as mathematical modeling (Brown and Rothery 1993; Haefner 1996;Kauffman1993;Murray1993,andmanyothers).Thethemescoveredbythis type of approach are very diverse and extend from the analysis of intracellular phenomena to the dynamics of populations, by way of neuronal systems. Nevertheless, we could qualify this thinking as very heterogeneous, and as stem- mingfromtheessentiallyacademic.Thediversityofnotonlythemethodsbutalso the objectives (description, understanding, classification) prevents us from con- sidering this group of techniques of representation as a unique and structured

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.