ebook img

Introduction to Measure Theory and Integration PDF

193 Pages·2011·0.961 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Measure Theory and Integration

10 APPUNTI LECTURENOTES LuigiAmbrosio,GiuseppeDaPratoandAndreaMennucci ScuolaNormaleSuperiore PiazzadeiCavalieri,7 56126Pisa,Italy IntroductiontoMeasureTheoryandIntegration Luigi Ambrosio, Giuseppe Da Prato and Andrea Mennucci Introduction to Measure Theory and Integration (cid:2)c 2011ScuolaNormaleSuperiorePisa ISBN:978-88-7642-385-7 e-ISBN:978-88-7642-386-4 Contents Preface ix Introduction xi 1 Measurespaces 1 1.1 Notationandpreliminaries . . . . . . . . . . . . . . . . 1 1.2 Rings,algebrasandσ–algebras . . . . . . . . . . . . . . 2 1.3 Additiveandσ–additivefunctions . . . . . . . . . . . . 4 1.4 Measurablespacesandmeasurespaces . . . . . . . . . . 7 1.5 Thebasicextensiontheorem . . . . . . . . . . . . . . . 8 1.5.1 Dynkinsystems . . . . . . . . . . . . . . . . . . 9 1.5.2 Theoutermeasure . . . . . . . . . . . . . . . . 11 1.6 TheLebesguemeasureinR . . . . . . . . . . . . . . . 14 1.7 Innerandouterregularityofmeasuresonmetricspaces . 18 2 Integration 23 2.1 Inverseimageofafunction . . . . . . . . . . . . . . . . 23 2.2 MeasurableandBorelfunctions . . . . . . . . . . . . . 24 2.3 Partitionsandsimplefunctions . . . . . . . . . . . . . . 25 2.4 IntegralofanonnegativeE–measurablefunction . . . . 27 2.4.1 Integralofsimplefunctions . . . . . . . . . . . 27 2.4.2 Therepartitionfunction . . . . . . . . . . . . . 28 2.4.3 Thearchimedeanintegral . . . . . . . . . . . . . 31 2.4.4 Integralofanonnegativemeasurablefunction . . 32 2.5 Integraloffunctionswithavariablesign . . . . . . . . . 35 2.6 Convergenceofintegrals . . . . . . . . . . . . . . . . . 36 2.6.1 UniformintegrabilityandVitaliconvergence theorem . . . . . . . . . . . . . . . . . . . . . . 38 2.7 AcharacterizationofRiemannintegrablefunctions . . . 39 vi LuigiAmbrosio,GiuseppeDaPratoandAndreaMennucci 3 Spacesofintegrablefunctions 45 3.1 SpacesLp(X,E,μ)and Lp(X,E,μ) . . . . . . . . . . 45 3.2 The Lp norm . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Ho¨lderandMinkowskiinequalities . . . . . . . 48 3.3 Convergencein Lp(X,E,μ)andcompleteness . . . . . 49 3.4 Thespace L∞(X,E,μ) . . . . . . . . . . . . . . . . . . 52 3.5 Densesubsetsof Lp(X,E,μ) . . . . . . . . . . . . . . 56 4 Hilbertspaces 61 4.1 Scalarproducts,pre-HilbertandHilbertspaces . . . . . 61 4.2 Theprojectiontheorem . . . . . . . . . . . . . . . . . . 63 4.3 Linearcontinuousfunctionals. . . . . . . . . . . . . . . 66 4.4 Besselinequality,Parsevalidentityandorthonormal systems . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.5 HilbertspacesonC . . . . . . . . . . . . . . . . . . . . 70 5 Fourierseries 73 5.1 PointwiseconvergenceoftheFourierseries . . . . . . . 75 5.2 Completenessofthetrigonometricsystem . . . . . . . . 79 5.3 UniformconvergenceoftheFourierseries . . . . . . . . 80 6 Operationsonmeasures 83 6.1 TheproductmeasureandFubini–Tonellitheorem . . . . 83 6.2 TheLebesguemeasureonRn . . . . . . . . . . . . . . . 87 6.3 Countableproducts . . . . . . . . . . . . . . . . . . . . 90 6.4 Comparisonofmeasures . . . . . . . . . . . . . . . . . 94 6.5 Signedmeasures . . . . . . . . . . . . . . . . . . . . . 101 6.6 MeasuresinR . . . . . . . . . . . . . . . . . . . . . . . 105 6.7 ConvergenceofmeasuresonR . . . . . . . . . . . . . . 107 6.8 Fouriertransform . . . . . . . . . . . . . . . . . . . . . 112 6.8.1 Fouriertransformofameasure . . . . . . . . . . 113 7 Thefundamentaltheoremoftheintegralcalculus 119 8 Measurabletransformations 129 8.1 Imagemeasure . . . . . . . . . . . . . . . . . . . . . . 129 8.2 Changeofvariablesinmultipleintegrals . . . . . . . . . 130 8.3 ImagemeasureofLn byaC1 diffeomorphism . . . . . 131 A 137 A.1 Continuity and differentiability of functions depending onaparameter. . . . . . . . . . . . . . . . . . . . . . . 137 vii IntroductiontoMeasureTheoryandIntegration A.2 Thedualspaceofcontinuousfunctions. . . . . . . . . . 139 References 183 Preface This textbook collects the notes for an introductory course in measure theoryandintegrationtaughtbytheauthorstoundergraduatestudentsof ScuolaNormaleSuperioreinthelast10years. The goal of the course was to present, in a quick but rigorous way, themodernpointofviewonmeasuretheoryandintegration,puttingLe- besgues theory in Rn into a more general context and presenting the ba- sicapplicationstoFourierseries,calculusandrealanalysis. Thetextcan also pave the way to more advanced courses in probability, stochastic processesorgeometricmeasuretheory. Prerequisitesforthebookareabasicknowledgeofcalculusinoneand severalvariables,metricspacesandlinearalgebra. All results presented here, as well as their proofs, are classical. We claim some originality only in the presentation and in the choice of the exercises. Detailedsolutionstotheexercisesareprovidedinthefinalpart ofthebook. Pisa,July2011 LuigiAmbrosio,GiuseppeDaPrato andAndreaMennucci Introduction Thiscourseconsistsofanintroductiontothemoderntheoriesofmeasure andofintegration. Historically,thishasbeenmotivatedbythenecessity togobeyondtheclassicaltheoryofRiemann’sintegration,usuallytaught in elementary Calculus courses on the real line. It is therefore useful to describethereasonsthatmotivatethisextension. (1)Itisnotpossibletogiveasimple,handy,characterizationoftheclass ofRiemann’sintegrablefunction,withinRiemann’stheory. Thisisindeed possiblewithinthestrongertheory, dueessentiallytoLebesgue, that we aregoingtointroduce. (2) The extensions of Riemann’s theory to multiple integrals are very cumbersome. This extension, useful to compute areas, volumes, etc., is knownasPeano–Jordantheory,anditissometimestaughtinelementary coursesofintegrationinmorethanonevariable. Inadditiontothat, im- portantheuristicprincipleslikeCavalieri’sonecanbeprovedonlyunder technical and basically unnecessary regularity assumptions on the do- mainsofintegration. (3) Many constructive processes typical of Analysis (limits, series, in- tegrals depending on a parameter, etc.) cannot be handled well within Riemann’stheoryofintegration. Forinstance,thefollowingstatementis true (it is a particular case of the so-called dominated convergence the- orem): Theorem1. Let f : [−1,1] → R be continuous functions pointwise h converging to a continuous function f. Assume the existence of a con- stant M satisfying|f (x)| ≤ M forall x ∈ [−1,1]andallh ∈ N. Then h (cid:2) (cid:2) 1 1 lim f (x)dx = f(x)dx. h h→∞ −1 −1 EventhoughthisstatementmakesperfectlysensewithinRiemann’sthe- ory, any attempt to prove this result within the theory (try, if you don’t

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.