ebook img

Introduction to Linear Optimization PDF

606 Pages·1997·54.611 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Linear Optimization

Introduction inear Optimization ATHENA SCIENTIFIC BOOKS 1. Introduction to Probability, 2nd Edition, by Dimitri P. Bertsekas and John N. Tsitsiklis, 2008, ISBN 978-1-886529-23-6, 544 pages 2. Dynamic Programming and Optimal Control, Two-Volume Set, by Dimitri P. Bertsekas, 2007, ISBN 1-886529-08-6, 1020 pages 3. Convex Analysis and Optimization, by Dimitri P. Bertsekas, with Angelia Nedic and Asuman E. Ozdaglar, 2003, ISBN 1-886529-45-0, 560 pages 4. Nonlinear Programming, 2nd Edition, by Dimitri P. Bertsekas, 1999, ISBN 1-886529-00-0, 791 pages 5. Network Optimization: Continuous and Discrete Models, by Dimitri P. Bertsekas, 1998, ISBN 1-886529-02-7, 608 pages 6. Network Flows and Monotropic Optimization, by R. Tyrrell Rock afellar, 1998, ISBN 1-886529-06-X, 634 pages 7. Introductionto Linear Optimization, byDimitrisBertsimas and John N. Tsitsiklis, 1997, ISBN 1-886529-19-1, 608 pages 8. ParaJlel and Distributed Computation: Numerical Methods, by Dim itri P. Bertsekas and John N. Tsitsiklis, 1997, ISBN 1-886529-01-9, 718 pages 9. Neuro-Dynamic Programming, by Dimitri P. Bertsekas and John N. Tsitsiklis, 1996, ISBN 1-886529-10-8, 512 pages 10. ConstrainedOptimizationandLagrangeMultiplierMethods, byDim itri P. Bertsekas, 1996, ISBN 1-886529-04-3, 410 pages 11. Stochastic Optimal Control: The Discrete-Time Case, by Dimitri P. Bertsekas and StevenE. Shreve, 1996, ISBN 1-886529-03-5, 330pages ction . znear timization Bertsimas hr>'"I,t-.,.'0 N. Tsitsiklis Massachusetts Institute of Technology A pul)lic:aticln of: Athena Scientific, Belmont, Massachusetts Dynamic Ideas, , Belmont, Massachusetts Athena Scientific Dynamic Ideas, LLC Post Office Box 805 P.O. Box 290577 Nashua, NH 03061-0805 Charlestown, MA 02129 U.S.A. U.S.A. [email protected] [email protected] http://athenasc.com http://www.dynamic-ideas.com/ Cover Design: Ann Gallager © 1997 Dimitris Bertsimas and John N. Tsitsiklis All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. Publisher's Cataloging-in-Publication Data Bertsimas, Dimitris, Tsitsiklis, John N. Introduction to Linear Optimization Includes bibliographical references and index 1. Linear programming. 2. Mathematical optimization. 3. Integer programming. 1. Title. T57.74.B465 1997 519.7 96-78786 ISBN 978-1-886529-19-9 Fourth printing To Georgia, and to George Michael, who left us so early To Alexandra and Melina · xi 1 Variants ofthe linear programming problem. 2 Examples oflinear programming problems 6 Piecewise linear convex objective functions 15 Graphical representation and solution 21 Linear algebra background and notation 26 Algorithms and operation·counts 32 Exercises . . . . . . . . 34 History, notes, and sources 38 The geometry oflinear programming 41 Polyhedra and convex sets . . . . . . . 42 Extreme points, vertices, and basic feasible solutions 46 Polyhedra in standard form 53 Degeneracy . . . . . . . . 58 Existence ofextreme points . 62 Optimality ofextreme points 65 Representation ofbounded polyhedra* 67 Projections ofpolyhedra: Fourier-Motzkin elimination* 70 Summary . 75 Exercises . 75 Notes and sources 79 The simplex method 81 3.1. Optimality conditions . . . . 82 3.2. Development ofthe simplex method . . 87 3.3. Implementations ofthe simplex method 94 vii viii Contents 3.4. Anticycling: lexicography and Bland's rule 108 3.5. Finding an initial basic feasible solution 111 3.6. Column geometry and the simplex method 119 3.7. Computational efficiency ofthe simplex method 124 3.8. Summary . 128 3.9. Exercises . 129 3.10. Notes and sources 137 4. Duality theory . . 139 4.1. Motivation . . . . 140 4.2. The dual problem . . 142 4.3. The duality theorem . 146 4.4. Optimal dual variables as marginal costs 155 4.5. Standard form problems and the dual simplex method 156 4.6. Farkas' lemma and linear inequalities. . 165 4.7. From separating hyperplanes to duality* 169 4.8. Cones and extreme rays ..... 174 4.9. Representation ofpolyhedra. . . . 179 4.10. General linear programming duality* 183 4.11. Summary . 186 4.12. Exercises . 187 4.13. Notes and sources 199 5. Sensitivity analysis 201 5.1. Local sensitivity analysis . . . . . . . . . . 202 5.2. Global dependence on the right-hand side vector 212 5.3. The set ofall dual optimal solutions* . 215 5.4. Global dependence on the cost vector 216 5.5. Parametric programming 217 5.6. Summary. . . . 221 5.7. Exercises . . . . 222 5.8. Notes and sources 229 6. Large scale optimization 231 6.1. Delayed columngeneration 232 6.2. The cutting stock problem 234 6.3. Cutting plane methods .. 236 6.4. Dantzig-Wolfe decomposition 239 6.5. Stochastic programming and Benders decomposition 254 6.6. Summary. . . . 260 6.7. Exercises . . . . 260 6.8. Notes and sources 263

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.