Undergraduate Texts in Mathematics Editors: S.Axler K.A.Ribet Undergraduate Texts in Mathematics Forothertitlespublishedinthisseries,goto http://www.springer.com/series/666 Steven Givant (cid:129) Paul Halmos Introduction to Boolean Algebras ABC StevenGivant PaulHalmos MillsCollege (Deceased) DepartmentofMathematics andComputerScience 5000MacArthurBlvd OaklandCA94613-1301 USA [email protected] EditorialBoard S.Axler K.A.Ribet MathematicsDepartment DepartmentofMathematics SanFranciscoStateUniversity UniversityofCalifornia SanFrancisco,CA94132 atBerkeley USA Berkeley,CA94720 [email protected] USA [email protected] ISSN:0172-6056 ISBN:978-0-387-40293-2 e-ISBN:978-0-387-68436-9 DOI:10.1007/978-0-387-68436-9 LibraryofCongressControlNumber: 2008939810 MathematicsSubjectClassification(2000):06Exx (cid:2)c SpringerScience+BusinessMedia,LLC2009 Allrights reserved.Thisworkmaynotbetranslated orcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper springer.com Contents Preface ix 1 Boolean Rings 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Boolean Algebras 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Boolean Algebras Versus Rings 14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 The Principle of Duality 20 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Fields of Sets 24 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 Elementary Relations 31 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7 Order 38 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8 Infinite Operations 45 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9 Topology 53 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 v vi Introduction to Boolean Algebras 10 Regular Open Sets 66 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 11 Subalgebras 74 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 12 Homomorphisms 89 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 13 Extensions of Homomorphisms 105 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 14 Atoms 117 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 15 Finite Boolean Algebras 127 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 16 Atomless Boolean Algebras 134 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 17 Congruences and Quotients 142 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 18 Ideals and Filters 149 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 19 Lattices of Ideals 164 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 20 Maximal Ideals 171 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 21 Homomorphism and Isomorphism Theorems 178 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 22 The Representation Theorem 188 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 23 Canonical Extensions 193 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Contents vii 24 Complete Homomorphisms and Complete Ideals 200 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 25 Completions 214 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 26 Products of Algebras 221 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 27 Isomorphisms of Factors 243 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 28 Free Algebras 256 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 29 Boolean σ-algebras 268 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 30 The Countable Chain Condition 282 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 31 Measure Algebras 288 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 32 Boolean Spaces 300 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 33 Continuous Functions 312 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 34 Boolean Algebras and Boolean Spaces 326 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 35 Duality for Ideals 338 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 36 Duality for Homomorphisms 347 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 37 Duality for Subalgebras 359 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 viii Introduction to Boolean Algebras 38 Duality for Completeness 368 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 39 Boolean σ-spaces 373 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 40 The Representation of σ-algebras 378 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 41 Boolean Measure Spaces 384 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 42 Incomplete Algebras 390 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 43 Duality for Products 396 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 44 Sums of Algebras 422 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 45 Isomorphisms of Countable Factors 439 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 Epilogue 447 A Set Theory 448 B Hints to Selected Exercises 474 References 536 Index 542 Preface The theory of Boolean algebras was created in 1847 by the English mathe- matician George Boole. He conceived it as a calculus (or arithmetic) suitable for a mathematical analysis of logic. The form of his calculus was rather different from the modern version, which came into being during the pe- riod 1864–1895 through the contributions of William Stanley Jevons, Augus- tus De Morgan, Charles Sanders Peirce, and Ernst Schro¨der. A foundation of the calculus as an abstract algebraic discipline, axiomatized by a set of equations, and admitting many different interpretations, was carried out by Edward Huntington in 1904. Only with the work of Marshall Stone and Alfred Tarski in the 1930s, however, did Boolean algebra free itself completely from the bonds of logic and become a modern mathematical discipline, with deep theorems and im- portantconnectionstoseveralotherbranchesofmathematics,includingalge- bra,analysis,logic,measuretheory,probabilityandstatistics,settheory,and topology. For instance, in logic, beyond its close connection to propositional logic, Boolean algebra has found applications in such diverse areas as the proof of the completeness theorem for first-order logic, the proof of the L(cid:3) o´s conjecture for countable first-order theories categorical in power, and proofs of the independence of the axiom of choice and the continuum hypothesis in set theory. In analysis, Stone’s discoveries of the Stone–Cˇech compacti- fication and the Stone–Weierstrass approximation theorem were intimately connected to his study of Boolean algebras. Countably complete Boolean algebras (also called σ-algebras) and countably complete fields of sets (also called σ-fields) play a key role in the foundations of measure theory. Out- side the realm of mathematics, Boolean algebra has found applications in such diverse areas as anthropology, biology, chemistry, ecology, economics, sociology, and especially computer science and philosophy. For example, in computer science, Boolean algebra is used in electronic circuit design (gating networks), programming languages, databases, and complexity theory. ix