ebook img

Intercomparison of Antarctic ice shelf, ocean, and sea ice interactions simulated by two models PDF

60 Pages·2017·8.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intercomparison of Antarctic ice shelf, ocean, and sea ice interactions simulated by two models

Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) Intercomparison of Antarctic ice shelf, ocean, and sea ice interactions simulated by two models KaitlinA.Naughten1,2,3,KatrinJ.Meissner1,2,BenjaminK.Galton-Fenzi4,3,MatthewH.England1,2, RalphTimmermann5,HartmutH.Hellmer5,ToreHattermann6,5,andJensB.Debernard7 1ClimateChangeResearchCentre,Level4MathewsBuilding,UniversityofNewSouthWales,SydneyNSW2052,Australia 2ARCCentreofExcellenceforClimateSystemScience,Australia 3AntarcticClimate&EcosystemsCooperativeResearchCentre,PrivateBag80,HobartTAS7001,Australia 4AustralianAntarcticDivision,203ChannelHighway,KingstonTAS7050,Australia 5AlfredWegenerInstitut,Postfach120161,27515Bremerhaven,Germany 6Akvaplan-niva,P.O.Box6606,Langnes,9296Tromsø,Norway 7NorwegianMeteorologicalInstitute,P.O.Box43,Blindern,N-0313Oslo,Norway Correspondenceto:KaitlinA.Naughten([email protected]) Abstract.AnincreasingnumberofSouthernOceanmodelsnowincludeAntarcticiceshelfcavities,andsimulatethermody- namics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here we present the first published model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic config- 5 uration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice/ice-shelf Ocean Model), where the latter is run at two different levels of horizontal resolution.FromacircumpolarAntarcticperspective,wecompareandevaluatesimulatediceshelfbasalmeltingandsub-ice shelf circulation, as well as sea ice properties and Southern Ocean water mass characteristics as they influence the sub-ice shelfprocesses.Despitetheirdifferingnumericalmethods,thetwomodelsproducebroadlysimilarresults,andsharesimilar 10 biasesinmanycases.Bothmodelsreproducemanykeyfeaturesofobservations,butstruggletoreproduceothers,suchasthe highmeltratesobservedinthesmallwarm-cavityiceshelvesoftheAmundsenandBellingshausenSeas.Severaldifferences in model design show a particular influence on the simulations. For example, FESOM’s greater topographic smoothing can alter the geometry of some ice shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothingisrequired.IntheinteriorSouthernOcean,theverticalcoordinatesystemaffectsthedegreeofwatermasserosion 15 due to spurious diapycnal mixing, with MetROMS’ terrain-following coordinates leading to more erosion than FESOM’s z- coordinates.Finally,increasedhorizontalresolutioninFESOMleadstohigherbasalmeltratesforsmalliceshelves,through acombinationofstrongercirculationandsmall-scaleintrusionsofwarmwaterfromoffshore. 1 Introduction TheAntarcticIceSheet(AIS)hassignificantpotentialtodrivesealevelriseasclimatechangecontinues(DecontoandPollard, 20 2016; Golledge et al., 2015; Rignot et al., 2014; Mengel and Levermann, 2014). Paleo records indicate that the AIS was a 1 Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) majorcontributortosealevelchangeinpastclimateevents(Cooketal.,2013;Milleretal.,2012;RaymoandMitrovica,2012; Duttonetal.,2015;O’Learyetal.,2013),andthemassbalanceofthemodern-dayAISisalreadynegative(Rignotetal.,2011; ZwallyandGiovinetto,2011).TherateofretreatofmuchoftheAISwillbegovernedbytheocean(Golledgeetal.,2017), as 40% of the ice sheet by area is grounded below sea level (Fretwell et al., 2013). This geometry provides the potential for 5 the ocean to melt large regions of the AIS from below. For example, the Amundsen sector of West Antarctica has bedrock geometryfavourableforamarineicesheetinstability,andunstableretreatmayhavealreadybegun(Rignotetal.,2014). TheoceandirectlyinteractswiththeAISthroughiceshelves,whicharethefloatingextensionsoftheland-basedicesheet. Thepropertiesoficeshelfcavities,thepocketsofoceanbetweeniceshelvesandtheseafloor,determinethebasalmeltratesof eachiceshelfwhichultimatelyaffectthemassbalanceoftheAISthroughdynamicalprocesses(Dupont,2005).Theseawater 10 iniceshelfcavitiescanbesourcedfromseveraldifferentwatermasses,whichaffectitstemperatureandsalinity.Manyofthese sourcewatermassesareinfluencedbyseaiceprocesses(Jacobsetal.,1992;Nichollsetal.,2009). Abetterunderstandingofocean/sea-ice/ice-shelfinteractionsinAntarcticaiscrucial,particularlygiventheirimportancefor futuresealevelrise.However,theseinteractionstakeplaceinobservation-deficientregions.Inparticular,thereareveryfew directmeasurementsinsideiceshelfcavities,andobservationsarealsoscarceintheseaicecoveredregionsoftheSouthern 15 Ocean(Rintouletal.,2010).Whileiceshelfbasalmeltratescanbeinferredusingremotesensingmethods(Rignotetal.,2013; Depoorteretal.,2013),largeuncertaintiesremainregardingthecirculationpatternsdrivingthesemeltrates,andnopredictions forthefuturecanbemadebasedonthesedata. Consequently,muchofourunderstandingofocean/sea-ice/ice-shelfinteractionsisbasedonnumericalmodelling.Inrecent yearsanincreasingnumberofoceanmodelshavebeguntoresolveiceshelfcavitiesandsimulatethermodynamicprocesses 20 at the ice shelf base (Dinniman et al., 2016). Given the variety of models involved, and the relative lack of observations to constrain their tuning, it is desirable to conduct model intercomparison projects (MIPs, see e.g. Meehl et al. (2000)) by whichseveralmodelsrunthesameexperimentandtheiroutputiscompared.Theresultinginsightsintomodelsimilaritiesand differencescanideallybeattributedtomodeldesignchoices,withtheaimofguidingfuturedevelopment. To date, the only MIPs considering ice shelf cavities are the ongoing ISOMIP experiments (Ice Shelf-Ocean Model In- 25 tercomparison Project) (Hunter, 2006; Asay-Davis et al., 2016) which use idealised domains and simplified forcing, and do not include coupled sea ice models. The ISOMIP experiments are undoubtedly valuable, and are likely to provide particular insights regarding the response of cavity circulation to warm versus cold forcing. However, idealised experiments such as ISOMIPshouldbecomplementedbyintercomparisonsovermorerealisticdomains,withobservationallyderivedforcingand coupledseaicemodels.Thesemodelconfigurationsarealreadybeingusedtobetterunderstandprocessesinobservedcavities 30 (Timmermann et al., 2012; Galton-Fenzi et al., 2012) and to provide future projections of ice shelf melt (Timmermann and Hellmer,2013;Hellmeretal.,2012,2017),soanalysisofthesimilaritiesanddifferencesbetweensuchmodelsistimely.An- otherimportantbenefitofrealisticdomainsistheopportunitytocomparemodeloutputtoavailableobservations,evenifthese observationsarelimited.Therefore,anelementofmodelevaluation,aswellasmodelintercomparison,canbeincluded. Inthispaperwepresentsuchanintercomparisonoftwooceanmodels,bothincludingiceshelfthermodynamicsandseaice 35 components,fromacircumpolarAntarcticperspective.Wefocusoniceshelfbasalmeltandsub-iceshelfcirculationacross 2 Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) eightregionsoftheAntarcticcoastline,butalsoconsiderinteriorSouthernOceanandseaiceprocessesastheyaffecticeshelf cavities.Themodeloutputiscomparedtorelevantobservationswhereavailable.Finally,keyfindingsandtheirimplications, aswellaspossibilitiesforfuturemodeldevelopment,arediscussed. 2 Modeldescriptions 5 Two coupled ocean/sea-ice/ice-shelf models are included in this intercomparison: MetROMS and FESOM. We run FESOM at two different resolutions, for a total of three experiments (see Section 3). In this section we describe the two models and comparetheirscientificdesign. 2.1 Overview MetROMSconsistsoftheregionaloceanmodelROMS(RegionalOceanModellingSystem)(ShchepetkinandMcWilliams, 10 2005) including ice shelf thermodynamics (Galton-Fenzi et al., 2012), coupled to the sea ice model CICE (Community Ice CodE) (Hunke et al., 2015) using the coupler MCT (Model Coupling Toolkit) (Larson et al., 2005; Jacob et al., 2005). The couplingwasimplementedbytheNorwegianMeteorologicalInstitute(Debernardetal.,2017)andisdescribedinNaughten etal.(2017).Weusethedevelopmentversion3.7oftheROMScode,version5.1.2ofCICE,andversion2.9ofMCT. FESOM(FiniteElementSea-ice/ice-shelfOceanModel)isaglobaloceanmodelwithaninternallycoupledseaicemodel 15 (Danilovetal.,2015;Timmermannetal.,2009)andiceshelfthermodynamics(Timmermannetal.,2012).Ithasanunstruc- tured mesh in the horizontal, consisting of triangular elements which allow for spatially varying resolution. The numerical methodsassociatedwiththeunstructuredmesharedetailedbyWangetal.(2008)andWangetal.(2014),whiletheimplemen- tationoftheiceshelfcomponentisdiscussedinTimmermannetal.(2012). 2.2 Domainandresolution 20 OurconfigurationofMetROMShasacircumpolarAntarcticdomainwithanorthernboundaryat30◦S.Horizontalresolution isquarter-degreescaledbycosineoflatitude,andtheSouthPoleisrelocatedtoachieveapproximatelyequalresolutionaround the Antarctic coastline. This leads to resolutions (defined as the square root of the area of each grid box) of approximately 15-20 km in the Antarctic Circumpolar Current (ACC), 8-10 km on the Antarctic continental shelf, and 5 km or finer at the southernmostgroundinglinesoftheRoss,Filchner-Ronne,andAmeryIceShelves(Figure1a). 25 OurFESOMsetuphasaglobaldomainwithspatiallyvaryinghorizontalresolution.HerewedefineresolutioninFESOMas thesquarerootoftheareaofeachtriangularelement,howeverthismetricmaynotbetrulycomparabletoMetROMS.When discussingresolution,therealquestionishowmanyfeaturesoffluidflowcanberepresentedbyameshofacertainspacing. In models with such different numerical methods as MetROMS (finite-volume) and FESOM (finite-element), the number of featuresresolvedmayscaledifferentlywiththemeshspacing.Numericaldissipationandstabilisationbuiltintodifferenttime- 30 steppingroutinescanalsoinfluencethis“effectiveresolution”.Furthermore,MetROMSemploysastaggeredArakawaC-grid for the ocean and B-grid for the sea ice (Arakawa and Lamb, 1977), by which different variables are calculated at different 3 Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) locationswithineachgridbox.InFESOM,allvariablesarecalculatedatthesamelocations(nodes),analogoustotheArakawa A-grid.Thereissomeevidencethatthisdesigntendstoresolvefewerfeaturesoffluidflow(HaidvogelandBeckmann,1999), andindeedFESOMappearstohavealowereffectiveresolutionthanfinite-differenceC-gridmodelswithcomparablenominal grid spacing. These differences should be lessened in eddy-resolving simulations, where advection of momentum (which is 5 essentiallythesameinstaggeredandunstaggeredmeshes)dominates.However,thesimulationspresentedherearenoteddy- resolving,sosomeinfluencewouldbeexpected. Toaccountfortheseuncertainties,aswellastoinvestigatetheimportanceofresolutiononFESOM’sperformance,wehave preparedtwomeshes:“low-resolution”(Figure1b)and“high-resolution”(Figure1c).Thehigh-resolutionmeshhasapproxi- matelydoublethenumberof2Dnodesasthelow-resolutionmesh,buttheseextranodesarenotevenlyspacedthroughoutthe 10 domain. Outside the Southern Ocean, the two meshes have virtually identical resolution (not shown), ranging from 150-225 kmintheabyssalPacific,Atlantic,andIndianOceans,and50-75kmalongcoastlines.IntheopenSouthernOcean,resolution rangesfrom20-100kmforthelow-resolutionmeshand15-50kmforthehigh-resolutionmesh.Bothmesheshavefinerres- olution on the Antarctic continental shelf (approximately 8-10 km for low-resolution, 5-7 km for high-resolution) and in ice shelfcavities(5-10kmforlow-resolution,3-7kmforhigh-resolution).Thegreatestdifferencebetweenthetwomeshesoccurs 15 in the Amundsen and Bellingshausen Seas, with approximate resolution of 11 km for the low-resolution mesh and 4 km for high-resolution. Inthevertical,MetROMSuses31terrain-followinglevelsusingthes-coordinatesystem,withincreasingverticalresolution near the surface and bottom, and coarsest resolution in the interior. FESOM employs a hybrid z-sigma vertical coordinate system, with the same discretisation for both the low- and high-resolution meshes. The region south of the 2500 m isobath 20 surroundingAntarctica,whichincludesalliceshelfcavitiesaswellasthecontinentalshelfandslope,hassigma-coordinates with22levels.Theremainderofthedomainhasz-coordinates,comprisedof38levelsweightedtowardsthesurface.Bottom nodesareallowedtodeviatefromthestandardz-levelsinordertomatchthegivenbathymetry.Bothmodelsarefree-surface, whichleadstotime-varyingverticallevelsinMetROMS,butonlyaffectstheuppermostlayerinFESOM. In both models, the use of terrain-following coordinates in the thin water columns of ice shelf cavities leads to extremely 25 high vertical resolution, often finer than 1 m in MetROMS, which limits the timestep. Our configuration of ROMS requires a baroclinic timestep of 5 minutes for stability, with 30 barotropic timesteps for each baroclinic. In CICE, the timestep is 30minutesforbothdynamicandthermodynamicprocesses,andocean/sea-icecouplingisalsoperformedevery30minutes. FESOMisrunwithatimestepof10minutesforthelow-resolutionmeshand9minutesforhigh-resolution.Theseaicemodel operatesonthesametimestepastheoceancomponent. 30 2.3 Smoothingofbathymetryandiceshelfdraft Steepbathymetrycanbeproblematicforterrain-followingcoordinateoceanmodels,asithasthepotentialtointroducepressure gradient errors (Haney, 1991). Both ROMS (Shchepetkin, 2003) and FESOM (Wang et al., 2008) are designed to minimise this issue with the splines density Jacobian method for the calculation of the pressure gradient force, which reduces errors compared to the standard density Jacobian method. Nevertheless, a particular challenge arises at ice shelf fronts, which in 4 Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) reality are cliff faces that can reach several hundred metres in depth, but which models must represent as sloping surfaces. Thissubstantialchangeinsurfacelayerdepthoveraslittleasonegridcellcreatessteeplyslopingverticallayerswithalarge pressuregradient,andnumericalerrorsinthepressuregradientcalculationcoulddrivespuriouscirculationpatternsacrossthe giveniceshelffront. 5 Inbothmodels,someamountofsmoothingofthebathymetryandiceshelfdraftisnecessaryfornumericalstabilityandto reduce pressure gradient errors. On the other hand, excessive smoothing could alter the geometry of the ice shelf cavities to the point where circulation is affected. An oversmoothed ice shelf front would be too shallow and gently sloping, providing a pathway for warm surface waters to easily enter the cavity, where in reality a physical barrier exists. Near the grounding linesatthebackoficeshelfcavities,oversmoothingwouldremovethedeepesticewhichmeltsmosteasily(LewisandPerkin, 10 1986). In this situation the water column thickness would be overestimated, allowing for greater transport of warm water to the grounding line. In a coupled ice-sheet/ocean model, Timmermann and Goeller (2017) demonstrated that increased water column thickness due to a thinning ice shelf can more than compensate for the reduced melting expected from the elevated in-situfreezingpointattheiceshelfbase.Therefore,adelicatebalancemustbestruckwhensmoothingmodeltopographies, inordertoachievethemostaccuratesimulation. 15 We prepared the MetROMS and FESOM domains using bathymetry, ice shelf draft, and land/sea masks from the RTopo- 1.05 dataset (Timmermann et al., 2010). MetROMS follows a 3-step smoothing procedure similar to that of Lemarié et al. (2012). First, the “deep ocean filter” consists of a single pass of a Hanning filter (window size 3) over the bathymetry h, with variable coefficients designed to remove isolated seamounts. Next, a selective Hanning filter is repeatedly applied to bothlog(h)andlog(z ),wherez istheiceshelfdraft,untiltheslopeparameterr=(h h )/(h +h )satisfiesthe ice ice i i+1 i i+1 − 20 conditionr<0.25everywhere(andsimilarlyforzice).Thisselectivefilterhascoefficientsscaledbythegradientofhorzice, meaningthatregionswhicharealreadysmoothenoughwillnotbecomeoversmoothed.Finally,bothhandz undergoafinal ice twopassesofaregularHanningsmoothertoremove2Dnoise.Notethatthisseparatetreatmentofbathymetryandiceshelf draftdoesnotdirectlyconsiderwatercolumnthickness,forwhichsomelargegradientsmayremain. The smoothing procedure in FESOM is the same as described by Nakayama et al. (2014). The source bathymetry and 25 iceshelfdraftarefirstaveragedover4-minute( 1 ◦)intervals.ThenGaussianfiltersareappliedtobothfields,withspatially- 15 varyingradiiscaledbythedesiredfinalresolution.Forthisreason,high-resolutionregionsofthedomainreceivelesssmoothing thanlower-resolutionregions.TheiceshelfdraftundergoesonepassoftheGaussianfilter,whilethebathymetryundergoesfour passeswithlargerradii.Followinginterpolationtotheunstructuredmesh,theiceshelfdraftfieldreceivesselectivesmoothing tosatisfythecriticalsteepnesslimitationofHaney(1991)atallpoints.Thisprocedurelimitstheslopeoftheiceshelfdraft, 30 andextremelyhighresolutionmaybenecessarytopreservesteepslopes. Anotherregionofconcernisthegroundingline,wherewatercolumnthicknessapproacheszeroandverticallayersconverge. Estimates of pressure gradient error, such as that of Haney (1991), scale inversely with the vertical layer thickness and can thereforedivergenearthegroundingline.Toalleviatethisproblem,aminimumwatercolumnthicknessof50misenforced. Inbothmodels,thebathymetryisartificiallydeepenedwherenecessarytosatisfythisconditionduringthesmoothingprocess. 5 Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) 2.4 Oceanmixing ROMSincludesseveraloptionsfortraceradvection(ShchepetkinandMcWilliams,2005),andthechoiceofadvectionscheme isknowntoimpactthesimulation.ThecenteredandAkimafourth-ordertraceradvectionschemesaredominatedbydispersive error, which can lead to undershoots of the freezing point and spurious sea ice formation in our MetROMS configuration 5 (Naughtenetal.,2017).Ontheotherhand,theupwindthird-ordertraceradvectionschemeisdominatedbydissipativeerror, which can result in high levels of diapycnal mixing for some simulations (Lemarié et al., 2012; Marchesiello et al., 2009). Indeed,problematicdiapycnalmixingrelatedtotheupwindthird-orderschemewasobservedindecadal-scalesimulationswith our configuration of MetROMS (not shown). Therefore, the 25-year MetROMS simulation we present here uses the Akima fourth-order tracer advection scheme, combined with explicitly parameterised Laplacian diffusion applied along isoneutral 10 surfaces,atalevelstrongenoughtosmoothoutmostdispersiveoscillations.Thisconfigurationshowsveryminimalspurious seaiceformationcomparedtoasimulationwithflux-limited(i.e.locallymonotonic)upwindthird-orderadvection(Naughten etal.,2017),andexhibitslessspuriousdiapycnalmixingthantheupwindscheme.Thediffusivitycoefficientis150m2/s,which applies to the largest grid cell (approx. 24 km resolution) and is scaled linearly for smaller cells. Advection of momentum uses the upwind third-order scheme in the horizontal and the centered fourth-order scheme in the vertical (Shchepetkin and 15 McWilliams,2005),andiscombinedwithparameterisedbiharmonicviscosityalonggeopotentialsurfaces,withacoefficient of107m4/s(scaledbygridsizeaswithdiffusivity). FESOM computes advection of momentum using the characteristic Galerkin method, and advection of tracers using the explicitsecond-orderflux-corrected-transportscheme(Wangetal.,2014).TheLaplacianapproachisusedtoexplicitlyparam- eterisebothdiffusivityandviscosity,withcoefficients600m2/sand6000m2/srespectively.Thesevaluesapplytoareference 20 areaof5800km2,andarescaledtotheareaofeachtriangularelement,scalingwiththesquarerootfordiffusivityandlinearly forviscosity.At10kmresolution(elementareaof100km2),theresultingdiffusivityis78.8m2/s,comparedto62.4m2/sin ROMS. The analogous viscosity terms cannot be directly compared between ROMS and FESOM, since they do not use the sameparameterisation. A flow-dependent Smagorinsky viscosity term is also applied in FESOM (Smagorinsky, 1963, 1993; Wang et al., 2014). 25 Inz-coordinateregions,tracerdiffusionisrotatedalongisoneutrals,andtheGent-McWilliamseddyparameterisationisused (GentandMcWilliams,1990;Gentetal.,1995;Wangetal.,2014).Insigma-coordinateregions,diffusivityandviscosityare bothappliedalongconstant-sigmasurfaces. ForweaklystratifiedregionssuchastheSouthernOcean,thechoiceofverticalmixingparameterisationcanhaveasignifi- cantimpactonsimulatedconvection(TimmermannandBeckmann,2004).MetROMSemploystheLarge-McWilliams-Doney 30 interiorclosurescheme(Largeetal.,1994)whichincludestheKPPboundarylayerparameterisation.Weimplementthesame KPP modification as in Dinniman et al. (2011), which imposes a minimum surface boundary layer depth based on surface stress, in the case of stabilising conditions. This modification is designed to address problems with excessive stratification duringperiodsofrapidseaicemelt,andfollowsprinciplessimilartotheFESOMverticalmixingparameterisationdiscussed 6 Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) below. A shallow bias in mixed layer depths during the melt season is problematic for the accurate simulation of Southern Oceanwatermasses,particularlyintheWeddellSea(TimmermannandBeckmann,2004). TheverticalmixingschemeinourconfigurationofFESOM(Timmermannetal.,2009)consistsoftheRichardsonnumber dependentparameterisationofPacanowskiandPhilander(1981),modifiedtohavemaximumverticaldiffusivitiesandviscosi- 5 tiesof0.05m2/s.OveradepthdefinedbytheMonin-Obukhovlength,calculatedasafunctionofsurfacestressandbuoyancy forcing,anextra0.01m2/sisappliedtobothverticaldiffusivityandviscosity.ThiscombinationwasfoundbyTimmermann andBeckmann(2004)toproducethemostrealisticrepresentationofwatermassesintheWeddellSea,avoidingtheexcessive open-oceanconvectionwhichischaracteristicoftraditionalconvectiveadjustment.WealsotestedtheKPPparameterisation (withoutthemodificationusedbyMetROMS)inshortsimulationswithourFESOMconfiguration(notshown).Comparedto 10 themodifiedPacanowski-Philanderscheme,thishadnosignificantimpactsonWeddellSeaconvection,atleastonthe5-year timescale. 2.5 Iceshelfthermodynamics Withterrain-followingcoordinates,itisrelativelystraightforwardtoincludeiceshelfcavitiesinanAntarcticdomain.Inboth ROMSandFESOM,alloftheterrain-followingverticallayerssubductbeneaththeiceshelves.Thepressureoftheiceshelf 15 draftmustbeconsideredinthecalculationofthepressuregradient.ROMSverticallyintegratesthedensityofwaterdisplaced byice,andassumesthedensityofthisdisplacedwaterisalinearfunctionofdepth,withcoefficient ∂ρ =4.78 10 3 kg/m4 ∂z × − and intercept given by the density in the first model layer. FESOM computes the pressure gradient force from the vertically integratedhorizontaldensitygradientandassumesthatthehorizontalpressuregradientiszeroattheiceshelfbase.High-order interpolationfordensityisdoneintheverticaltocomputehorizontaldensitygradientsasaccuratelyaspossible. 20 ROMSandFESOMsimulateiceshelfthermodynamics:theheatandsaltfluxesassociatedwithmeltingandrefreezingatthe iceshelfbase.However,anynetmeltingorfreezingisnotactuallyappliedtotheiceshelfgeometry.Itisassumedthatglacial flow of the ice shelf, surface accumulation, and basal melting are in dynamic equilibrium such that the geometry remains constant. Removing this assumption necessitates coupling with an ice sheet model, which has recently been accomplished forFESOM(TimmermannandGoeller,2017)andisunderdevelopmentforROMS(Gladstoneetal.,2017).Ice-sheet/ocean 25 couplingisanemergingfieldofclimatemodelling,andthefirstgenerationofmodelswillbecomparedandevaluatedaspart oftheMISOMIPexperiments(MarineIceSheet-OceanModelIntercomparisonProject)(Asay-Davisetal.,2016). Both ROMS and FESOM (Galton-Fenzi, 2009; Galton-Fenzi et al., 2012; Timmermann et al., 2012) implement the 3- equation parameterisation of Hellmer and Olbers (1989) refined by Holland and Jenkins (1999). The heat and salt exchange coefficientsγ andγ havetheform T S u u ∗ ∗ 30 γT = κ+12.5Pr23 6 and γS = κ+12.5Sc32 6 (1) − − 7 Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) wherePristhePrandtlnumberandScistheSchmidtnumber(bothdimensionlessconstants)andu isthefrictionvelocity, ∗ calculatedas u∗=max Cd(u2+v2),u∗min (2) (cid:16)p (cid:17) where C is the drag coefficient (3 10 3 in ROMS, 2.5 10 3 in FESOM), u and v are the horizontal ocean velocity d − − × × 5 componentsintheuppermostverticallayer,andu∗min isalowerboundforu∗ whichrepresentsmoleculardiffusion(10−3 in ROMS,2.5 10 4inFESOM).Whiletheeffectofthedifferentdragcoefficientbetweenthemodelsislikelytobenegligible, − × thelargerminimumu inROMSwillcausestrongermeltinginlocationswithveryweakflow,suchasatthegroundingline ∗ (Gwytheretal.,2016). The turbulence term κ in Equation 1 has a different formulation between the two models. FESOM follows a very similar 10 approachtoJenkins(1991),bywhich D κ=2.12log u∗ 3 (3) ν − (cid:18) (cid:19) whereD=10misareferenceboundarylayerdepth,andν=1.95 10 6 m2/sisthekinematicviscosity.ROMSinstead − × usesasimplifiedversionofMcPheeetal.(1987)’sapproach,bywhich 2.5log 5300(u∗)2 +7.12 ifu >10 3and f >10 8 κ= |f| ∗ − | | − (4) (cid:16) (cid:17) 0 otherwise 15 wheref istheCoriolisparameter. While refreezing is implicit in the 3-equation formulation, none of our configurations include an explicit frazil ice model suchasthatofSmedsrudandJenkins(2004)orGalton-Fenzietal.(2012). 2.6 Seaice MetROMSincludestheseaicemodelCICE(Hunkeetal.,2015)whichisamulti-layer,multi-categorymodelwidelyusedin 20 globalcoupledmodelsaswellasregionalanduncoupledsetups.OurconfigurationofCICEhassevenicelayersplusonesnow layer,andfiveicethicknesscategories.ItisexternallycoupledtoROMS,i.e.runsonseparateprocessors,withcommunication drivenbythecouplerMCT(Larsonetal.,2005;Jacobetal.,2005).Therearesixbaroclinicoceantimesteps(5minutes)for eachsea icetimestep(30minutes), andthecoupler exchangesfieldsevery seaicetimestep.Having longertimestepsfor the seaicethanfortheoceaniscomputationallyfavourable,butitalsointroduceslagsinocean/sea-iceinteractions,becausethe 25 coupledfieldsaretime-averagedovertheprevious30minutes. FESOM’s sea ice model is described by Danilov et al. (2015). It has a single ice layer (plus one snow layer) and a single thickness category. It is internally coupled with the ocean, running on the same processors and the same timestep. While 8 Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) the FESOM sea ice model is generally less complex than CICE, it nonetheless has been shown to reproduce key features of observedArcticandAntarcticseaice(Timmermannetal.,2009). OurconfigurationofCICEusesthe“mushy”thermodynamicsschemeofTurneretal.(2013a).Italsoincludesthelevel-ice meltpondparameterisationofHunkeetal.(2013),andtheDelta-Eddingtonradiationscheme(BrieglebandLight,2007).In 5 FESOM,seaicethermodynamicsfollowsParkinsonandWashington(1979)withthezero-layerapproachtoheatconduction (Semtner,1976). For sea ice dynamics, CICE uses elastic-anisotropic-plastic rheology (Tsamados et al., 2013) with the ridging-based ice strength formulation of Rothrock (1975). FESOM has elastic-viscous-plastic rheology (Hunke and Dukowicz, 1997; Hunke, 2001) including a linear formulation of ice strength with coefficient P =15,000 N/m2. Sea ice transport follows an incre- ∗ 10 mentalremappingapproachinCICE(LipscombandHunke,2004),withtheridgingparticipationandredistributionfunctions ofLipscombetal.(2007).FESOMusesabackwardEulerimplicitadvectionschemeforseaicetransport. 3 Experimentaldesign For this intercomparison, we simulated the 25-year period 1992-2016 using three model configurations: MetROMS, low- resolutionFESOM,andhigh-resolutionFESOM(Figure1). 15 3.1 Initialconditions All simulations are initialised using monthly-averaged observational or reanalysis products for January 1992. Initial ocean temperatureandsalinityaretakenfromtheECCO2reanalysis(Menemenlisetal.,2008;Wunschetal.,2009),andextrapolated intoiceshelfcavitiesusinganearest-neighbourmethodinCartesianspace.Initialoceanvelocityandseasurfaceheightareset tozero. 20 Sea ice is initialised using the NOAA/NSIDC Climate Data Record for Passive Microwave Sea Ice Concentration (Meier etal.,2013).WherevertheobservedAntarcticseaiceconcentrationexceeds0.15,themodelisinitialisedwithconcentration 1,icethicknessof1m,andsnowthicknessof0.2m.ThisisthesamemethodusedbyNaughtenetal.(2017)andissimilarto thatofKjellssonetal.(2015).FESOM,havingaglobaldomain,alsorequiresinitialconditionsforArcticseaice.Wefollow thesamemethodasfortheAntarctic,butsettheinitialicethicknessto2m,sinceArcticseaicetendstobethicker(Kwokand 25 Cunningham,2008;Worbyetal.,2008).Initialseaicevelocityissettozero. Ourexperimentsdonotincludeaproperspinuptoaquasi-equilibriumstate.Forthepurposesofthisintercomparisonaround theAntarcticmarginandcontinentalshelf,aswellasintheiceshelfcavities,weargueafullspinupisnotworththecompu- tationalexpense.Thatisbecausetheprocesseswefocuson-onshoreflow,denseshelfwaterformation,andocean/ice-shelf interaction-equilibratemuchmorequicklythantheinteriorocean.Indeed,area-averagedbasalmeltratesinourexperiments 30 stabilisewithin5-10yearsformosticeshelves. 9 Geosci.ModelDev.Discuss.,https://doi.org/10.5194/gmd-2017-268 ManuscriptunderreviewforjournalGeosci.ModelDev. Discussionstarted:1November2017 c Author(s)2017.CCBY4.0License. (cid:13) 3.2 Atmosphericforcing MetROMSandFESOMarebothforcedwiththeERA-Interimatmosphericreanalysis(Deeetal.,2011)using6-and12-hourly fieldsovertheyears1992-2016.Duetodifferingimplementationsofmodelthermodynamics,thetwomodelsareforcedwith differentcombinationsofatmosphericvariables.Bothmodelsutilise6-hourlyfieldsfornear-surfaceairtemperature,pressure, 5 and winds, which are linearly interpolated to each timestep. Near-surface humidity is derived from ERA-Interim’s 6-hourly fields for dew point temperature; this conversion is performed in advance for MetROMS, but at run-time for FESOM. Both modelsread12-hourlyfieldsforprecipitation(splitintorainandsnow)andevaporation,whicharenotinterpolatedintimebut ratherappliedataconstantratewithastepchangeevery12hours,astheyrepresenttotalfluxesoverthegiven12-hourperiod. MetROMSdiagnosesincomingshortwaveradiationfromERA-Interim’s6-hourlytotalcloudcover,whichisinterpolatedto 10 eachtimestep.Incominglongwaveradiationiscalculatedinternally.InFESOM,incomingshortwaveandlongwaveradiation arereaddirectlyfromERA-Interim,as12-hourlyfieldswhichareappliedasstepchanges. To account for the influence of iceberg calving on the Southern Ocean freshwater budget, both models are forced with an additional surface freshwater flux representing iceberg melt. For this field we use the monthly climatology of Martin and Adcroft(2010),interpolatedtoeachtimestep,andrepeatedannually.Riverrunofffromothercontinentsisnotconsidered. 15 3.3 Surfacesalinityrestoring A persistent feature of many Southern Ocean models (Kjellsson et al., 2015; Heuzé et al., 2015; Sallée et al., 2013; Turner et al., 2013b) is spuriously deep convection in the Weddell Sea, leading to an unrealistic open-ocean polynya as warm Cir- cumpolarDeepWaterisbroughttothesurface.Thepossiblecausesofthiswidespreadmodelbiasincludeinsufficientsurface freshwaterflux(Kjellssonetal.,2015)aswellasinsufficientsummermixedlayerdepths(TimmermannandBeckmann,2004). 20 Inbothcircumstances,salinityinthesubsurfaceWinterWaterlayerincreasesuntiltheweaklystratifiedwatercolumnbecomes unstableandoverturns. MetROMS is prone to deep convection in the Weddell Sea, and while tuning of the sea ice dynamics and ocean vertical mixing helped to delay the onset of convection, the only permanent solution we found was surface salinity restoring. We restore MetROMS to the World Ocean Atlas 2013 monthly climatology of surface salinity (Zweng et al., 2013), linearly 25 interpolated to each model timestep and repeated annually. Restoring has a timescale of 30 days and affects the uppermost layer, whose thickness is time-varying but generally ranges from 1-3 m. We exclude the Antarctic continental shelf from this restoring (defined as regions south of 60 S with bathymetry shallower than 1500 m, as well as all ice shelf cavities), as ◦ significantfresheningofAntarcticBottomWateroccursotherwise.Giventherelativelyscantobservationsonthecontinental shelfmakinguptheWorldOceanAtlasproducts,restoringinthisregionmaynotbeappropriate. 30 FESOMdoesnotdevelopspuriousdeepconvectionintheWeddellSea,evenforlongsimulationswithoutrestoring.Possible reasonsforthisdifferingbehaviourbetweenMetROMSandFESOMarediscussedinSection4.2.1.Nonetheless,weapplythe samesurfacesalinityrestoringtoFESOMaswedotoMetROMS,sothattheexperimentsareassimilaraspossible.Restoring 10

Description:
1 Introduction. The Antarctic Ice Sheet (AIS) has significant potential to drive sea level rise as climate change continues (Deconto and Pollard,. 2016; Golledge et al., 2015; Rignot et .. For sea ice dynamics, CICE uses elastic-anisotropic-plastic rheology (Tsamados et al., 2013) with the ridging-
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.