BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 1 Interannual sedimentary effluxes of alkalinity in the southern North Sea: Model results compared with summer observations JohannesPa¨tscha,∗,WilfriedKu¨hna,KatharinaD.Sixb aInstituteofOceanography,UniversityofHamburg,Germany bMax-PlanckInstituteforMeteorology,Hamburg,Germany Abstract ForthesedimentsofthecentralandsouthernNorthSeadifferentsourcesofalkalinitygeneration are quantified by a regional modelling system for the period 2000 - 2014. For this purpose a formerlyglobaloceansedimentmodelcoupledwithapelagicecosystemmodelisadoptedtoshelf seadynamicswheremuchlargerturnoverratesthanintheopenanddeepoceanoccurs. Totrack alkalinitychangesduetodifferentnitrogen-relatedprocessestheopenoceansedimentmodelwas extended by the state variables particulate organic nitrogen (PON) and ammonium. Directly measured and from Ra isotope flux observationderived alkalinity fluxes from the sediment into the pelagic are reproduced by the model system but calcite building and calcite dissolution are underestimated. Bothfluxescanceloutintermsofalkalinitygenerationandconsumption. Other simulated processesaltering alkalinity in the sediment like net sulfate reduction, denitrification, nitrification and aerobic degradationare quantified and compare well with correspondingfluxes derivedfromobservations. Mostofthesefluxesexhibitastrongpositivegradientfromtheopen NorthSeatothecoastwherelargeriversdrainnutrientsandorganicmatter. Atmosphericnitrogen depositionshowsalsoapositivegradientfromtheopenseatowardslandandsupportsalkalinity generationinthesediments. Anadditionalsourceofspatialvariabilityisintroducedbytheuseof a3D-heterogenousporosityfield. Duetorealisticporosityvariations(0.3-0.5)thealkalinityfluxes varybyabout4%. Thestrongestimpactoninterannualvariationsofalkalinityfluxesexhibitthe temporal varying nitrogeninputs fromlarge rivers directly governingthe nitrate concentrations inthecoastalbottomwater,thus,providenitratenecessaryforbenthicdenitrification. Overthe timeinvestigatedthealkalinityeffluxesdecreaseduetothedecreaseofthenitrogensupplybythe rivers. 1. Introduction 1 Alkalinity generationfromanaerobic degradationin coastal sediments favorsthe marine uptake 2 3 capacityforatmosphericCO2. Thisisbecausethesepathsoforganicmatterdegradationinclude ∗Correspondingauthor Emailaddress: [email protected](JohannesP¨atsch) BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 2 4 irreversibleprocesseslikeN2 productionandlossofreducedsulfateproducts. InSeptember2011andJune2012Brenneretal.(2016)measuredalkalinityfluxesfromtheNorth 5 Sea sediment using severalsediment cores. For the southernNorth Sea they found a mean flux 6 7 of6.3mmolm−2d−1. Alkalinity effluxesintothe pelagicsystemcouldpartlydeterminethe rel- ative high surface alkalinity concentrations (Fig. 1a) in the southern North Sea as observedby 8 Thomasetal.(2009)inSeptember2001. Togetherwithobservedconcentrationsofdissolvedinor- 9 ganiccarbon(DIC)(Bozecetal.,2006)thesesurfacealkalinityconcentrationscanbetranslated 10 11 into∆pCO2 values(pCO2ocean−pCO2atmosphere)whicharemainlyresponsiblefortheairseaex- 12 change of CO2 between ocean and atmosphere (Fig. 1b). In the southern North Sea positive valuesindicateoversaturationandthusoutgassing,whereasinthenorthernpartsnegativevalues 13 14 result in an uptake of atmospheric CO2. When in a simple gedankenexperiment the observed alkalinity fluxes by Brenneretal. (2016) would be reduced by 50 % from the beginning of the 15 year,thealkalinityconcentrationsespeciallyintheshallowsouthernNorthSeawouldbereduced 16 17 (Fig. 1c)andthecorresponding∆pCO2 valueswouldexhibitmuchstrongeroversaturation(Fig. 1d). ThissimpleexperimentignorestheseasonalityofthealkalinityfluxesandthefactthatDIC 18 fluxeswouldvaryinconcert. 19 In this paper we investigatethe variability of alkalinity generationand the efflux to the pelagic 20 zonebymeansofaregionalbiogeochemicalmodel. Thesecondchapterpresentsmethodsconcern- 21 ingthemodelsetup,particularwithregardtotheadaptationoftheformeropenoceansediment 22 model (Heinzeetal., 1999) to shelf sea conditions. Within the third chapter model results are 23 comparedwithobservationaldata. Inthefourthchapterweshowtheresultsofseveralscenarios 24 demonstratingthesensitivityofthetotalmodeldynamicsonenvironmentalsettingsduetochang- 25 ing alkalinity fluxes. One of these scenariospicks up the gedankenexperimentmentionedabove. 26 27 ItdemonstratesthestrongimpactofreducedalkalinityfluxesonthepCO2 (seeChapter4.2). 2. Methods 28 The simulationswereperformedwith the ecosystemmodel ECOHAM (Pa¨tschandKu¨hn, 2008) 29 using the nesting method focussing on the central and southern North Sea (50.88o to 57.28oN, 30 3.42oW to 9.25oE) (Pa¨tschetal., 2010). The model system includes the hydrodynamic model 31 HAMSOM(Backhaus,1985;Pohlmann,1996;Pa¨tschetal.,2017)andtheverticallyresolvedsed- 32 imentmodeloriginallydevelopedforthedeepopenocean(Heinzeetal.,1999). Thelattermodel 33 hasbeenadoptedtoshelfseadynamics,detailsarediscussedbelow. The3Dfieldsoftemperature 34 (T),salinity(S),advectiveflowandverticalturbulentmixingcoefficientscalculatedbyHAMSOM 35 areusedasforcingforECOHAM.ThetimestepofECOHAMis5minutes. 36 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 3 2.1. Thehydrodynamic Model 37 The 3D fields of temperature, salinity, advective flow and vertical turbulent mixing coefficients 38 calculated by the hydrodynamic model HAMSOM are used as forcing for the pelagic biogeo- 39 chemical model ECOHAM. HAMSOM is a baroclinic, primitive equation model using the hy- 40 drostatic and Boussinesq approximations. The current velocities are calculated using a first or- 41 der component-upstream scheme. The horizontal is discretized on a staggered Arakawa C-grid 42 (ArakawaandLamb,1977)witharesolutionof∆λ=1/3oand∆φ=1/5o. 43 In a first step the model was applied on a larger area including the Northwest European Shelf 44 (15.250oW-14.083oE,47.583oN-63.983oN)(Lorkowskietal.,2012). Forthislarge-domainrun 45 sea surfaceelevations ofthe semi-diurnallunar tide M2 wereprescribedatthe openboundaries 46 (Backhaus,1985). Thecorrespondingresultsoftemperature, salinityandsurfaceelevationwere 47 stored on the boundaries of the smaller model domain used in this study (black lines in Fig. 48 2). ThesedatawereusedasboundaryconditionsforthehydrodynamicmodelHAMSOMimple- 49 mentedonthesmallerdomainwithaverticalresolutionof5mintheupper50mandincreasing 50 resolutionbelow. The M2-tideis thus inducedimplicitely bythe prescribedsurfaceelevationat 51 theboundaries. DetailsofthenestingprocedurecanbefoundinSchwichtenberg(2013). 52 2.2. Thepelagic biogeochemical Module 53 In the same way as for the hydrodynamic model in a first step the biogeochemical model ran 54 onthelargermodeldomainandprovidedboundaryconditionsforthemodelonthesmallergrid 55 (Fig.2). 56 Thepelagicbiogeochemicalmodelincludes4nutrients(nitrate,ammonium,phosphate,silicate), 57 two phytoplanktongroups(diatoms andflagellates), twozooplanktongroups(micro- andmeso- 58 zooplankton),bacteria,twofractionsofdetritus(fastandslowlysinking),labiledissolvedorganic 59 matter,semi-labileorganiccarbon,oxygen,calcite,dissolvedinorganiccarbon,andtotalalkalinity. 60 Calcite formationis performedby flagellates, only. The molarratio of softtissue productionto 61 calciteproductionis10:1. Themodeldifferentiatesbetweennormalexudationbyphytoplankton, 62 the result of which is labile dissolved organic matter with Redfield composition corresponding 63 to the Redfield production, and an excess exudation of semi-labile organic carbon. The pelagic 64 moduleisdescribedindetailinLorkowskietal.(2012). Forthisstudyweincludedtheprognostic 65 alkalinitycalculationfromSchwichtenberg(2013). Thedifferentprocesses(Fi)andtheirinfluence 66 onalkalinityare: 67 F01-calcitedissolution 68 • F02-calciteformation 69 • F03-nitrification 70 • BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 4 F04-uptakeofnitrate 71 • F05-releaseofammonium 72 • F06-uptakeofammonium 73 • F07-atmosphericdepositionofammonium 74 • F08-atmosphericdepositionofnitrate 75 • F09-uptakeofphosphate 76 • F10-releaseofphosphate 77 • Thesefluxesdeterminethechangeofalkalinity: 78 ∂TA =2(F01 F02 F03)+F04+F05 F06+F07 F08+F09 F10 (1) ∂t − − − − − 79 80 TogetherwiththedynamicsedimentmodulewhichexchangesTAandDICwiththepelagicsystem 81 itwaspossibletosimulatethefullcarbonatesystemprognostically. 82 2.3. TheSedimentModule 83 2.3.1. Theopenoceansedimentmodel 84 The original sediment model was developed by Heinzeetal. (1999) for the global ocean. This 85 model simulated accumulation, degradationand burial of particulate organicand shell material 86 and a diffusive pore water exchange with the overlaying ocean. It was applied mainly for the 87 deepoceanwithitslowamountsofincomingparticulatemattercomparedtotheshallowshelfsea 88 export. Thecorrespondingtimescalesoffluxvariationswereratherlarge(annualtodecadal)and 89 showednoseasonalsignal. Thismodelincludedthesolidcomponentsparticulateorganicmatter 90 (POM),calcite,opalandsiltexportedfromthepelagicandthedissolvedcomponentsphosphate 91 92 (PO4),dissolvedinorganiccarbon(DIC),alkalinity(TA),silicate(Si(OH)4),nitrate(NO3),oxy- 93 gen(O2),anddinitrogen(N2). 94 2.3.2. Theverticalresolution 95 The upper 156 mm of the sediment are resolved by 12 layers with increasing thickness (2 - 24 96 mm). Belowthedeepestlayeradimensionlessburiallayerisimplemented. 97 98 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 5 2.3.3. NewComponents 99 As the pelagic model delivers sinking particulate material with freely varying stoichiometry, we 100 differentiated benthic POM into the state variables particulate organic carbon(POC), nitrogen 101 102 (PON) and phosphorus (POP). Additionally we added ammonium (NH4) as product of the in- complete aerobic degradation which can be oxidised by nitrification when oxygen is available 103 (Paulmieretal., 2009). Nitrite is notexplicitly included. The model combines the effectofsul- 104 fatereductionandreoxidationofreducedsulfatecompoundsasnetsulfatereduction(i.e.,sulfate 105 reductionminusreoxidation). Thedifferentreactionequationsincludingthealkalinitygeneration 106 arelistedintheappendix. 107 108 2.3.4. VaryingPorosity 109 Theeffectivityofseveralsedimentreactionsdependsontheporosity,i.e.,theportionofporewater 110 inagivensedimentvolume. Whiletheglobalcoarsegridsedimentmodelwasimplementedwith 111 a horizontally uniform porosity (Heinzeetal., 1999), in the presented shelf application varying 112 porositieswere takeninto account. The mainparts of the North Sea sediments consistofsand, 113 but there are also muddy areas and even rocky areas exist. The different sediment classes are 114 defined by the composition of grains with different diameters. W. Puls kindly delivered us a 115 North Sea wide map of such grain compositions (pers. comm.). As the sediment model uses 116 porosity values (P), the different grainsize distributions have to be mapped to porosityvalues. 117 Weusedthemediangrainsize(D50)tocalculatetheporosity(pers. comm. W.Puls): 118 Psurf =min(1,max(0.3,0.2603·1.20325D50)) (2) D50=−log2d (3) weredisthegraindiameterinmm. 119 120 TheresultingporosityvaluesPsurf fallintherange[0.3,1]. Onlyforrockysedimentstheporosity isdefinedaszero(Fig. 2). AccordingtoHeinzeetal.(1999)porositiesP(z)indeeperlayerswere 121 definedinrelationtothetoplayer: 122 P(z)=Psurf·ek0·z(m) (4) 123 Fork0=2.12andPsurf =0.3thedeepestlayeratzk=12=−0.144mobtainsavalueofP(zk=12)= 0.22. 124 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 6 Process TurnoverRates OpenOcean Shelf unit Eqn. No aerobicdegradation r1 1.160·10−13 2.000·10−10 mmmol3O2·s (7) denitrification r2 1.157·10−7 1.736·10−3 1s (8) sulfatereduction r3 1.157·10−9 3.472·10−9 1s (9) calcitedissolution r4 1.000·10−13 1.000·10−8 mmolmC3O32−·s (10) opaldissolution r5 1.000·10−12 1.000·10−11 mmomlS3iO2·s (11) nitrification r6 1.157·10−4 1s (12) Table1: Comparisonofopenocean(Heinzeetal.,1999)andshelf(thisstudy)turnoverrates. 2.3.5. TurnoverRates 125 The reaction equations and the chosen stoichiometries are described in detail in the Appendix. 126 Theseequationsuseturnoverrateswhichweremodifiedincomparisontotheoriginalopenocean 127 sedimentmodel(seeTable1) 128 2.3.6. TemperatureDependency 129 As the shallow water column in the North Sea exhibits strong seasonal temperature variations 130 (∆T > 15oC) a temperature dependency of both, the turnover rates (see Appendix) and the 131 verticaldiffusionwasimplemented. 132 133 AQ10valueof1.2foraerobicdegradation,denitrification,nitrification,sulfatereductionandthe dissolutionofcalciteandopalwaschosen(seeAppendix). 134 The verticaldiffusion coefficientforall pore watertracersin the originalopenoceanmodel was 135 136 constant(dv=10−9ms2). Intheshelfmodelthecoefficientsweredefinedastemperature(T)and porosity(P)dependent(Gypensetal.,2008): 137 dv= (d0+a·T)·P : P<0.4 (d0+a·T)·P2 : P≥0.4 138 Theparametersd0andaaredefinedinGypensetal.(2008)(theirTable2)fordifferentgroupsof 139 porewatertracers: Thelowestcoefficientisdefinedforphosphate(dvpho(T10)=5.4·P·10−10ms2) 140 amediumcoefficient(dvtra(T10)=1.4·P·10−9ms2)isvalidforthebiogeochemicaltracersDIC, nitrate,ammonium,alkalinityandsilicate. Thehighestcoefficientwasdefinedforthegasesoxygen 141 142 anddinitrogen(dvnit(T10)=1.6·P·10−9ms2), allatT10=10oCandaporosityP<0.4,which istypicalforsandyground. Inordertotakeintoaccountadvectiveexchangeofporewaterwith 143 thepelagicsystemthecoefficientsfortheuppermostlayerwereincreasedbyafactorof10. This 144 factorwasdeterminedbyseveralsensitivity runsto balancethe exchangebetweenthe sediment 145 andthepelagic. ThesamefactorisusedbyNeumannetal.(2017)toswitchbetweendiffusiveand 146 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 7 advectivenitrateexchangebetweensedimentandpelagicintheGermanBight. Thetemperature 147 ofthesedimentwasdefinedasthetemperatureofthelowestpelagiclayer. 148 The vertical diffusion coefficient for DIC compareswell with the correspondingcoefficient given 149 byBurdigeandKomada(2013)(theirTable3)forT=50CandP=0.36. 150 151 2.4. ExternalData 152 Themeteorologicalforcing(Kalnayetal.,1996)andtheriverloadsofcarbon,alkalinity,nutrients 153 and organic compounds have been implemented according to Lorkowskietal. (2012). To treat 154 thesetracersmorerealisticallyinthisstudyalsodailyfreshwaterdischargeoftheriverswasused 155 156 (Pa¨tschetal., 2016). In this way the input of tracers from the rivers (mmold−1) can be an effectivesourceorsinkdependingontheconcentrationsofthetracersintheriverwater. 157 The calculated shortwave incoming radiation has been reduced by 10% as it has been shown 158 that the sea surface temperature (SST) would otherwise be overestimated (compare Fig. 3 in 159 Lorkowskietal.(2012)). 160 TheatmosphericnitrogendepositionwasderivedfollowingGroßeetal.(2016),usingannualdata 161 fromtheEMEP(Cooperativeprogramformonitoringandevaluationofthelong-rangetransmis- 162 sions of air pollutants in Europe) model. As our simulation period exceeds the period of data 163 availablefromEMEPalong-termtrendaccordingtoScho¨ppetal.(2003)wasappliedinaddition. 164 Atmosphericdepositionisimplementedasinputsofnitrateandammonium. 165 2.5. TheExperiments 166 For eachexperiment describedbelow the biogeochemicalsimulationin the centraland southern 167 NorthSeaareaspunupover20yearsrepeatingtheyear2000untilallprocesseswereinequlibrium 168 anddidnotchangefromyeartoyear. Afterthisproceduretheyears2000to2014weresimulated 169 consecutively. 170 171 Differentexperimentsorscenarioswereperformed: 172 Thereferencerunwiththenewsedimentmoduleprovidesabasiswithrealisticboundary 173 • conditionsandhorizontallyvaryingporosities. 174 Inordertoreproduceasituationwithoutanthropogenicinfluence,wereducedtheinorganic 175 • andorganicriverinputofnitrogenandphosphorusto10%ofthereferencerun. Addition- 176 ally the atmospheric deposition of nitrogen was reduced to 28 %. This run more or less 177 reproducedthe”pristine conditions”Sernaetal.(2010)established. 178 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 8 Toanalysethe impactofthe new sedimentmodule onthe pelagic systemwecomparethe 179 • resultsofthereferencerunwithresultsofthescenario”platerun”. Inthisscenarioasimple 180 sedimentmodulewasused,whichcollects,remineralisesandreleasesthesunkenparticulate 181 organicmaterialonatwodimensionalplate(Pa¨tschandKu¨hn,2008). 182 Inthereferencerunhorizontallyvaryingporositieswereused. Tostudytheinfluenceofthis 183 • feature we conducted two additional model runs with basin wide uniform porosities: One 184 185 withtheminimumporosityPmin=0.3foundinthemodeldomainofthereferencerunand 186 onewiththemaximumporosityPmax=0.51. 3. Comparison with Observations 187 To get confidence into the adaptedsediment model we comparedsimulatedandobservedfluxes 188 between sediment and pelagic. Additionally, simulated pore water profiles were compared with 189 observedprofiles. 190 3.1. OxygenFluxes 191 Brenneretal. (2016) measured the total oxygen consumption of sediment cores which can be 192 comparedwithsimulatedoxygenfluxesintothesediment. Thecorrespondingavailabledataand 193 theirpositionsareshowninFig. 3(rectangles). Theunderlyingmapofsimulatedoxygenfluxes 194 at the time when observations were taken show reasonable values. Only in the German Bight 195 the model underestimates the measurements. An explanation for this effect is that particulate 196 organics(POM)importedbytheriversareconsideredasslowlysinkingdetritus. Asconsequence 197 the horizontalexportofPOM outofthe GermanBightis overestimatedandthe local flux into 198 thesedimentisunderestimated. 199 3.2. AlkalinityFluxes 200 Fig. 4showsthe comparisonoffieldwide averagedalkalinityeffluxesandthecontributionsfrom 201 aerobicdegradation,denitrification,netsulfatereduction,nitrificationandcalcitedissolutionfrom 202 observationsinSeptember2011(Brenneretal.,2016)andfromourmodelresultsforSeptember 203 2011. Forthe observationaldata only the spatial standarddeviationofalkalinity efflux is given 204 (see grey error bar in Fig. 4a). The temporal standard deviation of the simulated daily values 205 206 within September 2011is forall fluxes verysmall andnotshown(<0.003mmolm−2d−1). The spatialstandarddeviationofthesimulatedSeptemberfluxesareshownaserrorbarsinFig. 4b. 207 Eventhoughthesimulatedeffluxlieswithinthehighspatialvariabilityoftheobservedalkalinity 208 efflux, the model ratherunderestimatesall contributions. Only the simulatedcontributionfrom 209 aerobic degradation is larger than the corresponding observation. The main deviation can be 210 attributedtothelowsimulatedcalcitedissolutionwithinthesediment. 211 BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 9 In comparison to other models (Ridgwelletal., 2007; Lorkowskietal., 2012) the ratio of sim- 212 ulated particulate organic carbon to particulate inorganic carbon (POC:PIC) or the simulated 213 214 organiccarbontocalciteproduction(10molPOCd−1 : 1molcalcited−1)isrelativelylowmean- inghighcalciteproductioninrelationtoorganiccarbonproduction. Nonethelessourmodelstill 215 leadstoanunderestimationofthecalcitedissolutioninthesedimentcomparedtotheanalysisof 216 Brenneretal.(2016). ThemeansimulatedcalcitedepositionintothesedimentinSeptember2011 217 218 was2.9mmolm−2d−1,whichisstillonly54%oftheobservedcalcitedissolutioninthesediment. 219 Fig. 5showsthecorrespondingsimulatedalkalinityfluxestothepelagicsystemfor15September 220 2011. ThealkalinityeffluxisstrongestintheGermanBightnearthemouthofRiverElbe. The 221 fluxdecreaseswithdistancefromthecontinentalcoast. ElevatedvaluescanbeseenofftheDanish 222 coast. Similarfeaturescanbe observedforthe contributorsaerobicdegradation,denitrification, 223 net sulfate reduction, and calcite dissolution. The distribution of the negative fluxes due to 224 nitrificationshowsalsoelevatedvaluesintheGermanBight. 225 Whenignoringthesedimentarycalcitedissolutioninboththesimulationandtheobserveddata, 226 the remaining alkalinity generationcompares better with the observations (Fig. 6). The colors 227 withinthe fourrectanglesidentify the strengthofthe observationaldatawhereasthe horizontal 228 distributionshownbythecoloredmapstandsforsimulations. OnlyintheinnerGermanBightthe 229 simulatedfluxappearsfartoolow. Anexplanationforthiseffectisthesameasforoxygenfluxes: 230 The export of POM out of the German Bight is overestimated and thus local remineralization 231 underestimated. 232 3.3. Profiles 233 DuringthecruiseHe-308inMay2009severalsedimentcoresintheGermanExclusiveEconomic 234 Zone (EEZ) were taken and investigated. The nitrate data are published by Neumannetal. 235 (2017), all data are archived in Pangaea (2017). We compare our results of the reference run 236 with observed data of oxygen, nitrate, phosphate and ammonium (Fig.7). To understand the 237 modelsensitivity,alsothecorrespondingprofilesofthe”pristineconditions”runareshown. The 238 239 positionofthe chosencoreisbetweentheGermancoastandtheislandHelgoland(54o 5′N, 8o E).Thisareaisstronglyaffectedbyhighnutrientloadsfromthecontinentalriversandhighatmo- 240 sphericnitrogendeposition(Pa¨tschetal.,2010)resultinginsignifcantdifferencesinthesimulated 241 porewater concentrations of the reference run and the scenario ”pristine conditions” (solid and 242 243 dashedblacklines). Thesimulatedoxygenpenetrationdepth(concentration< 10mmolO2m−3) is about0.5cm whichfits to the observations(Fig.7a). Itis about0.8cm inthe scenario”pris- 244 tine conditions”. In the upper 0.4cm the model underestimates in both scenarios the observed 245 246 oxygenconcentrations. Fig.7b shows the profiles of observedNOx including nitrate and nitrite BiogeosciencesDiscuss.,https://doi.org/10.5194/bg-2018-58 ManuscriptunderreviewforjournalBiogeosciences Discussionstarted:5February2018 c Author(s)2018.CCBY4.0License. (cid:13) Page 10 andthe profilesofsimulatednitrate. We think thatthis is apropercomparisonasobservedni- 247 248 trite concentrationsare low (< 0.8mmolNm−3, not shown). ObservedNOx concentrationsare detectableonlyintheupper 2cm. Due touncalibratedmeasurementsdeepervaluesappeardis- 249 criminable from zero concentration, but they should be interpreted as zero concentration(pers. 250 comm. AndreasNeumann). Thesimulatedconcentrations(referencerun)reachverylowvalues 251 alreadyat 1cm depth, the ”pristine conditions” scenarioshows verylow concentrations already 252 at 0.5cm depth. Observedphosphate concentrations in Fig.7c indicate two mixing regimes: In 253 the upper 9cm the sediment core shows concentrations slightly increasing with depth, below a 254 strongergradientcanbeseen. Theupperpartappearswell-mixedwhileinthelowerpartmixing 255 decreases. Thiseffectmightbecausedbybioturbationandbioirrigationintheupper9cm. Asthe 256 latterprocessesarenotincludedinthemodelwegotamorehomogenouspictureofthephosphate 257 profiles. Themodel(referencerun)overestimatestheobservationalvaluesintheupperpartwhile 258 itunderestimatestheminthelowerpart. Asimilarpatterncanbeseenforammonium(Fig.7d), 259 where again the observational concentrations indicate an upper and a lower mixing zone. The 260 simulatedvaluesincreasebetweenthesurfaceandthe 5cmhorizon,belowtheyaremoreorless 261 constant. Thevaluesofthereferencerunaretoohighintheupper13cm. Thesehighsimulated 262 ammonium values might be caused by neglecting the process of anammox in the model. This 263 processtransformsreactivenitrogencompounds(ammoniumandnitrite)intoinertmolecularni- 264 trogen. SimilarhighammoniumconcentrationscanbefoundinLuffandMoll (2004)withintheir 265 Fig. 9. 266 267 4. Results 268 4.1. TemporalVariations 269 Thetemporaldevelopmentofmonthlyalkalinityeffluxes(2000-2014)withoutcalcitedissolution 270 ofanearcoaststation(54o N,8o E)showsanoveralldecreasingtrend(Fig. 8). Tounderstand 271 thisfeaturethesourcesofalkalinitygenerationandtheannualloadsofnitratebytheRiverElbe 272 (RadachandPa¨tsch,2007;Pa¨tschetal.,2016)intheGermanBight(53.9oN,8.9oE)areshown 273 (see Fig. 1a). Calcite dissolution is very variable and exhibits a decrease over the simulation 274 period. Becauseofitshighvariabilitywhichwouldoverwritethe nitrogen-relatedsignalscalcite 275 dissolutionisnotshown. 276 Aerobic degradationwith a distinct annualcycle appearsquite constantoverthe years. Sulfate 277 reductionismoreorlessconstant,whilenitrification(asnegativecontribution)showsapositive 278 trendinoppositetothenegativetrendofdenitrification. Thedarkbluelinerepresentsthenitrate 279 dischargeofthenearbyRiverElbe. Withstrongseasonalpeaksitexhibitsanegativetrendwhich 280 canexplainasimilartrendindenitrification. 281
Description: