ebook img

Instructor’s Solutions Manual for Elementary Number Theory and Its Applications PDF

268 Pages·2011·2.03 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Instructor’s Solutions Manual for Elementary Number Theory and Its Applications

O NLINE I ’ NSTRUCTOR S S M OLUTIONS ANUAL E N T LEMENTARY UMBER HEORY A AND ITS PPLICATIONS S E IXTH DITION Kenneth Rosen Monmouth University The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs. Reproduced by Pearson Addison-Wesley from electronic files supplied by the author. Copyright © 2011, 2005, 2000 Pearson Education, Inc. Publishing as Addison-Wesley, 75 Arlington Street, Boston, MA 02116. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. ISBN-13: 978-0-321-53801-7 ISBN-10: 0-321-53801-3 Contents 1 Chapter1. TheIntegers 1 1.1. NumbersandSequences 1 1.2. SumsandProducts 7 1.3. MathematicalInduction 10 1.4. TheFibonacciNumbers 14 1.5. Divisibility 19 Chapter2. IntegerRepresentationsandOperations 25 2.1. RepresentationsofIntegers 25 2.2. ComputerOperationswithIntegers 29 2.3. ComplexityandIntegerOperations 31 Chapter3. PrimesandGreatestCommonDivisors 35 3.1. PrimeNumbers 35 3.2. TheDistributionofPrimes 38 3.3. GreatestCommonDivisorsandtheirProperties 44 3.4. TheEuclideanAlgorithm 49 3.5. TheFundamentalTheoremofArithmetic 53 3.6. FactorizationMethodsandtheFermatNumbers 63 3.7. LinearDiophantineEquations 66 Chapter4. Congruences 71 4.1. IntroductiontoCongruences 71 4.2. LinearCongruences 78 4.3. TheChineseRemainderTheorem 82 4.4. SolvingPolynomialCongruences 86 4.5. SystemsofLinearCongruences 89 4.6. FactoringUsingthePollardRhoMethod 91 Chapter5. ApplicationsofCongruences 93 5.1. DivisibilityTests 93 5.2. ThePerpetualCalendar 98 5.3. Round-RobinTournaments 101 5.4. HashingFunctions 103 5.5. CheckDigits 104 Chapter6. SomeSpecialCongruences 111 6.1. Wilson’sTheoremandFermat’sLittleTheorem 111 6.2. Pseudoprimes 115 6.3. Euler’sTheorem 117 Chapter7. MultiplicativeFunctions 121 7.1. TheEulerPhi-Function 121 7.2. TheSumandNumberofDivisors 127 7.3. PerfectNumbersandMersennePrimes 133 7.4. Mo¨biusInversion 137 7.5. Partitions 141 1 2 Chapter8. Cryptology 151 8.1. CharacterCiphers 151 8.2. BlockandStreamCiphers 152 8.3. ExponentiationCiphers 158 8.4. PublicKeyCryptography 159 8.5. KnapsackCiphers 161 8.6. CryptographicProtocolsandApplications 162 Chapter9. PrimitiveRoots 165 9.1. TheOrderofanIntegerandPrimitiveRoots 165 9.2. PrimitiveRootsforPrimes 168 9.3. TheExistenceofPrimitiveRoots 171 9.4. DiscreteLogarithmsandIndexArithmetic 173 9.5. PrimalityTestsUsingOrdersofIntegersandPrimitiveRoots 176 9.6. UniversalExponents 178 Chapter10. ApplicationsofPrimitiveRootsandtheOrderofanInteger 181 10.1. PseudorandomNumbers 181 10.2. TheElGamalCryptosystem 183 10.3. AnApplicationtotheSplicingofTelephoneCables 184 Chapter11. QuadraticResidues 187 11.1. QuadraticResiduesandNonresidues 187 11.2. TheLawofQuadraticReciprocity 194 11.3. TheJacobiSymbol 199 11.4. EulerPseudoprimes 202 11.5. Zero-KnowledgeProofs 203 Chapter12. DecimalFractionsandContinuedFractions 205 12.1. DecimalFractions 205 12.2. FiniteContinuedFractions 208 12.3. InfiniteContinuedFractions 212 12.4. PeriodicContinuedFractions 214 12.5. FactoringUsingContinuedFractions 218 Chapter13. SomeNonlinearDiophantineEquations 221 13.1. PythagoreanTriples 221 13.2. Fermat’sLastTheorem 224 13.3. SumsofSquares 227 13.4. Pell’sEquation 230 13.5. CongruentNumbers 231 Chapter14. TheGaussianIntegers 239 14.1. GaussianIntegersandGaussianPrimes 239 14.2. GreatestCommonDivisorsandUniqueFactorization 247 14.3. GaussianIntegersandSumsofSquares 256 AppendixA. AxiomsfortheSetofIntegers 261 AppendixB. BinomialCoefficients 263 CHAPTER 1 The Integers 1.1. NumbersandSequences 1.1.1.a. Thesetofintegersgreaterthan3iswell-ordered. Everysubsetofthissetisalsoasubsetoftheset ofpositiveintegers,andhencemusthavealeastelement. b. Thesetofevenpositiveintegersiswell-ordered. Everysubsetofthissetisalsoasubsetoftheset ofpositiveintegers,andhencemusthavealeastelement. c. The set of positive rational numbers is not well-ordered. This set does not have a least element. If a/b were the least positive rational number then a/(b+a) would be a smaller positive rational number,whichisacontradiction. d. Thesetofpositiverationalnumbersoftheforma/2iswell-ordered. Considerasubsetofnumbers of this form. The set of numerators of the numbers in this subset is a subset of the set of positive integers,soitmusthavealeastelementb. Thenb/2istheleastelementofthesubset. e. Thesetofnonnegativerationalnumbersisnotwell-ordered. Thesetofpositiverationalnumbers isasubsetwithnoleastelement,asshowninpartc. 1.1.2. LetS bethesetofallpositiveintegersoftheforma−bk. S isnotemptybecausea−b(−1) = a+b is a positive integer. Then the well-ordering principle implies that S has a least element, which is the numberwe’relookingfor. 1.1.3. Supposethatxandyarerationalnumbers. Thenx=a/bandy =c/d,wherea,b,c,anddareintegers withb(cid:1)=0andd(cid:1)=0. Thenxy =(a/b)·(c/d)=ac/bdandx+y =a/b+c/d=(ad+bc)/bdwherebd(cid:1)= 0. Becausebothx+yandxyareratiosofintegers,theyarebothrational. 1.1.4.a. Supposethatxisrationalandyisirrational.Thenthereexistintegersaandbsuchthatx= a where b aandbareintegerswithb(cid:1)=0. Supposethatx+yisrational. Thenthereexistintegerscanddwith d(cid:1)=0suchthatx+y = c. Thisimpliesthaty =(x+y)−x=(a/b)−(c/d)=(ad−bc)/bd,which d meansthatyisrational,acontradiction. Hencex+yisirrational. √ √ b. Thisisfalse. Acounterexampleisgivenby 2+(− 2)=0. √ c. Thisisfalse. Acounterexampleisgivenby0· 2=0. √ √ d. Thisisfalse. Acounterexampleisgivenby 2· 2=2. √ √ 1.1.5. Supposethat 3were√rational. The√ntherewouldexistpositiveintegersaandbwith √3=a/b. Con- sequently,thesetS ={k 3|kandk 3arepositiveintegers}isn√onemptybecau√sea=b 3√. There√fore, bythe√well-ordering√property,S hasasmallestelemen√t,says=t 3. W√ehaves 3−s=s 3−t 3= (s−t) 3. Becauses 3 = 3tands√arebothint√egers,s 3−√s =(s−t) 3mustalsobeaninteger. F√ur- th√ermore, it is p√ositive, because s 3−s = s( 3−1) and 3 > 1. It is less than s because s = t 3, s 3√= 3t, and 3 < 3. ThiscontradictsthechoiceofsasthesmallestpositiveintegerinS. Itfollows that 3isirrational. 1 2 Section1.1 1.1.6. LetS beasetofnegativeintegers. ThenthesetT = {−s : s ∈ S}isasetofpositiveintegers. Bythe well-orderingprinciple,T hasaleastelementt0. Weprovethat−t0isagreatestelementofS. Firstnote thatbecauset0 ∈ S,thent0 = −s0 forsomes0 ∈ S. Then−t0 = s0 ∈ S. Second,ifs ∈ S,then−s ∈ T, sot0 ≤ −s. Multiplyingby−1yieldss ≤ −t0. Becausethechoiceofswasarbitrary,weseethat−t0 is greaterthanorequaltoeveryelementofS. 1.1.7.a. Because0≤1/4<1,wehave[1/4]=0. b. Because−1≤−3/4<0,wehave[−3/4]=−1. c. Because3≤22/7<4,wehave[22/7]=3. d. Because−2≤−2<−1,wehave[−2]=−2. e. Wecompute[1/2+[1/2]]=[1/2+0]=[1/2]=0. f. Wecompute[−3+[−1/2]]=[−3−1]=[−4]=−4. 1.1.8.a. Because−1≤−1/4<0,wehave[−1/4]=−1. b. Because−4≤−22/7<−3,wehave[−22/7]=−4. c. Because1≤5/4<2,wehave[5/4]=1. d. Wecompute[[1/2]]=[0]=0. e. Wecompute[[3/2]+[−3/2]]=[1+(−2)]=[−1]=−1. f. Wecompute[3−[1/2]]=[3−0]=[3]=3. 1.1.9.a. Because[8/5]=1,wehave{8/5}=8/5−[8/5]=8/5−1=3/5. b. Because[1/7]=0,wehave{1/7}=1/7−[1/7]=1/7−0=1/7. c. Because[−11/4]=−3,wehave{−11/4}=−11/4−[−11/4]=−11/4−(−3)=1/4. d. Because[7]=7,wehave{7}=7−[7]=7−7=0. 1.1.10.a. Because[−8/5]=−2,wehave{−8/5}=−8/5−[−8/5]=−8/5−(−2)=2/5. b. Because[22/7]=3,wehave{22/7}=22/7−[22/7]=22/7−3=1/7. c. Because[−1]=−1,wehave{−1}=−1−[−1]=−1−1=0. d. Because[−1/3]=−1,wehave{−1/3}=−1/3−[−1/3]=−1/3−(−1)=2/3. 1.1.11. Ifxisaninteger,then[x]+[−x] = x−x = 0. Otherwise,x = z+r,wherez isanintegerandr isa realnumberwith0<r <1. Inthiscase,[x]+[−x]=[z+r]+[−z−r]=z+(−z−1)=−1. 1.1.12. Let x = [x]+r where 0 ≤ r < 1. We consider two cases. First suppose that r < 1. Then x+ 1 = 2 2 [x]+(r+ 1) < [x]+1becauser+ 1 < 1. Itfollowsthat[x+ 1] = [x]. Also2x = 2[x]+2r < 2[x]+1 2 2 2 because2r <1. Hence[2x]=2[x]. Itfollowsthat[x]+[x+1]=[2x]. Nextsupposethat 1 ≤r <1. Then 2 2 [x]+1 ≤ x+(r+ 1) < [x]+2,sothat[x+ 1] = [x]+1. Also2[x]+1 ≤ 2[x]+2r = 2([x]+r) = 2x < 2 2 2[x]+2sothat[2x]=2[x]+1. Itfollowsthat[x]+[x+ 1]=[x]+[x]+1=2[x]+1=[2x]. 2 Copyright(cid:5)c 2011PearsonEducation,Inc. PublishingasAddison-Wesley Chapter1 3 1.1.13. Wehave[x] ≤ xand[y] ≤ y. Addingthesetwoinequalitiesgives[x]+[y] ≤ x+y. Hence[x+y] ≥ [[x]+[y]]=[x]+[y]. 1.1.14. Letx=a+randy =b+s,whereaandbareintegersandrandsarerealnumberssuchthat0≤r,s< 1. ByExercise14,[2x]+[2y]=[x]+[x+ 1]+[y]+[y+ 1].Wenowneedtoshowthat[x+ 1]+[y+ 1]≥ 2 2 2 2 [x+y]. Suppose0 ≤ r,s < 1. Then[x+ 1]+[y+ 1] = a+b+[r+ 1]+[s+ 1] = a+b,and[x+y] = 2 2 2 2 2 a+b+[r+s]=a+b,asdesired.Supposethat 1 ≤r,s<1.Then[x+1]+[y+1]=a+b+[r+1]+[s+1]= 2 2 2 2 2 a+b+2,and[x+y] = a+b+[r+s] = a+b+1,asdesired. Supposethat0 ≤ r < 1 ≤ s < 1. Then 2 [x+ 1]+[y+ 1]=a+b+1,and[x+y]≤a+b+1. 2 2 1.1.15. Letx = a+r andy = b+s, whereaandbareintegersandr andsarerealnumberssuchthat0 ≤ r,s<1. Then[xy]=[ab+as+br+sr]=ab+[as+br+sr],whereas[x][y]=ab. Thuswehave[xy]≥ [x][y]whenxandy arebothpositive. Ifxandy arebothnegative,then[xy] ≤ [x][y]. Ifoneofxandy ispositiveandtheothernegative,thentheinequalitycouldgoeitherdirection. Forexamplestakex = −1.5,y =5andx=−1,y =5.5. Inthefirstcasewehave[−1.5·5]=[−7.5]=−8>[−1.5][5]=−2·5= −10. Inthesecondcasewehave[−1·5.5]=[−5.5]=−6<[−1][5.5]=−1·5=−5. 1.1.16. Ifxisanintegerthen−[−x] = −(−x) = x,whichcertainlyistheleastintegergreaterthanorequal tox. Letx = a+r, whereaisanintegerand0 < r < 1. Then−[−x] = −[−a−r] = −(−a+[−r]) = a−[−r]=a+1,asdesired. 1.1.17. Letx=[x]+r. Because0≤r <1,x+ 1 =[x]+r+ 1. Ifr < 1,then[x]istheintegernearesttoxand 2 2 2 [x+ 1] = [x]because[x] ≤ x+ 1 = [x]+r+ 1 < [x]+1. Ifr ≥ 1,then[x]+1istheintegernearestto 2 2 2 2 x(choosingthisintegerifxismidwaybetween[x]and[x+1])and[x+ 1] = [x]+1because[x]+1 ≤ 2 x+r+ 1 <[x]+2. 2 1.1.18. Lety =x+n. Then[y]=[x]+n,becausenisaninteger. Thereforetheproblemisequivalenttoprov- ingthat[y/m]=[[y]/m]whichwasdoneinExample1.34. 1.1.19. Letx=k+(cid:1)wherekisanintegerand0≤(cid:1)<1. Further,letk =a2+b,√whereaisthe(cid:1)largestin√teger suchthata2 ≤k. Thena2 ≤k =a2+b≤x=a2+b+(cid:1)<(a+1)2.Then[ x]=aand[ [x]]=[ k]= aalso,provingthetheorem. 1.1.20. Letx = k+(cid:1)wherek isanintegerand0 ≤ (cid:1) < 1. Choosewfrom0,1,2,...,m−1suchthatw/m ≤ (cid:1) < (w +1)/m. Then w ≤ m(cid:1) < w +1. Then [mx] = [mk +m(cid:1)] = mk +[m(cid:1)] = mk +w. On the other hand, the same inequality gives us (w+j)/m ≤ (cid:1)+j/m < (w+1+j)/m, for any integer j = 0,1,2,...,m−1. Notethatthisimplies[(cid:1)+j/m]=[(w+j)/m]whichiseither0or1forjinthisrange. Indeed,itequ(cid:2)als1preciselywhe(cid:2)nw+j ≥m,whichhap(cid:2)pensforexactlywvaluesof(cid:2)jinthisrange.Now wecompute m−1[x+j/m]= m−1[k+(cid:1)+j/m]= m−1k+[(cid:1)+j/m]=mk+ m−1[(w+j)/m]= (cid:2) j=0 j=0 j=0 j=0 mk+ m−1 1=mk+wwhichisthesameasthevalueabove. j=m−w 1.1.21.a. Becausethedifferencebetweenanytwoconsecutivetermsofthissequenceis8,wemaycompute thenthtermbyadding8tothefirsttermn−1times. Thatis,an =3+(n−1)8=8n−5. b. Foreachn,wehavean−an−1 =2n−1,sowemaycomputethenthtermofthissequencebyadding allthepowersof2,uptothe(n−1)th,tothefirstterm. Hencean =5+2+22+23+···+2n−1 = 5+2n−2=2n+3. c. Thenthtermofthissequenceappears√tobez√ero,unlessnisaperfectsquare,inwhichcasetheterm is1. Ifnisnotaperfectsquar√e,then√[ n]< n,whe√re[x√]representsthegreatestintegerfunction. Ifnisaperfectsquare,then[ n]= n. Therefore,[[ n]/ n]equals1ifnisaperfectsquareand0 otherwise,asdesired. d. ThisisaFibonacci-likesequence,withan =an−1+an−2,forn≥3,anda1 =1,anda2 =3. Copyright(cid:5)c 2011PearsonEducation,Inc. PublishingasAddison-Wesley 4 Section1.1 1.1.22.a. Eachtermgivenis3timestheprecedingterm, soweconjecturethatthenthtermisthefirstterm multipliedby3,n−1times. Soan =2·3n−1. b. Inthissequence,an =0ifnisamultipleof3,andequals1otherwise. Let[x]representthegreatest integer function. Because [n/3] < n/3 when n is not a multiple of 3 and [n/3] = n/3 when n is a multipleof3,wehavethatan =1−[[n/3]/(n/3)]. c. If we look at the difference of successive terms, we have the sequence 1,1,2,2,3,3,.... So if n is odd,sayn=2k+1,thenanisobtainedbyadding1+1+2+2+3+3+···+k+k =2tktothefirst term,whichis1. (Heretk standsforthekthtriangularnumber.) Soifnisodd,thenan = 1+2tk wherek =(n−1)/2.Ifniseven,sayn=2k,thenan =a2k+1−k =1−k+2tk. d. ThisisaFibonacci-likesequence,withan =an−1+2an−2,forn≥3,anda1 =3,anda2 =5. 1.1.23. Threepossibleanswersarean =2n−1,an =(n2−n+2)/2,andan =an−1+2an−2. 1.1.24. Threepossibleanswersarean =an−1an−2,an =an−1+2n−3,andan =thenumberoflettersinthe nthwordofthesentence“IfouransweriscorrectwewilljointheAntidisestablishmentarianismSociety andboldlystatethat‘IfouransweriscorrectwewilljointheAntidisestablishmentarianismSocietyand boldlystate....’ ” 1.1.25. Thissetisexactlythesequencean =n−100,andhenceiscountable. 1.1.26. Thefunctionf(n)=5nisaone-to-onecorrespondencebetweenthissetandthesetofintegers,which isknowntobecountable. 1.1.27. One way to√show this is to imitate the proofthat the set of rat√ional numbers is countable, replacing a/bwitha+b 2. Anotherwayistoconsiderthefunctionf(a+b 2)=2a3bwhichisaone-to-onemap ofthissetintotherationalnumbers,whichisknowntobecountable. 1.1.28. LetAandB betwocountablesets. Ifoneorbothofthesetsarefinite,sayAisfinite,thenthelisting a1,a2,...,an,b1,b2,...,whereanybi whichisalsoinAisdeletedfromthelist,demonstratesthecount- abilityofA∪B. Ifbothsetsareinfinite,theneachcanberepresentedasasequence: A = {a1,a2,...}, andB = {b1,b2,...}. Considerthelistinga1,b1,a2,b2,a3,b3,...andformanewsequenceci asfollows. Let c1 = a1. Given that cn is determined, let cn+1 be the next element in the listing which is different fromeachciwithi=1,2,...,n. ThenthissequenceisexactlytheelementsofA∪B,whichistherefore countable. 1.1.29. Suppose {Ai} is a countable collection of countable sets. Then each Ai can be represented by a se- quence,asfollows: A = a a a ... 1 11 12 13 A = a a a ... 2 21 22 23 A = a a a ... 3 31 32 33 . . . Considerthelistinga11,a12,a21,a13,a22,a31,...,inwhichwefirstlisttheelementswithsubscripts adding to 2, then the elements with subscripts adding to 3 and so on. Further, we order the elements withsubscriptsaddingtok inorderofthefirstsubscript. Formanewsequenceci asfollows. Letc1 = a1. Giventhatcn isdetermined,letcn+1 bethenextelementinthelistingwhichisdifferentfromeach (cid:3)∞ ciwithi=1,2,...,n. Thenthissequenceisexactlytheelementsof Ai,whichisthereforecountable. √ √ i=1 1.1.30.a. Notethat 2√≈ 1.4 = 7/5,sowemightguessthat 2−7/5 ≈ 0. Ifwemultiplythroughby5we expectthat5 2−7shouldbesmall,anditsvalueisapproximately0.071whichismuchlessthan 1/8=0.125. Sowemaytakea=5≤8andb=7. Copyright(cid:5)c 2011PearsonEducation,Inc. PublishingasAddison-Wesley Chapter1 5 √ √ b. Asinparta.,notethat 32 = 1.2599... ≈ 1.25 = 5/4,soweinvestigate432−5 = 0.039... ≤ 1/8. Sowemaytakea=4≤8andb=5. c. Becauseweknowthatπ ≈ 22/7weinvestigate|7π−22| = 0.0088... ≤ 1/8. Sowemaytakea = 7≤8andb=22. d. Becausee ≈ 2.75 = 11/4weinvestigate|4e−11| = 0.126...,whichistoolarge. Acloserapproxi- mationtoeis2.718. Weconsiderthedecimalexpansionsofthemultiplesof1/7andfindthat5/7= .714...,soe ≈ 19/7. Thereforeweinvestigate|7e−19| = 0.027 ≤ 1/8. Sowemaytakea = 7 ≤ 8 andb=19. √ √ 1.1.31.a. Notethat √3 = 1.73 ≈ 7/4,sowemightguessthat 3−7/4 ≈ 0. Ifwemultiplythroughby4we findthat|4 3−7|=0.07...<1/10. Sowemaytakea=4≤10andb=7. b. I√tishelpfultokeepthedecimalexpansionsofthemu√ltiplesof1/7inmindintheseexercises. Here 3√3 = 1.442...and3/7 = 0.428...sothatwehave 33 ≈ 10/7.Then, asinparta., weinvestigate |733−10|=0.095...<1/10. Sowemaytakea=7≤10andb=10. c. Because π2 = 9.869... and 6/7 = 0.857..., we have that π2 ≈ 69/7, so we compute |7π2 −69| = 0.087...<1/10. Sowemaytakea=7≤10andb=69. d. Becausee3 =20.0855...wemaytakea=1andb=20toget|1e3−20|=0.855...<1/10. 1.1.32. For j = 0,1,2,...,n+1, consider the n+2 numbers {jα}, which all lie in the interval 0 ≤ {jα} < 1. We can partition this interval into the n+1 subintervals (k −1)/(n+1) ≤ x < k/(n+1) for k = 1,...,n+1. Becausewehaven+2numbersandonlyn+1intervals,bythepigeonholeprinciple,some intervalmustcontainatleasttwoofthenumbers. Sothereexistintegersrandssuchthat0 ≤ r < s ≤ n+1and|{rα}−{sα}| ≤ 1/(n+1). Leta = s−randb = [sα]−[rα]. Because0 ≤ r < s ≤ n+1,we have1≤a≤n. Also,|aα−b|=|(s−r)α−([sα]−[rα])|=|(sα−[sα])−(rα−[rα]a)|=|{sα}−{rα}|< 1/(n+1). Therefore,aandbhavethedesiredproperties. 1.1.33. Thenumberα mustlieinsomeintervaloftheformr/k ≤ α < (r+1)/k. Ifwedividethisinterval intoequalhalves,thenαmustlieinoneofthehalves,soeitherr/k ≤α<(2r+1)/2kor(2r+1)/2k ≤ α < (r+1)/k. Inthefirstcasewehave|α−r/k| < 1/2k,sowetakeu = r. Inthesecondcasewehave |α−(r+1)/k|<1/2k,sowetakeu=r+1. 1.1.34. Supposethatthereareonlyfinitelymanypositiveintegersq1,q2,...,qn withcorrespondingintegers p1,p2,...,pn suchthat|α−pi/qi| < 1/qi2.Becauseαisirrational,|α−pi/qi|ispositiveforeveryi,and so is |qiα−pi| so we may choose an integer N so large that |qiα−pi| > 1/N for all i. By Dirichlet’s ApproximationTheorem,thereexistintegersr andswith1 ≤ s ≤ N suchthat|sα−r| < 1/N < 1/s, sothat|α−r/s|<1/s2,andsisnotoneoftheqi. Therefore,wehaveanothersolutiontotheinequality. Sonofinitelistofsolutionscanbecomplete,andweconcludethattheremustbeaninfinitenumberof solutions. √ √ 1.1.35. Firstwehave| 2−1/1|=0.414...<1/12. Second,Exer√cise30,parta.,givesus| 2−7/5|<1/50< 1/52.Third,observingthat3/7 = 0.428...leadsustot√ry| 2−10/7| = 0.014... < 1/72 = 0.0204.... Fourth,observingthat5/12=0.4166...leadsustotry| 2−17/12|=0.00245...<1/122 =0.00694.... √ √ 1.1.36.√Firstwehave|35−1/√1| = 0.7099... < 1/12. Second, |35−5/3| = 0.04... < 1/32. Third, because 35 =√1.7099..., wetry|35−17/10| = 0.0099... < 1/102.Likewise, wegetafourthrationalnu√mber with |35−171/100| = 0.000024... < 1/1002. Fifth, consideration of multiples of 1/7 leads to |35− 12/7|=0.0043...<1/72. 1.1.37. We may assume that b and q are positive. Note that if q > b, we have |p/q −a/b| = |pb−aq|/qb ≥ 1/qb > 1/q2. Therefore, solutions to the inequality must have 1 ≤ q ≤ b. For a given q, there can be onlyfinitelymanypsuchthatthedistancebetweentherationalnumbersa/bandp/q islessthan1/q2 Copyright(cid:5)c 2011PearsonEducation,Inc. PublishingasAddison-Wesley 6 Section1.1 (indeedthereisatmostone.) Thereforethereareonlyfinitelymanyp/qsatisfyingtheinequality. 1.1.38.a. Becausen2isanintegerforalln,sois[n2],sothefirsttentermsofthespectrumsequenceare2,4, 6,8,10,12,14,16,18,20. √ b. The sequence for n 2, rounded, is 1.414, 2.828, 4.242, 5.656, 7.071, 8.485, 9.899, 11.314, 12.728, 14.142. Whenweapplythefloorfunctiontothesenumbersweget1,2,4,5,7,8,9,11,12,14for thespectrumsequence. √ c. Thesequenceforn(2+ 2), rounded, is3.414, 6.828, 10.24, 13.66, 17.07, 20.48, 23.90, 27.31, 30.73, 34.14. Whenweapplythefloorfunctiontothesenumbersweget3,6,10,13,17,20,23,27,30,34, forthespectrumsequence. d. The sequence for ne, rounded is 2.718, 5.436, 8.155, 10.87, 13.59, 16.31, 19.03, 21.75, 24.46, 27.18. Whenweapplythefloorfunctiontothesenumbersweget2,5,8,10,13,16,19,21,24,27,forthe spectrumsequence. √ e. Thesequenceforn(1+ 5)/2,rounded,is1.618,3.236,4.854,6.472,8.090,9.708,11.33,12.94,14.56, 16.18. Whenweapplythefloorfunctiontothesenumbersweget1,3,4,6,8,9,11,12,14,16forthe spectrumsequence. 1.1.39.a. Becausen3isanintegerforalln,sois[n3],sothefirsttentermsofthespectrumsequenceare3,6, 9,12,15,18,21,24,27,30. √ b. Thesequenceforn 3,rounded,is1.732,3.464,5.196,6.928,8.660,10.39,12.12,13.86,15.59,17.32. Whenweapplythefloorfunctiontothesenumbersweget1,3,5,6,8,10,12,13,15,17forthespec- trumsequence. √ c. Thesequenceforn(3+ 3)/2,rounded,is2.366,4.732,7.098,9.464,11.83,14.20,16.56,18.93,21.29, 23.66. Whenweapplythefloorfunctiontothesenumbersweget2,4,7,9,11,14,16,18,21,23for thespectrumsequence. d. The sequence for nπ, rounded is 3.142, 6.283, 9.425, 12.57, 15.71, 18.85, 21.99, 25.13, 28.27, 31.42. Whenweapplythefloorfunctiontothesenumbersweget3,6,9,12,15,18,21,25,28,31,forthe spectrumsequence. 1.1.40. Becauseα(cid:1)=β,theirdecimalexpansionsmustbedifferent. Iftheydifferindigitsthataretotheleftof thedecimalpoint,then[α](cid:1)=[β],socertainlythespectrumsequencesaredifferent. Otherwise,suppose thattheydifferinthekthpositiontotherightofthedecimal. Then[10kα](cid:1)=[10kβ],andsothespectrum sequenceswillagaindiffer. 1.1.41. Assume that 1/α+1/β = 1. Note first that for all integers n and m, mα (cid:1)= nβ, for otherwise, we solvetheequationsmα=nβ and1/α+1/β =1andgetrationalsolutionsforαandβ,acontradiction. Thereforethesequencesmαandnβ aredisjoint. Foraninteger k, defineN(k)tobethenumberofelementsofthesequences mα andnβ whichare less than k. Now mα < k if and only if m < k/α, so there are exactly [k/α] members of the sequence mαlessthank. Likewise, thereareexactly[k/β]membersofthesequencenβ lessthank. Sowehave N(k)=[k/α]+[k/β]. Bydefinitionofthegreatestintegerfunction,wehavek/α−1<[k/α]<k/αand k/β −1 < [k/β] < k/β,wheretheinequalitiesarestrictbecausethenumbersareirrational. Ifweadd these inequalities we get k/α+k/β −2 < N(k) < k/α+k/β which simplifies to k−2 < N(k) < k. BecauseN(k)isaninteger,weconcludethatN(k)=k−1. Thisshowsthatthereisexactlyonemember oftheunionofthesequencesmαandnβineachintervaloftheformk−1≤x<k,andtherefore,when weapplythefloorfunctiontoeachmember,exactlyonewilltakeonthevaluek. Conversely,supposethatαandβ areirrationalnumberssuchthat1/α+1/β (cid:1)= 1. If1/α+1/γ = 1 thenweknowfromthefirstpartofthetheoremthatthespectrumsequencesforαandγ partitionthe positiveintegers. ByExercise40,weknowthatthespectrumsequencesforβ andγ aredifferent,sothe Copyright(cid:5)c 2011PearsonEducation,Inc. PublishingasAddison-Wesley

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.