RESEARCHARTICLE Patterns in reef fish assemblages: Insights from the Chagos Archipelago MelitaSamoilys1,2*,RonanRoche3,HeatherKoldewey4,5,JohnTurner3 1 CORDIOEastAfrica,Mombasa,Kenya,2 ZoologyDepartment,UniversityofOxford,Oxford,United Kingdom,3 SchoolofOceanSciences,BangorUniversity,Bangor,UnitedKingdom,4 Conservation Programmes,ZoologicalSocietyofLondon,London,UnitedKingdom,5 CentreforEcology&Conservation, UniversityofExeterCornwallCampus,Penryn,Cornwall,UnitedKingdom *[email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Understandingthedriversofvariabilityinthecompositionoffishassemblagesacrossthe Indo-Pacificregioniscrucialtosupportcoralreefecosystemresilience.Whilstnumerous relationshipsandfeedbackmechanismsbetweenthefunctionalrolesofcoralreeffishes andreefbenthiccompositionhavebeeninvestigated,certainkeygroups,suchastheherbi- OPENACCESS vores,arewidelysuggestedtomaintainreefsinacoral-dominatedstate.Examininglinks Citation:SamoilysM,RocheR,KoldeweyH, betweenfishesandreefbenthosiscomplicatedbytheinteractionsbetweennaturalpro- TurnerJ(2018)Patternsinreeffishassemblages: cesses,disturbanceeventsandanthropogenicimpacts,particularlyfishingpressure.This InsightsfromtheChagosArchipelago.PLoSONE studyexaminedfishassemblagesandassociatedbenthicvariablesacrossfiveatollswithin 13(1):e0191448.https://doi.org/10.1371/journal. pone.0191448 theChagosArchipelago,wherefishingpressureislargelyabsent,tobetterunderstand theserelationships.Wefoundhighvariabilityinfishassemblagesamongatollsandsites Editor:HeatherM.Patterson,Departmentof AgricultureandWaterResources,AUSTRALIA acrossthearchipelago,especiallyforkeygroupssuchasasuiteofgrazer-detritivoresur- geonfish,andtheparrotfisheswhichvariedindensityover40-foldbetweensites.Differ- Received:June20,2017 encesinfishassemblagesweresignificantlyassociatedwithvariablelevelsofbothliveand Accepted:January4,2018 recentlydeadcoralcoverandrugosity.Wesuggesttheseresultsreflectdifferingcoral Published:January19,2018 recoverytrajectoriesfollowingcoralbleachingeventsandastronginfluenceof‘bottom-up’ Copyright:©2018Samoilysetal.Thisisanopen controlmechanismsonfishassemblages.SpecieslevelanalysesrevealedthatScarus accessarticledistributedunderthetermsofthe niger,AcanthurusnigrofuscusandChlorurusstrongylocephaloswerekeyspeciesdriving CreativeCommonsAttributionLicense,which differencesinfishassemblagestructure.Clarifyingthetrophicrolesofherbivorousanddet- permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal ritivorousreeffisheswillrequirespecies-levelstudies,whichalsoexaminefeedingbehav- authorandsourcearecredited. iour,tofullyunderstandtheircontributioninmaintainingreefresiliencetoclimatechange DataAvailabilityStatement:Allrelevantdataare andfishingimpacts. withinthepaperanditsSupportingInformation files. Funding:MSwassupportedbyCoastalOceans ResearchandDevelopmentIndianOcean (CORDIO)andaPerivoliTrustfellowshipatthe Introduction UniversityofOxford;http://cordioea.net.The projectwasfundedbyDEFRADarwinInitiative Coralreefsarecomplexandhighlybiodiversesystemsthataresubjecttoabroadrangeofnat- grant19-027toBangorUniversity,Universityof uralandanthropogenicfactors,operatingfromlocaltoglobalscales,whichdriveorimpact WarwickandtheZoologicalSocietyofLondon; reeffishpopulationabundanceandassemblagestructure[1–4].Reefdegradationfromfishing https://www.gov.uk/government/groups/the- darwin-initiative.HKwassupportedbythe pressureandclimate-changeinducedcoralbleachingandmortalityhavebeeninvokedto PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 1/21 ReeffishassemblagesintheChagosArchipelago BertarelliFoundation;https://www.fondation- explainpatternsinthestructureofcoralreeffishassemblagesacrossmultiplescalesinthe bertarelli.org.Thefundershadnoroleinstudy Indo-Pacific[5–7].Otherstudiespointtoscaledependenceindriversoffishassemblageswith design,datacollectionandanalysis,decisionto geomorphologyandbiogeography,forexample,playingasignificantroleatlargerregional publish,orpreparationofthemanuscript. scales,andfishingandreefbenthicstructureoperatingatlocalscales[8–10].Understanding Competinginterests:Theauthorshavedeclared themechanismsbywhichthesedriversinteractandtheirrelativecontributionstocontrolling thatnocompetinginterestsexist. reeffishassemblagesiscriticalinunderpinningconservationplanningandeffectivereeffish- eriesmanagement. Oneofthedominantparadigmsusedtoexplainimpactsfromtheexternalstressorsofcli- matechangeandfishingoncoralreefsandtheirfishassemblagesrevolvesaroundpotential shiftsfromcoraltoalgal-dominatedreefstates[11,12].Herbivorousfisheshavebeenshownto playaleadingroleinpreventingthisshiftbycontrollingalgalabundance[2,13].Theregula- torypathwaysinvolvebothresource(bottom-up)andpredation(top-down)controlofthe reefecosystem.Changesincoralcoverrepresentbottom-upcontrolwhiletop-downcontrolis seenwhenherbivoresaredepletedthroughfishingactivities,whichcanleadtotheirfunctional rolebecomingcompromised[4,14].Coralreeffishassemblagesareknowntovaryinrelation toseveralenvironmentalcharacteristicssuchasexposuretooceanicconditions,rugosity, depth,benthiccompositionandrecentcoralmortality[8–10,15–18].Bottom-upcontrolof reeffishpopulationsbyreefbenthiccompositionhasbeenwellestablished[10,15,18–20],and long-termstudiesinthePhilippines,forexample,haveshownthatthispathwayistheprimary driveroftheherbivorousparrotfishes[21].Thus,top-downandbottom-uppathwayscan eitherdominateorco-occur,dependingonthecharacteristicswithinthecoralreefecosystem. Fromamanagementperspective,itisimportanttobeabletoattributetherelativecontribu- tionofcasualfactorsdrivingthestructureofreeffishassemblages.Theobjectiveofthisstudy wastodeterminewhichofarangeoflargelybioticfactorsmaybedrivingthestructureofreef fishassemblagesintheabsenceoffishing.Ourhypothesiswasthatwithoutthetop-down influenceoffishingintheChagosArchipelagothefishassemblagesshouldreflecttherelative contributionofnaturaldrivers,bothbottomup(e.g.foodavailability)andtop-down(e.g.pre- dation),offishpopulations,andoneanthropogenicstressor—coralmortalityrelatedtobleach- ingevents.Wealsosoughttodescribethecharacteristicreeffishassemblagesoftheatollsof theChagosArchipelagotobuildonearlierworkthatexaminedfishresponsestodeclinesin coralcovercausedbythecoralbleachingeventof1998[22]andfoundlittlechangeinreef fishspeciesrichnessexceptincorallivores[23].Wealsoexaminedtheabundanceandbiomass ofreeffishesfromthefullrangeoftrophicgroupstotestforrelationshipsbetweentrophic groupandreefbenthiccompositionandsoexaminethefunctionalrolesoffishspeciesinreef resilience. TheChagosArchipelago(BritishIndianOceanTerritory)isanisolatedarchipelagoofatolls spanning~60,000km2and2degreesoflatitudeonthenorth-easternborderofthewestern IndianOceanProvince[24–26],withanareaof~9,400km2ofshallowcoralreefs(<40m depth)[27].Theislandsareuninhabitedexceptforthesouthern-mostatoll,DiegoGarcia, whichisclassifiedasaPermanentJointOperatingBaseoftheUKandUSgovernmentsand hostsaUSnavalsupportfacility.Thearchipelago,withtheexceptionofDiegoGarciawherea recreationalfisheryispermitted,wasdeclaredano-takemarineprotectedarea(MPA)in2010 bytheUKGovernment[26].Indeed,reeffishbiomassintheChagosArchipelagoisdemon- strablyoneofthehighestofanycoralreefecosystemintheIndo-Pacific[23].TheChagos Archipelagothereforeprovidesanideallocationforinvestigatingtherelationshipbetweenfish assemblagesandvariabilityinreefbenthichabitatandtypology,intheabsenceofimpacts fromfishingandhumanpopulations.Ourstudyassumedthatreeffishspeciesdistributions didnotdifferbiogeographicallyacrosstheChagosArchipelagoduetothedirectionofmajor currentsystemsinthewesternIndianOcean(WIO),andtheconnectivityofthepelagiclarvae PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 2/21 ReeffishassemblagesintheChagosArchipelago ofmostreeffish[28–30].Wedo,however,recognisethatself-recruitment[31]andlocal oceanographicdynamics[32]withinandamongatollsofthearchipelagomayaffectlarval recruitmentpatterns.Anearlierstudyreportedthatreeffishassemblageswerehighlyhomoge- neousacrossthenorthernatolls[33].Hereweusedatasetsfromarangeofatollsinthearchi- pelago,fromthenorthernmostatollstoDiegoGarciainthesouth,toexaminevariationinthe abundanceandspeciesstructureoffishassemblages,andtoidentifydriversofthisvariability. Byconfiningthisstudytoanisolatedarchipelagoofreefsthatarerelativelyunfishedand freeofpollutionanddevelopment,thisstudycontributestoabetterunderstandingofintact IndianOceanreeffishassemblages.Assuch,itprovidesaregionalcontextforinterpreting coralreeffishassemblagesinthewiderIndianOceanwhereanthropogenicimpactsaremore prevalent. Methods Studysites WesurveyedreeffishassemblagesandcoralreefbenthicassemblagesinMarch2014atatotal of13(fish)and11(benthic)sitesacross5atollsintheChagosArchipelago(decimalminutes: 05.237333S71.81498Eto07.26195S72.44333E,Fig1,S1Table).Locationsincludedthefully submergedBlenheimReefatoll,reefsfringingislandsonthewestsideoftheGreatChagos Fig1.MapoftheChagosArchipelagoshowingatollssurveyedandlocationsofdivesurveysites. https://doi.org/10.1371/journal.pone.0191448.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 3/21 ReeffishassemblagesintheChagosArchipelago Bank(GCB)andthelarge,wellformedPerosBanhosandSalomonatolls.Reeftypeswere definedbasedontheAndrefouteetal.[34]classificationofcoralreefsandincludedforereefs andterracesontheoutsideoftheatollsandpinnaclesandinnerslopesintheatolllagoons(S1 Table).Thesewerecategorisedasexposed(outsideatolls)orprotected(insidelagoons)from oceanicseas.TheBritishIndianOceanTerritoryAdministrationSectionoftheForeignand CommonwealthOffice,UKGovernment,grantedtheresearchpermittotheDarwinInitiative 2014ExpeditiontoworkwithinthewholeTerritory.Permissionwasgrantedtoallauthorsto visitanddiveinthestrictnaturereservesoftheChagosArchipelagoMarinePark. Benthicsurveys UnderwatervideotransectswererecordedusingaSonyHDRCX550camerainaLightand MotionBluefinhousingwithFathom90wideangleportandredfilter,ontowhichredlasers withaspacingof10cmweremountedtoprovidescale.Surveyswereconductedateachsite whichrangedindepthfrom5–25m.Thevideoaimedforaconstantspeed(~0.1ms-1),with a10mintransectwithineachoffourdepthzones(25–20m,20–15m,15–10m,10–5m) approximately1mabovethesubstrate[35].PercentagecoverofallhardcoralandAcropora spp.alone,deadcoral(definedasrecentlydeadcoralskeletonwithintactcorallitestructure), softcoral,crustosecorallinealgae(CCA),fleshymacroalgae,turfalgae,calcareoussubstrate, sand/rubbleandallotherbenthoswereassessedbyrandomlyselecting20videoframesfrom eachdepthrange,andrecordingwhatlaybeneath15randomlyselectedpointsperframe,fora totalof300pointspertransect(thus1,200pointspersite),assignedusingCoralPointCount software[36].Therugosityofthereefalongeachtransectwasestimatedvisuallyusingasix pointscalefollowingPoluninandRoberts[37],rangingfromnoverticalstructuralcomplexity tohighly-developedreefswithlargecoralcolonies,cavesandcrevasses. Fishsurveys Allfishspeciesfrom13pre-selectedfamiliesthatspanthefullrangeoftrophicgroups,from piscivorestodetritivores(seeS2Table)werecountedin50x5mtransects.Twodiveswere conductedateachsitewhichspannedapproximately300malongthereefedge.Ineachdive 2–3transectswererunparalleltothereefedge(5–6replicatetransectsintotalpersite).Tran- sectswereplacedrandomlyatdifferentdepthstospanthedepthrangeofthereef,butamaxi- mumdivedepthof26mwasimposedbydivesafetyregulations.Fishcountsateachsite thereforehadrelativelybroaddepthranges,dependingonthereefprofile(S1Table).This designwasusedtomaximisesurveycoverageofthefishassemblageonthereef.Thefishsur- veysitescorrespondedtothedivesitesatwhichthebenthicvideotransectswereplaced;both methodsspannedthesamedepthrangeateachsite.Siganids(rabbitfishes)werenotobserved atallandthereforeatotalof12familieswerecounted(S2Table).Thedensityandsizeclasses ofspecieswereestimatedusingstandardunderwatervisualcensus(UVC)techniquesforcoral reeffishes[38,39].Thesizeofallspecies>5cmtotallength(TL)wereestimatedin5cmsize classes(e.g.6–10cmTL,11–15cmTL,16–20cmTLetc),toobtainbiomassvaluesbasedon publishedlength—weightrelationships[40–42].Biomasswascalculatedasaderivedvariable forthefishassemblagebecauseitisagoodindicatorofenergyflowwithinthecoralreefeco- system.Afixedsizecategoryforthesmallestspecieswasusedbecause:simplifyingcounting proceduresacrossawiderangeofspeciesimprovesaccuracy[39,43];anydifferencesinbio- massinthesesmallspeciesbetweensiteswillbesmallerthanthe5cmsizeclassaccuracyused; andtoenablethesesmallspeciestobeincludedintotalbiomasscalculations.Fixedsizeclasses wereasfollows:i)allChaetontidaespecieswereassignedalengthsizeclassof6–10cm,with theexceptionofC.xanthocephalos,C.lineolatusandHeniochusspp.whichwererecordedas PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 4/21 ReeffishassemblagesintheChagosArchipelago 11–15cm;ii)smallacanthurids,Ctenochaetusspp.,Acanthurusnigrofuscus,A.leucosternon andZebrasomascopas,wereassignedalengthsizeclassof11–15cm;iii)Centropygespp. (Pomacanthidae)–wereassignedalengthsizeclassof6–10cm.Atotalof110specieswere identifiedandassignedto12functionaltrophicgroups(piscivores,omnivores,corallivores, invertivores,planktivores,detritivores,grazer-detritivoresand5herbivorecategories,sensu GreenandBellwood[44])usingaclassificationsystemfortheWIO[45](S2Table). Dataanalyses Foranalyses,thedatawereorganisedintoaseriesofmatrices:i)fishspeciesnumericaldensity andbiomass(13sites);ii)fishfunctionalgroupnumericaldensityandbiomass(13sites);iii) benthichabitatvariables(11sites)thatwerenaturallog-transformedandstandardised(11 variables). Fishassemblages. SpatialautocorrelationinfishassemblagesacrosstheChagosArchipel- agowastestedbyimplementingaManteltestusingtheade4package[46]inR[47]onamatrix ofgeographicdistancesbetweensamplingsitesandadissimilaritymatrixbasedonfishdensity computedusingtheBray-Curtisindex.TheMantelstatisticwasfurthercalculatedwithin PerosBanhos,GCBandSalomonatolls,totestforarelationshipwithgeographicdistance betweensiteswithinatolls.Correlationsbetweenbothnumericaldensityandbiomassmatrices weretestedforsignificanceusing9999permutations. Inordertovisualisevariationinthecompositionoffishassemblagesacrossthearchipelago, weusednon-metricmultidimensionalscaling(nMDS)onBray-Curtisdissimilaritydistance measuresobtainedfromfishdatamatricesofbothabundanceandbiomass.Todetermine whichofthefishtrophicgroupsweresignificantlyrelatedtotheordination,wecarriedout randompermutationtestingusing9999permutations.Tofurtherexamineforgroupings withinthefishassemblagedata,aWardclusteranalysisbasedonEuclideandistanceswasper- formedonhellinger-transformeddata,usingsimilarityprofileanalysis(SIMPROF)totestthe significanceofclusteredgroups[48]. Relationshipsbetweendatasets. Wetestedforco-linearitywithinbenthicvariablesand identifiedvariablesthatwerecorrelatedatr(cid:21)0.7.Threevariables(calcareoussubstrate,sand/ rubble,andotherbenthic)wereremovedfromfurtheranalysisandnoremainingpairwise correlationsbetweenvariablesgreaterthanr=0.53werefound.Theremaining8variables werefurthertestedbyavarianceinflationfactor(VIF)analysiswhichfoundthateachofthe retainedenvironmentalvariablesresultedinaVIFof<10. TheAdonisfunctionwithintheVeganpackage[49]wasusedtoexamineforsignificant relationshipsbetweencategoricalvariables(atoll,reeftypeandexposure)andthefishassem- blagessurveyed,alsousingpermutationtestingsetat9999permutations.Weusedtheenvfit functionwithintheVeganpackagetoestimatethedirectionandstrengthsofthecorrelation betweenthenMDSoffishspeciesandthereefbenthicvariablessurveyed. Finally,weusedavariationoftheBIO-ENV[50]routine,termedBIO-BIO,toidentifythe subsetoffishspecieswhichbestcorrelatedtotheoverallbiologicalpatternofthedissimilarity matrix,usingbothnumericaldensityandbiomassdata.Theyproducedsimilarresults,thus densityalonewaspresented. Results Atotalof110fishspeciesfromthe12familieswererecordedacrosstheChagosArchipelago. ThematricesofmeanspeciesdensityandbiomassareprovidedinS3andS4Tables,respec- tively.MultivariateANOVA(Adonis)permutationresultsfoundsignificantdifferencesin thefishspeciesmatricesbetweenatollsforbothdensityandbiomassdatasets(F =2.068, 4,12 PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 5/21 ReeffishassemblagesintheChagosArchipelago Fig2.Spatialvariationinreeffishspeciesassemblagesacrossthe13sitesintheChagosArchipelago:a)non-metricmultidimensionalscaling plot;colouredellipsesshow95%confidenceintervalsofsitegrouping;b)Wardclusteranalysis;coloursindendrogramhighlightthefour significantlydifferentgroupsfound(<0.6dissimilarity). https://doi.org/10.1371/journal.pone.0191448.g002 P=0.002;F =1.760,P=0.010)andbetweenthreereeftypes(forereef;terrace&forereef; 4,12 lagoons(2typescombined),S1Table)forfishbiomass(F =1.673,P=0.035).Withalim- 2,12 itednumberofsites,thesedifferencesbetweenreeftypescouldnotbetestedfurther.There werenosignificantdifferencesfoundinspecies’densityorbiomassbetweensitesclassifiedas exposed(outerreefs)orprotected(lagoon)sites(P>0.05). Manteltestsindicatedthatdissimilarityinthefishassemblagesusingspeciesdensitydata wasstronglyrelatedtogeographicdistanceacrossthearchipelago(MonteCarloobserva- tion=0.512;P=0.002).However,withinPerosBanhos,SalomonandGCBatollstherewas nosignificantrelationshipbetweengeographicdistancebetweensitesandthefishassem- blagespresent(PerosBanhos:MonteCarloObservation=-0.317,P=0.499;Salomon: MonteCarloObservation=-0.718,P=0.835;GCB,MonteCarloObservation=-0.224, P=0.497). Ordinationofspeciesdensitydataacrossthearchipelagorevealedthreedissimilargroups correspondingtotheatollsofPerosBanhos,SalomonandreefsoftheGCB(Fig2a).Fishassem- blagesatGCBseparatedmoststronglyfromotheratolls,whilePerosBanhosandSalomonwere moresimilar.ThesedifferencesinfishassemblageswerefurtherverifiedbytheWardcluster analysis(Fig2b),whichshowedfoursignificantclusters(>60%dissimilarity)thoughoneclus- ter(cluster3)comprisedofasinglesite—DiegoGarciaAtoll’sterraceandforereef,whichdif- feredfromallothersites(>1.0dissimilarity).ThisEuclidiananalysisprovidesamoredetailed examinationofdissimilarityinthefishassemblagesacrosssites:cluster1wasmostdissimilar fromallothersitesandconsistedofnorthernsitesatBlenheimandSalomonAtollforereefs; cluster2containedalllagoonsites,3fromPerosBanhosbutalso1sitefromeachofSalomon andDiegoGarcia;whilstcluster4consistedoftwosub-groups,EagleandEgmontforereefsat GCBandThreeBrothersforereef(GCB)andtwoPerosBanhossites(aforereefandalagoon pinnacle).Totalfishdensityandbiomassalsoshowedbroad-scaledifferencesacrossthe PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 6/21 ReeffishassemblagesintheChagosArchipelago Fig3.Totalfisha)density(numberofindividualsperhectare)andb)biomass(kgperhectare)byatoll,basedon12reef-associatedfamilies surveyedat13sites.Errorbarsarestandarderrors. https://doi.org/10.1371/journal.pone.0191448.g003 archipelagowiththehighestdensitiesrecordedonreefsatGCB,thehighestbiomassrecorded atPerosBanhosAtollandthelowestbiomassatDiegoGarciaAtoll(Fig3). Whenfishspecieswerecategorisedintothe12trophicgroups,permutationtestsshowed only3trophicgroupsweresignificantinexplainingthepatterninthespeciesassemblages: grazer-detritivoresandcorallivoresforfishdensityandgrazer-detritivoresandplanktivores forfishbiomass(Table1,Fig4).Thesethreetrophicgroupsallsignificantlyexplainedfish Table1. Randompermutationresultsof12fishtrophicgroupsshowingonlythosesignificantlyrelatedtodifferences:a)acrossallsitesand;b)stratifiedbyatoll. Density Biomass a)Allsites Trophicgroup r2 p-value Trophicgroup r2 p-value Grazer-detritivores 0.769 <0.001 Grazer-detritivores 0.792 <0.001 Corallivores 0.598 0.009 Planktivores 0.515 0.026 b)Stratifiedbyatoll Grazer-detritivores 0.769 0.006 Grazer-detritivores 0.641 0.016 Planktivores 0.268 0.030 Planktivores 0.515 0.034 Corallivores 0.598 0.048 https://doi.org/10.1371/journal.pone.0191448.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 7/21 ReeffishassemblagesintheChagosArchipelago Fig4.Meandensity(numberofindividualsperhectare)andbiomasskgperhectare)byatollforthethreefunctionaltrophicgroups thatweresignificantlyrelatedtofishassemblagedifferences.Errorbarsarestandarderrors.FunctionaltrophicgroupsareexplainedinS2 Table. https://doi.org/10.1371/journal.pone.0191448.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 8/21 ReeffishassemblagesintheChagosArchipelago Fig5.nMDSdiagramshowingtherelationshipbetweenbenthicvariablesat11reefsitesoverlaidonthefishassemblageordination(seeFig 2)acrosstheChagosArchipelago.Therelativecontributionofeachbenthicvariableisdisplayedbythelengthofthevector. https://doi.org/10.1371/journal.pone.0191448.g005 densitydifferenceswhenthepermutationtestwasstratifiedbyatoll(Table1).Grazer-detriti- vorescompriseagroupofacanthuridsandtheangelfishesCentropyespp.(S2Table). Acanthuridspeciesinthistrophicgroup,suchasAcanthurustennentiandA.xanthopterus, typicallyfeedonsandandhardsurfacestoextractdetritusandmicrobes,aswellasepilithic algae.Thedensitiesandbiomassofthesegrazer-detritivoreswerenearlythreetimesgreaterat GCBandDiegoGarciacomparedtotheotheratolls(Fig4),representingthelargestdifference inthefishassemblagesacrossthearchipelago.Thecorallivoresconsistedofsixobligatecoral feedingbutterflyfishesoutofthe18ChaetodontidaeobservedintheChagosArchipelagoand weremoreabundantatPerosBanhosandSalomonatolls,comparedtootherreefs(Fig4). Whenbiomasswasconsidered,theplanktivores,comprisedofbalistid,acanthuridandchaeto- dontidspecies,differedsignificantlybetweentheatollswithbiomassatGCBthreetimeshigher thananyoftheotherreefsites(Table1,Fig4). Benthicreefcharacteristicsandfishassemblages Thebenthiccoveratreefsiteswashighlyvariableamongtheatollsofthearchipelago(S5 Table).Totallivecoralcoverrangedfrom15.7%(±1.6SD)to47.2%(±24.1SD),Acroporaspp. coralcoverfrom1.1(±1.4SD),to28.1%(±12.4SD),anddeadstandingcoralfrom5.9%(±3.1 SD)to26.4%(±13.1SD).Non-metricmulti-dimensionalscalingoftherelativecontributionof theeightbenthicvariablestothedifferencesbetweenfishassemblagesacrossthearchipelago showedthatreefsitesgroupedalongtwomainaxes(Fig5):theYaxiswithhighmacro-algae suchasGCBreefs,versussiteswithhighersoftcoral(DiegoGarcia);andtheXaxiswithsites withhighhardcoral,deadcoral,liveAcropora,rugosityandturfalgae,atSalomonAtolland PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 9/21 ReeffishassemblagesintheChagosArchipelago Table2. Significantpermutationcorrelationsbetweenbenthosandthefishspeciesmatrix,fordensityandbiomassata)allsitesandb)stratifiedbyatoll. Density Biomass a)Allsites BenthicGroup r2 p-value Benthicgroup r2 p-value HardCoral 0.63 0.021 HardCoral 0.7 0.001 DeadCoral 0.66 0.013 DeadCoral 0.7 0.001 Rugosity 0.55 0.034 b)Stratifiedbyatoll SoftCoral 0.38 0.004 CrustoseCorralineAlgae 0.310 0.042 https://doi.org/10.1371/journal.pone.0191448.t002 PerhosBanhos,versusreefsatGCBwithhigherCCA.GCBreefshadthelowestlevelsofhard coral,rangingfrom15.7%(±5.6SD)to28.7%(±17.7SD).However,hardcoralanddeadcoral (i.e.structuralcomponents)weretheonlybenthiccategoriesthatweresignificantlyrelatedto differencesinfishassemblagestructurewhenanalysedwithfishdensitydata;whentestedwith fishbiomassdata,rugosityalsobecamesignificant(Table2).Whenthepermutationanalysis wasstratifiedbyatoll,hardcoralanddeadcoralwerenolongersignificant;insteadsoftcoral showedasignificantcorrelationwithfishdensityandCCAwithfishbiomass(Table2).These resultscorroboratethegeographicdifferencesinfishassemblagesbetweendifferentatolls, drivenbyhardanddeadcoralcover,whereaswithinatollsonlyCCAandsoftcoralweresig- nificantlycorrelatedwiththefishspeciesdatamatrices. Fishspecies Aspecies-levelordination(BIOBIO)ofthedensityofthe110fishspecieswhichdetermined whichspeciesweremostcorrelatedwithdifferencesinthefishassemblagesacrossallreef sitesshowedthat13speciesbestexplained(rho=0.832)thefishassemblagesacrossthesites: Acanthuruslineatus,A.nigrofuscus,Zebrasomadesjardinii(grazers),Cetoscarusocellatus, ChlorurusstrongylocephalusB(largeexcavators),Hemitaurichthys zoster,Paracanthurus hepa- tus(planktivores),Lutjanusbohar(piscivore),Lutjanusfulvus,Lutjanusgibbus,Lutjanuskas- mira,Lethrinusenigmatus(omnivores),Scarusniger(scraper),Sufflamenspp.(invertivore) (Table3,S2Table,Fig6).Notethatnoneofthesespecieswerefromthesignificanttrophic groupsdetectedinthepermutationtestsexceptforParacanthurus hepatus.Whentheordina- tionwasrestrictedsequentially,itshowedthatScarusnigeralonewashighlycorrelated (rho=0.569)withspeciesassemblagedifferences.Further,acombinationofonly6species achievedaveryhighcorrelation(rho=0.802)withspeciesassemblagedifferences.Although the13speciesillustratedinFig6arethebestfit,otherspeciesconsistentlyappearedinhighly correlatedsubsets(Table3),andthereforewerelikelytodrivedifferencesbetweenfishassem- blagesacrossthearchipelago.TheseincludedAcanthurusthompsoni(planktivore),A.tennenti, A.xanthopterus(grazer-detritivores),Scarusfrenatus(scraper),theinvertivoresChaetodon madagascariensisandSufflamenspp.andLethrinusmicrodon(omnivore). ThreebroadtypesoffishassemblagesintheChagosArchipelagoaresuggestedthrougha combinationofhighlysignificantspecieswithintheordination(Fig6),significantbenthic associations(Fig5)andclusteringoffishspecies(Fig2b).Thesecanbedefinedasthose alignedwith:1)higherhardcoralcover(27–43%),orrecentlydeadcoral;2)highrugosityand Acroporacover;and3)highersoftcoral,CCA,andmacro-algalcoverbutlowcoveroflive hardcoral(12–22%;Table4).Theformer(groups1and2,Table4)werefoundacrossSalo- monandPerosBanhosatolls,whereasthelatter(group3,Table4)waslargelyatGCB.Itis noteworthythattwoofthelargestexcavatingparrotfishes,CetoscarusocellatusandChlorurus PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 10/21
Description: