ebook img

Insights from the Chagos Archipelago PDF

21 Pages·2017·3.41 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Insights from the Chagos Archipelago

RESEARCHARTICLE Patterns in reef fish assemblages: Insights from the Chagos Archipelago MelitaSamoilys1,2*,RonanRoche3,HeatherKoldewey4,5,JohnTurner3 1 CORDIOEastAfrica,Mombasa,Kenya,2 ZoologyDepartment,UniversityofOxford,Oxford,United Kingdom,3 SchoolofOceanSciences,BangorUniversity,Bangor,UnitedKingdom,4 Conservation Programmes,ZoologicalSocietyofLondon,London,UnitedKingdom,5 CentreforEcology&Conservation, UniversityofExeterCornwallCampus,Penryn,Cornwall,UnitedKingdom *[email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Understandingthedriversofvariabilityinthecompositionoffishassemblagesacrossthe Indo-Pacificregioniscrucialtosupportcoralreefecosystemresilience.Whilstnumerous relationshipsandfeedbackmechanismsbetweenthefunctionalrolesofcoralreeffishes andreefbenthiccompositionhavebeeninvestigated,certainkeygroups,suchastheherbi- OPENACCESS vores,arewidelysuggestedtomaintainreefsinacoral-dominatedstate.Examininglinks Citation:SamoilysM,RocheR,KoldeweyH, betweenfishesandreefbenthosiscomplicatedbytheinteractionsbetweennaturalpro- TurnerJ(2018)Patternsinreeffishassemblages: cesses,disturbanceeventsandanthropogenicimpacts,particularlyfishingpressure.This InsightsfromtheChagosArchipelago.PLoSONE studyexaminedfishassemblagesandassociatedbenthicvariablesacrossfiveatollswithin 13(1):e0191448.https://doi.org/10.1371/journal. pone.0191448 theChagosArchipelago,wherefishingpressureislargelyabsent,tobetterunderstand theserelationships.Wefoundhighvariabilityinfishassemblagesamongatollsandsites Editor:HeatherM.Patterson,Departmentof AgricultureandWaterResources,AUSTRALIA acrossthearchipelago,especiallyforkeygroupssuchasasuiteofgrazer-detritivoresur- geonfish,andtheparrotfisheswhichvariedindensityover40-foldbetweensites.Differ- Received:June20,2017 encesinfishassemblagesweresignificantlyassociatedwithvariablelevelsofbothliveand Accepted:January4,2018 recentlydeadcoralcoverandrugosity.Wesuggesttheseresultsreflectdifferingcoral Published:January19,2018 recoverytrajectoriesfollowingcoralbleachingeventsandastronginfluenceof‘bottom-up’ Copyright:©2018Samoilysetal.Thisisanopen controlmechanismsonfishassemblages.SpecieslevelanalysesrevealedthatScarus accessarticledistributedunderthetermsofthe niger,AcanthurusnigrofuscusandChlorurusstrongylocephaloswerekeyspeciesdriving CreativeCommonsAttributionLicense,which differencesinfishassemblagestructure.Clarifyingthetrophicrolesofherbivorousanddet- permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal ritivorousreeffisheswillrequirespecies-levelstudies,whichalsoexaminefeedingbehav- authorandsourcearecredited. iour,tofullyunderstandtheircontributioninmaintainingreefresiliencetoclimatechange DataAvailabilityStatement:Allrelevantdataare andfishingimpacts. withinthepaperanditsSupportingInformation files. Funding:MSwassupportedbyCoastalOceans ResearchandDevelopmentIndianOcean (CORDIO)andaPerivoliTrustfellowshipatthe Introduction UniversityofOxford;http://cordioea.net.The projectwasfundedbyDEFRADarwinInitiative Coralreefsarecomplexandhighlybiodiversesystemsthataresubjecttoabroadrangeofnat- grant19-027toBangorUniversity,Universityof uralandanthropogenicfactors,operatingfromlocaltoglobalscales,whichdriveorimpact WarwickandtheZoologicalSocietyofLondon; reeffishpopulationabundanceandassemblagestructure[1–4].Reefdegradationfromfishing https://www.gov.uk/government/groups/the- darwin-initiative.HKwassupportedbythe pressureandclimate-changeinducedcoralbleachingandmortalityhavebeeninvokedto PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 1/21 ReeffishassemblagesintheChagosArchipelago BertarelliFoundation;https://www.fondation- explainpatternsinthestructureofcoralreeffishassemblagesacrossmultiplescalesinthe bertarelli.org.Thefundershadnoroleinstudy Indo-Pacific[5–7].Otherstudiespointtoscaledependenceindriversoffishassemblageswith design,datacollectionandanalysis,decisionto geomorphologyandbiogeography,forexample,playingasignificantroleatlargerregional publish,orpreparationofthemanuscript. scales,andfishingandreefbenthicstructureoperatingatlocalscales[8–10].Understanding Competinginterests:Theauthorshavedeclared themechanismsbywhichthesedriversinteractandtheirrelativecontributionstocontrolling thatnocompetinginterestsexist. reeffishassemblagesiscriticalinunderpinningconservationplanningandeffectivereeffish- eriesmanagement. Oneofthedominantparadigmsusedtoexplainimpactsfromtheexternalstressorsofcli- matechangeandfishingoncoralreefsandtheirfishassemblagesrevolvesaroundpotential shiftsfromcoraltoalgal-dominatedreefstates[11,12].Herbivorousfisheshavebeenshownto playaleadingroleinpreventingthisshiftbycontrollingalgalabundance[2,13].Theregula- torypathwaysinvolvebothresource(bottom-up)andpredation(top-down)controlofthe reefecosystem.Changesincoralcoverrepresentbottom-upcontrolwhiletop-downcontrolis seenwhenherbivoresaredepletedthroughfishingactivities,whichcanleadtotheirfunctional rolebecomingcompromised[4,14].Coralreeffishassemblagesareknowntovaryinrelation toseveralenvironmentalcharacteristicssuchasexposuretooceanicconditions,rugosity, depth,benthiccompositionandrecentcoralmortality[8–10,15–18].Bottom-upcontrolof reeffishpopulationsbyreefbenthiccompositionhasbeenwellestablished[10,15,18–20],and long-termstudiesinthePhilippines,forexample,haveshownthatthispathwayistheprimary driveroftheherbivorousparrotfishes[21].Thus,top-downandbottom-uppathwayscan eitherdominateorco-occur,dependingonthecharacteristicswithinthecoralreefecosystem. Fromamanagementperspective,itisimportanttobeabletoattributetherelativecontribu- tionofcasualfactorsdrivingthestructureofreeffishassemblages.Theobjectiveofthisstudy wastodeterminewhichofarangeoflargelybioticfactorsmaybedrivingthestructureofreef fishassemblagesintheabsenceoffishing.Ourhypothesiswasthatwithoutthetop-down influenceoffishingintheChagosArchipelagothefishassemblagesshouldreflecttherelative contributionofnaturaldrivers,bothbottomup(e.g.foodavailability)andtop-down(e.g.pre- dation),offishpopulations,andoneanthropogenicstressor—coralmortalityrelatedtobleach- ingevents.Wealsosoughttodescribethecharacteristicreeffishassemblagesoftheatollsof theChagosArchipelagotobuildonearlierworkthatexaminedfishresponsestodeclinesin coralcovercausedbythecoralbleachingeventof1998[22]andfoundlittlechangeinreef fishspeciesrichnessexceptincorallivores[23].Wealsoexaminedtheabundanceandbiomass ofreeffishesfromthefullrangeoftrophicgroupstotestforrelationshipsbetweentrophic groupandreefbenthiccompositionandsoexaminethefunctionalrolesoffishspeciesinreef resilience. TheChagosArchipelago(BritishIndianOceanTerritory)isanisolatedarchipelagoofatolls spanning~60,000km2and2degreesoflatitudeonthenorth-easternborderofthewestern IndianOceanProvince[24–26],withanareaof~9,400km2ofshallowcoralreefs(<40m depth)[27].Theislandsareuninhabitedexceptforthesouthern-mostatoll,DiegoGarcia, whichisclassifiedasaPermanentJointOperatingBaseoftheUKandUSgovernmentsand hostsaUSnavalsupportfacility.Thearchipelago,withtheexceptionofDiegoGarciawherea recreationalfisheryispermitted,wasdeclaredano-takemarineprotectedarea(MPA)in2010 bytheUKGovernment[26].Indeed,reeffishbiomassintheChagosArchipelagoisdemon- strablyoneofthehighestofanycoralreefecosystemintheIndo-Pacific[23].TheChagos Archipelagothereforeprovidesanideallocationforinvestigatingtherelationshipbetweenfish assemblagesandvariabilityinreefbenthichabitatandtypology,intheabsenceofimpacts fromfishingandhumanpopulations.Ourstudyassumedthatreeffishspeciesdistributions didnotdifferbiogeographicallyacrosstheChagosArchipelagoduetothedirectionofmajor currentsystemsinthewesternIndianOcean(WIO),andtheconnectivityofthepelagiclarvae PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 2/21 ReeffishassemblagesintheChagosArchipelago ofmostreeffish[28–30].Wedo,however,recognisethatself-recruitment[31]andlocal oceanographicdynamics[32]withinandamongatollsofthearchipelagomayaffectlarval recruitmentpatterns.Anearlierstudyreportedthatreeffishassemblageswerehighlyhomoge- neousacrossthenorthernatolls[33].Hereweusedatasetsfromarangeofatollsinthearchi- pelago,fromthenorthernmostatollstoDiegoGarciainthesouth,toexaminevariationinthe abundanceandspeciesstructureoffishassemblages,andtoidentifydriversofthisvariability. Byconfiningthisstudytoanisolatedarchipelagoofreefsthatarerelativelyunfishedand freeofpollutionanddevelopment,thisstudycontributestoabetterunderstandingofintact IndianOceanreeffishassemblages.Assuch,itprovidesaregionalcontextforinterpreting coralreeffishassemblagesinthewiderIndianOceanwhereanthropogenicimpactsaremore prevalent. Methods Studysites WesurveyedreeffishassemblagesandcoralreefbenthicassemblagesinMarch2014atatotal of13(fish)and11(benthic)sitesacross5atollsintheChagosArchipelago(decimalminutes: 05.237333S71.81498Eto07.26195S72.44333E,Fig1,S1Table).Locationsincludedthefully submergedBlenheimReefatoll,reefsfringingislandsonthewestsideoftheGreatChagos Fig1.MapoftheChagosArchipelagoshowingatollssurveyedandlocationsofdivesurveysites. https://doi.org/10.1371/journal.pone.0191448.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 3/21 ReeffishassemblagesintheChagosArchipelago Bank(GCB)andthelarge,wellformedPerosBanhosandSalomonatolls.Reeftypeswere definedbasedontheAndrefouteetal.[34]classificationofcoralreefsandincludedforereefs andterracesontheoutsideoftheatollsandpinnaclesandinnerslopesintheatolllagoons(S1 Table).Thesewerecategorisedasexposed(outsideatolls)orprotected(insidelagoons)from oceanicseas.TheBritishIndianOceanTerritoryAdministrationSectionoftheForeignand CommonwealthOffice,UKGovernment,grantedtheresearchpermittotheDarwinInitiative 2014ExpeditiontoworkwithinthewholeTerritory.Permissionwasgrantedtoallauthorsto visitanddiveinthestrictnaturereservesoftheChagosArchipelagoMarinePark. Benthicsurveys UnderwatervideotransectswererecordedusingaSonyHDRCX550camerainaLightand MotionBluefinhousingwithFathom90wideangleportandredfilter,ontowhichredlasers withaspacingof10cmweremountedtoprovidescale.Surveyswereconductedateachsite whichrangedindepthfrom5–25m.Thevideoaimedforaconstantspeed(~0.1ms-1),with a10mintransectwithineachoffourdepthzones(25–20m,20–15m,15–10m,10–5m) approximately1mabovethesubstrate[35].PercentagecoverofallhardcoralandAcropora spp.alone,deadcoral(definedasrecentlydeadcoralskeletonwithintactcorallitestructure), softcoral,crustosecorallinealgae(CCA),fleshymacroalgae,turfalgae,calcareoussubstrate, sand/rubbleandallotherbenthoswereassessedbyrandomlyselecting20videoframesfrom eachdepthrange,andrecordingwhatlaybeneath15randomlyselectedpointsperframe,fora totalof300pointspertransect(thus1,200pointspersite),assignedusingCoralPointCount software[36].Therugosityofthereefalongeachtransectwasestimatedvisuallyusingasix pointscalefollowingPoluninandRoberts[37],rangingfromnoverticalstructuralcomplexity tohighly-developedreefswithlargecoralcolonies,cavesandcrevasses. Fishsurveys Allfishspeciesfrom13pre-selectedfamiliesthatspanthefullrangeoftrophicgroups,from piscivorestodetritivores(seeS2Table)werecountedin50x5mtransects.Twodiveswere conductedateachsitewhichspannedapproximately300malongthereefedge.Ineachdive 2–3transectswererunparalleltothereefedge(5–6replicatetransectsintotalpersite).Tran- sectswereplacedrandomlyatdifferentdepthstospanthedepthrangeofthereef,butamaxi- mumdivedepthof26mwasimposedbydivesafetyregulations.Fishcountsateachsite thereforehadrelativelybroaddepthranges,dependingonthereefprofile(S1Table).This designwasusedtomaximisesurveycoverageofthefishassemblageonthereef.Thefishsur- veysitescorrespondedtothedivesitesatwhichthebenthicvideotransectswereplaced;both methodsspannedthesamedepthrangeateachsite.Siganids(rabbitfishes)werenotobserved atallandthereforeatotalof12familieswerecounted(S2Table).Thedensityandsizeclasses ofspecieswereestimatedusingstandardunderwatervisualcensus(UVC)techniquesforcoral reeffishes[38,39].Thesizeofallspecies>5cmtotallength(TL)wereestimatedin5cmsize classes(e.g.6–10cmTL,11–15cmTL,16–20cmTLetc),toobtainbiomassvaluesbasedon publishedlength—weightrelationships[40–42].Biomasswascalculatedasaderivedvariable forthefishassemblagebecauseitisagoodindicatorofenergyflowwithinthecoralreefeco- system.Afixedsizecategoryforthesmallestspecieswasusedbecause:simplifyingcounting proceduresacrossawiderangeofspeciesimprovesaccuracy[39,43];anydifferencesinbio- massinthesesmallspeciesbetweensiteswillbesmallerthanthe5cmsizeclassaccuracyused; andtoenablethesesmallspeciestobeincludedintotalbiomasscalculations.Fixedsizeclasses wereasfollows:i)allChaetontidaespecieswereassignedalengthsizeclassof6–10cm,with theexceptionofC.xanthocephalos,C.lineolatusandHeniochusspp.whichwererecordedas PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 4/21 ReeffishassemblagesintheChagosArchipelago 11–15cm;ii)smallacanthurids,Ctenochaetusspp.,Acanthurusnigrofuscus,A.leucosternon andZebrasomascopas,wereassignedalengthsizeclassof11–15cm;iii)Centropygespp. (Pomacanthidae)–wereassignedalengthsizeclassof6–10cm.Atotalof110specieswere identifiedandassignedto12functionaltrophicgroups(piscivores,omnivores,corallivores, invertivores,planktivores,detritivores,grazer-detritivoresand5herbivorecategories,sensu GreenandBellwood[44])usingaclassificationsystemfortheWIO[45](S2Table). Dataanalyses Foranalyses,thedatawereorganisedintoaseriesofmatrices:i)fishspeciesnumericaldensity andbiomass(13sites);ii)fishfunctionalgroupnumericaldensityandbiomass(13sites);iii) benthichabitatvariables(11sites)thatwerenaturallog-transformedandstandardised(11 variables). Fishassemblages. SpatialautocorrelationinfishassemblagesacrosstheChagosArchipel- agowastestedbyimplementingaManteltestusingtheade4package[46]inR[47]onamatrix ofgeographicdistancesbetweensamplingsitesandadissimilaritymatrixbasedonfishdensity computedusingtheBray-Curtisindex.TheMantelstatisticwasfurthercalculatedwithin PerosBanhos,GCBandSalomonatolls,totestforarelationshipwithgeographicdistance betweensiteswithinatolls.Correlationsbetweenbothnumericaldensityandbiomassmatrices weretestedforsignificanceusing9999permutations. Inordertovisualisevariationinthecompositionoffishassemblagesacrossthearchipelago, weusednon-metricmultidimensionalscaling(nMDS)onBray-Curtisdissimilaritydistance measuresobtainedfromfishdatamatricesofbothabundanceandbiomass.Todetermine whichofthefishtrophicgroupsweresignificantlyrelatedtotheordination,wecarriedout randompermutationtestingusing9999permutations.Tofurtherexamineforgroupings withinthefishassemblagedata,aWardclusteranalysisbasedonEuclideandistanceswasper- formedonhellinger-transformeddata,usingsimilarityprofileanalysis(SIMPROF)totestthe significanceofclusteredgroups[48]. Relationshipsbetweendatasets. Wetestedforco-linearitywithinbenthicvariablesand identifiedvariablesthatwerecorrelatedatr(cid:21)0.7.Threevariables(calcareoussubstrate,sand/ rubble,andotherbenthic)wereremovedfromfurtheranalysisandnoremainingpairwise correlationsbetweenvariablesgreaterthanr=0.53werefound.Theremaining8variables werefurthertestedbyavarianceinflationfactor(VIF)analysiswhichfoundthateachofthe retainedenvironmentalvariablesresultedinaVIFof<10. TheAdonisfunctionwithintheVeganpackage[49]wasusedtoexamineforsignificant relationshipsbetweencategoricalvariables(atoll,reeftypeandexposure)andthefishassem- blagessurveyed,alsousingpermutationtestingsetat9999permutations.Weusedtheenvfit functionwithintheVeganpackagetoestimatethedirectionandstrengthsofthecorrelation betweenthenMDSoffishspeciesandthereefbenthicvariablessurveyed. Finally,weusedavariationoftheBIO-ENV[50]routine,termedBIO-BIO,toidentifythe subsetoffishspecieswhichbestcorrelatedtotheoverallbiologicalpatternofthedissimilarity matrix,usingbothnumericaldensityandbiomassdata.Theyproducedsimilarresults,thus densityalonewaspresented. Results Atotalof110fishspeciesfromthe12familieswererecordedacrosstheChagosArchipelago. ThematricesofmeanspeciesdensityandbiomassareprovidedinS3andS4Tables,respec- tively.MultivariateANOVA(Adonis)permutationresultsfoundsignificantdifferencesin thefishspeciesmatricesbetweenatollsforbothdensityandbiomassdatasets(F =2.068, 4,12 PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 5/21 ReeffishassemblagesintheChagosArchipelago Fig2.Spatialvariationinreeffishspeciesassemblagesacrossthe13sitesintheChagosArchipelago:a)non-metricmultidimensionalscaling plot;colouredellipsesshow95%confidenceintervalsofsitegrouping;b)Wardclusteranalysis;coloursindendrogramhighlightthefour significantlydifferentgroupsfound(<0.6dissimilarity). https://doi.org/10.1371/journal.pone.0191448.g002 P=0.002;F =1.760,P=0.010)andbetweenthreereeftypes(forereef;terrace&forereef; 4,12 lagoons(2typescombined),S1Table)forfishbiomass(F =1.673,P=0.035).Withalim- 2,12 itednumberofsites,thesedifferencesbetweenreeftypescouldnotbetestedfurther.There werenosignificantdifferencesfoundinspecies’densityorbiomassbetweensitesclassifiedas exposed(outerreefs)orprotected(lagoon)sites(P>0.05). Manteltestsindicatedthatdissimilarityinthefishassemblagesusingspeciesdensitydata wasstronglyrelatedtogeographicdistanceacrossthearchipelago(MonteCarloobserva- tion=0.512;P=0.002).However,withinPerosBanhos,SalomonandGCBatollstherewas nosignificantrelationshipbetweengeographicdistancebetweensitesandthefishassem- blagespresent(PerosBanhos:MonteCarloObservation=-0.317,P=0.499;Salomon: MonteCarloObservation=-0.718,P=0.835;GCB,MonteCarloObservation=-0.224, P=0.497). Ordinationofspeciesdensitydataacrossthearchipelagorevealedthreedissimilargroups correspondingtotheatollsofPerosBanhos,SalomonandreefsoftheGCB(Fig2a).Fishassem- blagesatGCBseparatedmoststronglyfromotheratolls,whilePerosBanhosandSalomonwere moresimilar.ThesedifferencesinfishassemblageswerefurtherverifiedbytheWardcluster analysis(Fig2b),whichshowedfoursignificantclusters(>60%dissimilarity)thoughoneclus- ter(cluster3)comprisedofasinglesite—DiegoGarciaAtoll’sterraceandforereef,whichdif- feredfromallothersites(>1.0dissimilarity).ThisEuclidiananalysisprovidesamoredetailed examinationofdissimilarityinthefishassemblagesacrosssites:cluster1wasmostdissimilar fromallothersitesandconsistedofnorthernsitesatBlenheimandSalomonAtollforereefs; cluster2containedalllagoonsites,3fromPerosBanhosbutalso1sitefromeachofSalomon andDiegoGarcia;whilstcluster4consistedoftwosub-groups,EagleandEgmontforereefsat GCBandThreeBrothersforereef(GCB)andtwoPerosBanhossites(aforereefandalagoon pinnacle).Totalfishdensityandbiomassalsoshowedbroad-scaledifferencesacrossthe PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 6/21 ReeffishassemblagesintheChagosArchipelago Fig3.Totalfisha)density(numberofindividualsperhectare)andb)biomass(kgperhectare)byatoll,basedon12reef-associatedfamilies surveyedat13sites.Errorbarsarestandarderrors. https://doi.org/10.1371/journal.pone.0191448.g003 archipelagowiththehighestdensitiesrecordedonreefsatGCB,thehighestbiomassrecorded atPerosBanhosAtollandthelowestbiomassatDiegoGarciaAtoll(Fig3). Whenfishspecieswerecategorisedintothe12trophicgroups,permutationtestsshowed only3trophicgroupsweresignificantinexplainingthepatterninthespeciesassemblages: grazer-detritivoresandcorallivoresforfishdensityandgrazer-detritivoresandplanktivores forfishbiomass(Table1,Fig4).Thesethreetrophicgroupsallsignificantlyexplainedfish Table1. Randompermutationresultsof12fishtrophicgroupsshowingonlythosesignificantlyrelatedtodifferences:a)acrossallsitesand;b)stratifiedbyatoll. Density Biomass a)Allsites Trophicgroup r2 p-value Trophicgroup r2 p-value Grazer-detritivores 0.769 <0.001 Grazer-detritivores 0.792 <0.001 Corallivores 0.598 0.009 Planktivores 0.515 0.026 b)Stratifiedbyatoll Grazer-detritivores 0.769 0.006 Grazer-detritivores 0.641 0.016 Planktivores 0.268 0.030 Planktivores 0.515 0.034 Corallivores 0.598 0.048 https://doi.org/10.1371/journal.pone.0191448.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 7/21 ReeffishassemblagesintheChagosArchipelago Fig4.Meandensity(numberofindividualsperhectare)andbiomasskgperhectare)byatollforthethreefunctionaltrophicgroups thatweresignificantlyrelatedtofishassemblagedifferences.Errorbarsarestandarderrors.FunctionaltrophicgroupsareexplainedinS2 Table. https://doi.org/10.1371/journal.pone.0191448.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 8/21 ReeffishassemblagesintheChagosArchipelago Fig5.nMDSdiagramshowingtherelationshipbetweenbenthicvariablesat11reefsitesoverlaidonthefishassemblageordination(seeFig 2)acrosstheChagosArchipelago.Therelativecontributionofeachbenthicvariableisdisplayedbythelengthofthevector. https://doi.org/10.1371/journal.pone.0191448.g005 densitydifferenceswhenthepermutationtestwasstratifiedbyatoll(Table1).Grazer-detriti- vorescompriseagroupofacanthuridsandtheangelfishesCentropyespp.(S2Table). Acanthuridspeciesinthistrophicgroup,suchasAcanthurustennentiandA.xanthopterus, typicallyfeedonsandandhardsurfacestoextractdetritusandmicrobes,aswellasepilithic algae.Thedensitiesandbiomassofthesegrazer-detritivoreswerenearlythreetimesgreaterat GCBandDiegoGarciacomparedtotheotheratolls(Fig4),representingthelargestdifference inthefishassemblagesacrossthearchipelago.Thecorallivoresconsistedofsixobligatecoral feedingbutterflyfishesoutofthe18ChaetodontidaeobservedintheChagosArchipelagoand weremoreabundantatPerosBanhosandSalomonatolls,comparedtootherreefs(Fig4). Whenbiomasswasconsidered,theplanktivores,comprisedofbalistid,acanthuridandchaeto- dontidspecies,differedsignificantlybetweentheatollswithbiomassatGCBthreetimeshigher thananyoftheotherreefsites(Table1,Fig4). Benthicreefcharacteristicsandfishassemblages Thebenthiccoveratreefsiteswashighlyvariableamongtheatollsofthearchipelago(S5 Table).Totallivecoralcoverrangedfrom15.7%(±1.6SD)to47.2%(±24.1SD),Acroporaspp. coralcoverfrom1.1(±1.4SD),to28.1%(±12.4SD),anddeadstandingcoralfrom5.9%(±3.1 SD)to26.4%(±13.1SD).Non-metricmulti-dimensionalscalingoftherelativecontributionof theeightbenthicvariablestothedifferencesbetweenfishassemblagesacrossthearchipelago showedthatreefsitesgroupedalongtwomainaxes(Fig5):theYaxiswithhighmacro-algae suchasGCBreefs,versussiteswithhighersoftcoral(DiegoGarcia);andtheXaxiswithsites withhighhardcoral,deadcoral,liveAcropora,rugosityandturfalgae,atSalomonAtolland PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 9/21 ReeffishassemblagesintheChagosArchipelago Table2. Significantpermutationcorrelationsbetweenbenthosandthefishspeciesmatrix,fordensityandbiomassata)allsitesandb)stratifiedbyatoll. Density Biomass a)Allsites BenthicGroup r2 p-value Benthicgroup r2 p-value HardCoral 0.63 0.021 HardCoral 0.7 0.001 DeadCoral 0.66 0.013 DeadCoral 0.7 0.001 Rugosity 0.55 0.034 b)Stratifiedbyatoll SoftCoral 0.38 0.004 CrustoseCorralineAlgae 0.310 0.042 https://doi.org/10.1371/journal.pone.0191448.t002 PerhosBanhos,versusreefsatGCBwithhigherCCA.GCBreefshadthelowestlevelsofhard coral,rangingfrom15.7%(±5.6SD)to28.7%(±17.7SD).However,hardcoralanddeadcoral (i.e.structuralcomponents)weretheonlybenthiccategoriesthatweresignificantlyrelatedto differencesinfishassemblagestructurewhenanalysedwithfishdensitydata;whentestedwith fishbiomassdata,rugosityalsobecamesignificant(Table2).Whenthepermutationanalysis wasstratifiedbyatoll,hardcoralanddeadcoralwerenolongersignificant;insteadsoftcoral showedasignificantcorrelationwithfishdensityandCCAwithfishbiomass(Table2).These resultscorroboratethegeographicdifferencesinfishassemblagesbetweendifferentatolls, drivenbyhardanddeadcoralcover,whereaswithinatollsonlyCCAandsoftcoralweresig- nificantlycorrelatedwiththefishspeciesdatamatrices. Fishspecies Aspecies-levelordination(BIOBIO)ofthedensityofthe110fishspecieswhichdetermined whichspeciesweremostcorrelatedwithdifferencesinthefishassemblagesacrossallreef sitesshowedthat13speciesbestexplained(rho=0.832)thefishassemblagesacrossthesites: Acanthuruslineatus,A.nigrofuscus,Zebrasomadesjardinii(grazers),Cetoscarusocellatus, ChlorurusstrongylocephalusB(largeexcavators),Hemitaurichthys zoster,Paracanthurus hepa- tus(planktivores),Lutjanusbohar(piscivore),Lutjanusfulvus,Lutjanusgibbus,Lutjanuskas- mira,Lethrinusenigmatus(omnivores),Scarusniger(scraper),Sufflamenspp.(invertivore) (Table3,S2Table,Fig6).Notethatnoneofthesespecieswerefromthesignificanttrophic groupsdetectedinthepermutationtestsexceptforParacanthurus hepatus.Whentheordina- tionwasrestrictedsequentially,itshowedthatScarusnigeralonewashighlycorrelated (rho=0.569)withspeciesassemblagedifferences.Further,acombinationofonly6species achievedaveryhighcorrelation(rho=0.802)withspeciesassemblagedifferences.Although the13speciesillustratedinFig6arethebestfit,otherspeciesconsistentlyappearedinhighly correlatedsubsets(Table3),andthereforewerelikelytodrivedifferencesbetweenfishassem- blagesacrossthearchipelago.TheseincludedAcanthurusthompsoni(planktivore),A.tennenti, A.xanthopterus(grazer-detritivores),Scarusfrenatus(scraper),theinvertivoresChaetodon madagascariensisandSufflamenspp.andLethrinusmicrodon(omnivore). ThreebroadtypesoffishassemblagesintheChagosArchipelagoaresuggestedthrougha combinationofhighlysignificantspecieswithintheordination(Fig6),significantbenthic associations(Fig5)andclusteringoffishspecies(Fig2b).Thesecanbedefinedasthose alignedwith:1)higherhardcoralcover(27–43%),orrecentlydeadcoral;2)highrugosityand Acroporacover;and3)highersoftcoral,CCA,andmacro-algalcoverbutlowcoveroflive hardcoral(12–22%;Table4).Theformer(groups1and2,Table4)werefoundacrossSalo- monandPerosBanhosatolls,whereasthelatter(group3,Table4)waslargelyatGCB.Itis noteworthythattwoofthelargestexcavatingparrotfishes,CetoscarusocellatusandChlorurus PLOSONE|https://doi.org/10.1371/journal.pone.0191448 January19,2018 10/21

Description:
Programmes, Zoological Society of London, London, United Kingdom, 5 Centre for Ecology & Conservation, . The islands are uninhabited except for the southern-most atoll, Diego Garcia, which is .. of the relatively small geographic range of the Chagos Archipelago fed by the easterly flowing.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.