ebook img

Improved low-temperature rate constants for rotational excitation of CO by H_2 PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Improved low-temperature rate constants for rotational excitation of CO by H_2

Astronomy&Astrophysicsmanuscriptno.corr˙proof˙2 February5,2008 (DOI:willbeinsertedbyhandlater) Improved low-temperature rate constants for rotational excitation of CO by H 2 6 0 M.Wernli1,P.Valiron1,A.Faure1,L.Wiesenfeld1,P.Jankowski2,andK.Szalewicz3 0 2 1 Laboratoire d’Astrophysique de Grenoble, UMR 5571 CNRS-UJF, OSUG, Universite´ Joseph Fourier, BP 53, F-38041 n a GrenobleCedex9,France J 2 DepartmentofQuantumChemistry,InstituteofChemistry,NicholausCopernicusUniversity,Gagarina7,PL-87-100Torun´, 8 Poland 1 3 DepartmentofPhysicsandAstronomy,UniversityofDelaware,Newark,DE19716,USA 1 Received26July2005/Accepted12September2005 v 4 Abstract.Crosssectionsfortherotational(de)excitationofCObygroundstatepara-andortho-H areobtainedusingquantum 8 2 scatteringcalculationsforcollisionenergiesbetween1and520cm−1.AnewCO−H potentialenergysurfaceisemployedand 3 2 itsqualityisassessedbycomparisonwithexplicitlycorrelatedCCSD(T)-R12calculations.Rateconstantsforrotationallevels 1 0 ofCOupto5andtemperaturesintherange5−70Karededuced.Thenewpotentialisfoundtohaveastronginfluenceonthe 6 resonancestructureofthecrosssectionsatverylowcollisionenergies.Asaresult,thepresentratesat10Kdifferbyupto50% 0 withthoseobtainedbyFlower(2001)onaprevious,lessaccurate,potentialenergysurface. / h Keywords.moleculardata−molecularprocesses−ISM:molecules p - o r t 1. Introduction for para-H2. This result reflects the crucial importance of the s PES, whose inaccuracies are one of the main sources of er- a Sinceitsdiscoveryininterstellarspacemorethan30yearsago : ror in collisional rate calculations, especially at low tempera- v (Wilsonetal. 1970), carbon monoxide (CO) has been exten- tures (see, e.g., Balakrishnanetal. (2002)). The JS98 surface i X sively observed both in our own and in other galaxies. CO has been checked against experiment by a couple of authors. is indeed the second most abundantmolecule in the Universe r Gottfried&McBane (2001), in particular, computed second a after H and, thanks to its dipole moment, it is the principal 2 virial coefficientsbelow 300 K and showed thatthe attractive moleculeusedtomapthemoleculargasingalacticandextra- well of the PES was slightly too deep. A modification which galacticsources.COisalsocurrentlytheonlymoleculetohave consistsofmultiplyingthePESbyafactorof0.93wasthere- been observed at redshifts as high as z = 6.42 (Walteretal. foresuggestedbytheseauthors.Thismodificationwasapplied 2003).CollisionalexcitationofrotationallevelsofCO occurs byMengeletal.(2001)anditwasindeedfoundtoproducebet- inagreatvarietyofphysicalconditionsandemissionfromlev- teragreementwithmeasurementsofpressurebroadeningcross elswithrotationalquantumnumbersJupto39havebeeniden- sections.Ontheotherhand,theoriginalPESwasfoundtogive tifiedincircumstellarenvironments(Cernicharoetal.1996). a very good agreement with experimental state-to-state rota- Hydrogenmoleculesare generallythe mostabundantcol- tionalcrosssectionsmeasurednear1000cm−1(Antonovaetal. liding partners in the interstellar medium, although collisions 2000).Attheseenergies,however,onlytheshort-rangerepul- withH,Heandelectronscanalsoplayimportantroles,forex- siveregionofthePESisprobed.Finally,Flower(2001)showed ampleindiffuseinterstellarclouds.Ratecoefficientsforcolli- that the scaling of 0.93 has only minor influence on the rota- sions with H based on the potential energy surface (PES) of 2 tionalratesandheemployedtheoriginalPES. Jankowski& Szalewicz(1998,hereafterJS98)havebeencal- Very recently, a new PES has been computed by culatedrecently(Mengeletal.2001;Flower2001).Theserates Jankowski&Szalewicz(2005)(hereafterJS05).Incontrastto were found to be in reasonable agreement(typically within a the JS98 surface, which was calculated within the symmetry- factorof2at10K)withthosecomputedonolderandlessac- adaptedperturbationtheory(SAPT),theJS05surfacehasbeen curatePES(e.g.Schinkeetal.(1985)).However,incontrastto obtainedusingthesupermolecularapproximationbasedonthe previousworks,Mengeletal.(2001)andFlower(2001)found the inelastic rateswith ∆J = 1 largerthanthosewith ∆J = 2 CCSD(T)methodusingcorrelation-consistentbasissetscom- plementedbybondingfunctionsandbasissetextrapolation.It Send offprint requests to: M. Wernli e-mail: turnedthatthemajorinaccuracyofJS98wasduetotheuseof [email protected] a correction for the effects of the third and higher orders ex- 2 M.Wernlietal.:improvedlow-temperatureCO−H rotationalrateconstants 2 tracted in an approximateway from supermolecularSCF cal- culations. It recently became clear that this correction should 100 θθ21 == 9900oo θθ12 == 00oo θθ21 == 108o0o JJSS9085 notbeusedfornonpolarornearlynonpolarmonomers.Ifthis CCSD(T)-R12 term is removed from JS98, the agreement of the resulting -1m) 50 surfacewithJS05isexcellent.Jankowski&Szalewicz(2005) c haveemployedtheirnewPEStocalculaterovibrationalenergy gy ( levels of the para-H2−CO complex and they obtained a very ener 0 goodagreement(betterthan0.1cm−1 comparedto1cm−1 for on theJS98surface)withthemeasurementsbyMcKellar(1998). acti Thecomputedvaluesofthesecondvirialcoefficientsalsoagree nter -50 I verywellwiththeexperimentalones.Fulldetailscanbefound in Jankowski&Szalewicz (2005). In the present paper, we -100 present new rate constants for the rotationalexcitation of CO by H based on the JS05 surface.Our results are restricted to 5 6 7 8 9 2 R (bohrs) lowtemperatures(T<70K)becausethenewPEScalculations arefoundtoaffecttherotationalcrosssectionsonlyatlowcol- Fig.1. H −CO interactionenergyas a functionof R for three 2 lision energy (E < 60 cm−1). As shown below, differences coplanar configurations:(θ ,θ )= (90o, 90o), (0o, 0o) and (0o, coll 1 2 with theresultsofFlower(2001) rangefroma few percentto 180o). The dashed and solid lines denote the JS98 and JS05 50 %. Such effects, if not dramatic, are significant in view of calculations, respectively. The filled circles correspond to in- the special importanceof the CO−H system in astrophysics. dependentCCSD(T)-R12calculations(seetext). 2 Furthermore, the present results are of particular interest for comparisonswith futuremeasurementsplannedin Rennes by bitalswerefrozen2intheCCSD(T)-R12calculations.Weem- Simsandcollaborators(Sims2005). ployedR12-suitedbasissetsincludinguptogfunctionsforC andO,anddfunctionsforH(asdevelopedinNoga&Valiron (2003); Kedzˇuchetal. (2005)). The R12 results are assumed 2. Method toapproachthebasissetlimitwithin1−2cm−1.Inparticular theinclusionofalargesetofbondingfunctions(corresponding 2.1.PotentialEnergySurface to the R12-suitedH set) affects the interactionby ≈ 0.5cm−1 Following the conventions of JS98, the CO−H “rigid-body” onlyat 7 bohrsseparation,while the counterpoisecorrections 2 remainverysmall,generallybelow1cm−1. PES is described by the following four Jacobi coordinates: Here, we can observe that the JS05 surface agree very threeanglesθ ,θ andφandthedistanceRdenotingtheinter- 1 2 well with the CCSD(T)-R12 results while the JS98 surface molecularcentreofmassseparation.Theanglesθ andθ are 1 2 overestimates the depth of the CO−H potential well by the tilt angles of H and CO with respect to the intermolecu- 2 2 about10−20%,asanticipatedbyGottfried&McBane(2001). laraxis,andφisthedihedralangle.Inthelineargeometry,the However, the JS05 surface lies slightly below the CCSD(T)- oxygen atom points toward H when θ =0. The JS05 surface 2 2 R12 one. This agrees with the observation in JS05, based on hasbeenobtainedbyaveragingovertheintramolecularground extrapolationsinvolvingbasesuptoquintuplezetaquality,that statevibrationofH ,whileCOwastreatedasrigidatitsvibra- 2 the potential is about 1-2 cm−1 too deep in the region of the tional ground-state averaged geometry. The JS05 surface has a global depth of -93.049 cm−1 for the linear geometry with global minimum. On the other hand, the comparison of the theCatompointingtowardtheH molecule(θ =0,θ =180o, virialcoefficientsfromJS05withexperimentsuggeststhatthe 2 1 2 exact potential is still deeper, probably due to the effects re- φ = 0) and for a centre of mass separationR =7.92bohrs. min sultingfromtheorylevelsbeyondCCSD(T).Wealsochecked The(unscaled)JS98andJS05surfacesarepresentedinFig.1 thattheR12valuesarerecoveredwithin1cm−1 byabasisset and compared to independent CCSD(T)-R12 calculations us- extrapolation involving larger (triple and quadruple zeta) sets ingground-stateaveragedgeometriesforCOandH . 2 andthepopularbondingfunctionsproposedbyWilliamsetal. Thelattercalculationscanbeconsideredashighaccuracy (1995). These comparisons provides a further check of the state-of-the-art ab initio calculations. Indeed the CCSD(T)- qualityofthenewCO−H PESandalsoconfirmthesuspected R12approach1 hasbeenshowntoproduceintermolecularen- 2 inaccuraciesoftheJS98surface. ergies with near spectroscopic accuracy without recourse to In order to interface the JS98 and JS05 surfaces extrapolation(Halkieretal. 1999; Mu¨ller&Kutzelnigg2000; with the scattering code, the  routines of Faureetal.2005).Inordertosavesomecomputingtimeandto Jankowski&Szalewicz (1998); Jankowski&Szalewicz improvethenumericalstabilityoftheR12operator,thecoreor- (2005)wereemployedtogenerateagridof57,000geometries. These grid points were distributed in 19 fixed intermolecular 1 TheR12coupledclustertheorywithsingles,doublesandpertur- distances R (in the range 4−15 bohrs) via random sampling bativetriplesproperlydescribestheelectron-electroncuspbyinclud- ing explicitly the inter-electronic coordinates into the wavefunction 2 Thisapproximationisoflittleconsequenceascorecorrelationef- (Noga&Kutzelnigg(1994),seealsoNoga&Valiron(2002)forare- fectsareminorfortheCO-H interaction(about0.3cm−1 at7bohrs 2 view.) separation). M.Wernlietal.:improvedlow-temperatureCO−H rotationalrateconstants 3 2 for the angular coordinates. At each intermolecular distance, 100 the interaction potential V was least-squares fitted over the JS05 followingangularexpansion: 1-0 JS98 V(R,θ1,θ2,φ)=Xl1l2lvl1l2l(R)sl1l2l(θ1,θ2,φ), (1) 2on (A ) 3-1 cti mwhoenriecsthaendbaasreisefxupnlcictiiotendsisnl1El2lq.ar(eA9p)roodfuGctrseeonf (s1p9h7e5ri)c.aTlhheasre- oss se 10 functionsformanorthonormalbasisset,andtheexpansionco- Cr efficientsv canthusbewrittenas3 l1l2l v (R)= V(R,θ ,θ ,φ)s⋆ (θ ,θ ,φ)sinθ dθ sinθ dθ dφ(2) l1l2l Zθ1Zθ2Zφ 1 2 l1l2l 1 2 1 1 2 2 10 100 E (K) The latter expression remains valid for any truncated expan- sion. Fig.2.InelasticdeexcitationcrosssectionsforCOincollisions We selected an initial angular expansion including all withpara-H2 asafunctionoftotalenergy.Bothcurvesarethe anisotropiesup to l =10 for CO and l =6 for H , resulting in resultsofourcalculationswiththeunscaledJS98PES(dashed 1 2 2 142s functions.Theaccuracyoftheangularexpansionwas curves),andtheJS05PES(solidcurves). l1l2l monitoredusingaself-consistentMonteCarloerrorestimator (Ristetal.2005),whichalsopermittedtoselectthemostperti- andwasthusemployed.Theenergystepwas20cm−1between nentangularterms.Theresultingsetwascomposedof60basis 160and340cm−1,and30cm−1 athigherenergies.Forortho- functionsinvolvinganisotropiesuptol1 = 7andl2 = 4.Acu- H2, the same collision energy grid was used, resulting in to- bicsplineinterpolationwasfinallyemployedoverthewholein- tal energiesin the range 126−642cm−1. The propagatorused termoleculardistancerangeandwassmoothlyconnectedwith wasthelog-derivativepropagator(Alexander&Manolopoulos standardextrapolationstoprovidecontinuousexpansioncoef- 1987).Parametersoftheintegratorweretestedandadjustedto ficientssuitableforscatteringcalculations.Thefinalaccuracy ensure a typical precision of 1-2 %. All the calculations with of this 60term expansionwas foundto be better than 1 cm−1 para-H useda j =0,2basis,whiletheortho-H calculations 2 2 2 in the global minimum region of the PES while the individ- used onlya j = 1basis. Tests ofthis basisweremadeatthe 2 ualexpansioncoefficientswereconvergedwithin0.01cm−1.It highestenergy,whereinclusionofthe j =3(closed)statewas 2 shouldbenotedthattheexpansiondoesnotreproduceexactly foundtoaffectcrosssectionsbylessthanonepercent.Atleast the values of the potential energy at the grid points4, in con- threeclosedchannelswereincludedateachenergyfortheCO trasttotheapproachfollowedbyFlower(2001)whousedthe rotationalbasis. Atthe highestenergy,we hadthusa j ≤ 18 1 same number (25) of angular geometriesand basis functions. basis.Transitionsamongalllevelsupto j =5werecomputed. 1 The main advantage of our approach is to guarantee the con- Finally,rateconstantswerecalculatedfortemperaturesranging vergenceoftheindividualexpansioncoefficients,inparticular from5to70Kbyintegratingthecrosssectionsoveressentially inthehighlyanisotropicshort-rangepart(R < 6bohrs)ofthe thewholecollisionenergyrangespannedbythecorresponding interaction. Maxwell-Boltzmann distributions. The energy grid was cho- sensothatthehighestcollisionforalltransitionsbeaboutten 2.2.Scatteringcalculations timeslargerthanthehighesttemperature.Theaccuracyofthe presentratesisexpectedtoliebetween5and10%at70K,and The  code (Hutson&Green 1994) was employed to probablybetteratlowertemperatures. performtherigid-rotorscatteringcalculationsreportedbelow. Allcalculationsweremadeusingtherigidrotorapproximation, 3. Collisionalcrosssectionsandrates withrotationalconstantsB =1.9225cm−1andB =60.853 CO H2 cm−1. For para-H2 (j2 = 0), calculations were carried out at Figure 2 clearly illustrates the fact thatthe resonance pattern, total energies (collision plus CO rotation) ranging from 4 to which is here of ’shape’ rather than ’Feshbach’ type as dis- 520cm−1.Fullclose-couplingcalculationswereperformedbe- cussed by Flower (2001), strongly dependson the interaction tween4and160cm−1,withstepsof0.2cm−1intheresonance potential.Wealsonotethattheveryfinegridusedatthelowest range4−120cm−1,andamuchcoarserstepof5cm−1between energies was necessary for a proper description of the reso- 120 and 160 cm−1. Between 160 and 520 cm−1, the coupled- nances. It can be observedthat the cross sections convergeat stateapproximation(McGuire&Kouri1974)wasshowntore- higherenergies(abovetheresonanceregime),asthe collision produce full close-coupling calculations within a few percent energy becomes large compared to the potential energy well depth.As a result,rateconstantsare expectedtodiffersignif- 3 ⋆ denotes the complex conjugate. Note that the angular con- icantly from those of Flower (2001) at very low temperatures ventions of Green (1975) are slightly different from those of Jankowski&Szalewicz(1998). only. 4 The residual differences indicate the cumulative effects of the We present in Tables 1 and 2 our rate constants at 10, 30 higherexpansionterms. and70K,andthoseofFlower(2001)forcomparison.Wenote 4 M.Wernlietal.:improvedlow-temperatureCO−H rotationalrateconstants 2 thatespeciallyat10K,ratescanvaryupto50%.Thesediffer- (2002).Itisgenerallyassumedthatrateswithpara-H (j =0) 2 2 encesreflecttheinfluenceofthreeindependentparameters:(i) shouldbeabout50%largerthanHeratesowingtothesmaller thehighaccuracyofthenewabinitiopotentialenergycalcula- collisional reduced mass and the larger size of H . We have 2 tions,(ii)theuseofawellconvergedexpansionofthePESover checked that the present H (j = 0) rates are in fact within 2 2 the angularbasis functionsand (iii) the carefuldescription of a factor of 1−3 of the He rates. Thus, as already shown by resonances.Itishowevernotclearhowtodiscriminateamong Phillipsetal.(1996)inthecaseofH O,ratesforexcitationby 2 the threeeffects. At70K(andbeyond),ourratesandthose of H arenotadequatelyrepresentedbyscaledratesforexcitation 2 Flower(2001)agreewithintypically10−20%, asanticipated byHe. fromtheconvergenceofthecrosssectionsathighenergy.We Finally,foruseinastrophysicalmodelling,thetemperature thereforeconcludethatthedifferencesbetweenourresultsand dependenceoftheabovetransitionratesk(T)havebeenfitted thoseofFlower(2001)areastrophysicallyrelevantfortemper- bytheanalyticformusedbyBalakrishnanetal.(1999): atures below 70 K. Above this value, the inaccuracies of the 4 JS98 PES have only a minor influence on the rotational rates log k(T)= a xn, (3) and the results of Flower (2001) and Mengeletal. (2001) are 10 X n n=0 reliable. The para-H rates presented in the 30 K panel in Table 1 wherethe xfactorwaschangedfromT−1/3toT−1/6toachieve 2 illustrate the respective contribution of the surface and of the abetterfittingprecision.Thequadraticerroronthisfitislower subsequent angular expansion and collisional treatment. Data than0.1%foralltransitions.Thecoefficientsofthisfitarepro- in columns 1 and 2 are based upon the same JS98 surface vided as online material. For those who plan to use them, we and the differences are ascribable to the better convergence emphasizethatthesefitsareonlyvalidinthetemperaturerange of the angular expansion and to the finer description of the 5≤T ≤70K.Finally,excitationratesarenotgiveninthispa- resonances. Conversely, data in columns 2 and 3 are based per,butcanbeobtainedbyapplicationofthedetailedbalance. upon the same angular expansion and collisional treatment, andthedifferencesonlyreflecttheimprovementinthesurface. 4. Conclusion Dependingoninitialandfinalrotationstates,varioussituations mayoccur.Insomecasesthereisacompensationoferrorsfor Crosssectionsfortherotational(de)excitationofCObyground thesurface(asfor2-1,3-0,3-2),orfortheexpansionandcol- state para- and ortho-H have been computed using quan- 2 lisional treatment (as for 5-0). Collisional and surface errors tum scattering calculations for collision energies in the range mayalsopartiallycancelout,asforthe1-0rate,oraddupas 1−520 cm−1. A new, highly accurate, CO−H potential en- 2 for the 2-0 rate. While the detailed behaviourseems complex ergy surface has been employed and it has been shown to andirregular,inaveragetheerrorsintroducedbytheolderJS98 stronglyinfluencetheresonancestructureofthecrosssections surfaceareofthesameorderofmagnitudeastheerrorsintro- in the very low collision energy regime (E . 60 cm−1). coll ducedbythelimitedangularexpansionandenergymeshinthe Conversely, at higher energies, the effect of the new poten- olderworkbyFlower(2001). tial was found to be only minor. As a result, the present rate Itisinterestingtonotethatforcollisionswithpara-H ,in- constantsarefoundtodiffersignificantlyfromthoseofFlower 2 elastic rates with ∆j = 1 are larger than those with ∆j = 2 (2001),obtainedonapreviousandlessaccuratepotential,only 1 1 while the reverse applies for ortho-H . The propensity to fa- fortemperatureslowerthan70K.Transitionsamongalllevels 2 voreven∆j overodd∆j hasbeenexplainedsemiclassically upto j =5onlywerecomputedashigherstatesaregenerally 1 1 1 byMcCurdy&Miller(1977)intermsofaninterferenceeffect notpopulatedatthelowtemperaturesinvestigatedhere. relatedtotheevenanisotropyofthePES.Thereversepropen- Thisworkillustratestherelationshipbetweentheaccuracy sity can also occur if the odd anisotropy is sufficiently large, of the potentialenergy surface and the accuracy of the corre- asobservedexperimentallyin the case ofCO-He (Cartyetal. spondinginelasticcrosssectionsforasimplesystemofastro- 2004). Here, the propensity depends on the quantum state of physical relevance. Even at low temperatures, moderate inac- the projectile because in the para case (j = 0), some terms curacies in the surface (in the 10-20% range) result in semi- 2 ofthePESexpansion(thoseassociatedwiththequadrupoleof quantitative inelastic rates with typical errors in the 20-50% H ) vanish identically. Therefore, the even anisotropy of the range with no dramatic amplification of errors. However,this 2 PESislargerwithortho-H thanwithpara-H and∆j =2are optimisticconclusionpresentsalsoahardercounterpart,aswe 2 2 1 favored.Note,however,thatthesepropensityrulesdependon showthatinordertoobtainaccurateinelasticratesonehasto j , ∆j and the temperature. Another interesting point is that satisfyallthreeconditions,i.e.,useanaccuratesurface,aprop- 1 1 thedifferenceswiththeresultsofFlower(2001)aregenerally erlyconvergedangularexpansion,andadetaileddescriptionof smaller with ortho-H than with para-H . This again reflects the cross-section resonances. Consequently, the improvement 2 2 thedifferentanisotropiesofthePESforparaandortho-H :in oftheaccuracyofinelasticrates,especiallyathighertempera- 2 the ortho case, cross sections are larger and scattering calcu- tureswhenthenumberofchannelsislarge,representsaconsid- lationsare less sensitive to small changesin the PES. Similar erablecomputationaleffort.Inthisrespect,theworkbyFlower effectshavealsobeenobservedrecentlyinthecaseofH O-H (2001)representedanexcellentcompromisetoachieveatypi- 2 2 (Dubernet&etal.2005). cal20%accuracybelow100K. It is also of some interest to compare the present re- Thiswork extendsthe initialobjectivesof the “Molecular sultswiththeCO-HeratesobtainedbyCecchi-Pestellinietal. Universe”EuropeanFP6network(2005-2008)andparticipates M.Wernlietal.:improvedlow-temperatureCO−H rotationalrateconstants 5 2 tothecurrentinternationaleffortstoimprovethedescriptionof Phillips, T. R., Maluendes, S., & Green, S. 1996, ApJS, 107, theunderlyingmicroscopicprocessesinpreparationofthenext 467 generationofmolecularobservatories. Rist,C.,Faure,A.,&Valiron,P.2005,inpreparation Schinke, R., Engel, V., Buck, U., Meyer, H., & Diercksen, Acknowledgements. CCSD(T)-R12 calculations were performed on G.H.F.1985,ApJ,299,939 the IDRIS and CINES French national computing centers (projects Sims,I.R.2005,privatecomunication no.051141andx20050420820).MOLSCATcalculationswereper- Walter,F.,Bertoldi,F.,Carilli,C.,etal.2003,Nature,424,406 formed on an experimental cluster using a subset of the computer Williams, H. L., Mas, E. M., Szalewicz, K., & Jeziorski, B. gridtools(underprojectCigriofthe“ActionIncitativeGRID”)with 1995,J.Chem.Phys.,103,7374 the valuable help from F. Roch and N. Capit. This research was Wilson,R.W.,Jefferts,K.B.,&Penzias,A.A.1970,ApJ,161, supported by the CNRS national program “Physique et Chimie du Milieu Interstellaire” and the “Centre National d’Etudes Spatiales”. L43+ MWwassupportedbytheMiniste`redel’EnseignementSupe´rieuret delaRecherche.KSacknowledgestheNSFCHE-0239611grant. References Alexander,M.H.&Manolopoulos,D.E.1987,J.Chem.Phys., 86,2044 Antonova, S., Tsakotellis, A. P., Lin, A., & McBane, G. C. 2000,J.Chem.Phys.,112,554 Balakrishnan, N., Forrey, R. C., & Dalgarno, A. 1999, ApJ, 514,520 Balakrishnan,N.,Yan,M.,&Dalgarno,A.2002,ApJ,568,443 Carty, D., Goddard,A., Sims, I. R., & Smith, I. W. M. 2004, J.Chem.Phys.,121,4671 Cecchi-Pestellini,C.,Bodo,E.,Balakrishnan,N.,&Dalgarno, A.2002,ApJ,571,1015 Cernicharo, J., Barlow, M. J., Gonzalez-Alfonso, E., et al. 1996,A&A,315,L201 Dubernet,M.L.&etal.2005,inpreparation Faure,A.,Valiron,P.,Wernli,M.,etal.2005,J.Chem.Phys., 122,221102 Flower,D.R.2001,J.Phys.B:At.Opt.Mol.Phys.,34,2731 Gottfried,J.&McBane,J.C.2001,J.Chem.Phys.,112,4417 Green,S.1975,J.Chem.Phys.,62,2271 Halkier,A.,Klopper,W.,Helgaker,T.,Jørgensen,P.,&Taylor, P.R.1999,J.Chem.Phys.,111,9157 Hutson, J. M. & Green, S. 1994, MOLSCAT computer code, version 14 (1994) (distributed by Collaborative Computational Project No. 6 of the Engineering and PhysicalSciencesResearchCouncilUK) Jankowski,P.&Szalewicz,K.1998,J.Chem.Phys.,108,3554 Jankowski,P.&Szalewicz,K.2005,TheJournalofChemical Physics,123,104301 Kedzˇuch,S.,Noga,J.,&Valiron,P.2005,Mol.Phys.,103,999 McCurdy,C.W.&Miller,W.H.1977,J.Chem.Phys.,67,463 McGuire,P.&Kouri,D.J.1974,J.Chem.Phys.,60,2488 McKellar,A.R.W.1998,J.Chem.Phys.,108,1811 Mengel, M., de Lucia, F. C., & Herbst, E. 2001, Canadian JournalofPhysics,79,589 Mu¨ller,H.&Kutzelnigg,W. 2000,Phys.Chem.Chem.Phys, 2,2061 Noga,J.&Kutzelnigg,W.1994,J.Chem.Phys.,101,7738 Noga, J. & Valiron, P. 2002, in Computational Chemistry: ReviewsofCurrentTrends,Vol.7(J.Leszczynskied.,World Scientific,Singapore),131 Noga,J.&Valiron,P.2003,Collect.Czech.Chem.Commun., 68,340 6 M.Wernlietal.:improvedlow-temperatureCO−H rotationalrateconstants 2 Table 1. Rotationaldeexcitationratesof CO in collision with Table 2. Rotationaldeexcitationratesof CO in collisionwith para-H (j = 0)atthreetemparatures.IandFaretheCOini- ortho-H (j =1).Theconventionsarethesameasforthepara 2 2 2 2 tialandfinalrotationstates,respectively.Allratesaregivenin case. unitsof10−10 cm3/s.ThirdcolumnrecallstheratesofFlower (2001), obtained with the unscaled JS98 surface. Fourth col- I F Flower Thiswork umn presents our rates obtainedwith the JS05 surface. In the Temp.:10K 1 0 0.388 0.379 30Kpanel,theratesobtainedwithourexpansionoftheJS98 2 0 0.596 0.559 surfacearealsopresented. 3 0 0.105 0.071 4 0 0.083 0.061 I F Flower Thiswork 5 0 0.015 0.016 Temp.:10K 2 1 0.730 0.712 1 0 0.281 0.332 3 1 0.842 0.831 2 0 0.229 0.305 4 1 0.159 0.124 3 0 0.064 0.052 5 1 0.124 0.105 4 0 0.020 0.031 3 2 0.801 0.748 5 0 0.007 0.010 4 2 0.862 0.894 2 1 0.697 0.722 5 2 0.188 0.150 3 1 0.412 0.502 4 3 0.827 0.786 4 1 0.114 0.096 5 3 0.896 0.972 5 1 0.042 0.062 5 4 0.871 0.695 3 2 0.816 0.794 I F Flower Thiswork 4 2 0.526 0.620 5 2 0.153 0.125 Temp.:70K 4 3 0.888 0.822 1 0 0.402 0.350 5 3 0.656 0.759 2 0 0.629 0.468 5 4 0.925 0.662 3 0 0.114 0.090 4 0 0.079 0.063 I F Flower Thiswork 5 0 0.027 0.028 Temp.:70K 2 1 0.684 0.620 1 0 0.336 0.344 3 1 0.858 0.728 2 0 0.300 0.320 4 1 0.199 0.174 3 0 0.098 0.083 5 1 0.124 0.111 4 0 0.035 0.044 3 2 0.732 0.686 5 0 0.020 0.024 4 2 0.871 0.808 2 1 0.636 0.602 5 2 0.236 0.216 3 1 0.486 0.509 4 3 0.757 0.711 4 1 0.177 0.161 5 3 0.880 0.844 5 1 0.061 0.080 5 4 0.779 0.719 3 2 0.681 0.659 4 2 0.567 0.591 5 2 0.221 0.205 4 3 0.678 0.689 5 3 0.631 0.654 5 4 0.748 0.705 I F Flower ThisworkJS98 ThisworkJS05 Temp.:30K 1 0 0.300 0.288 0.327 2 0 0.269 0.297 0.315 2 1 0.661 0.613 0.612 3 0 0.072 0.059 0.060 3 1 0.456 0.492 0.509 3 2 0.695 0.677 0.670 4 0 0.026 0.029 0.037 4 1 0.130 0.110 0.118 4 2 0.555 0.604 0.612 4 3 0.747 0.716 0.712 5 0 0.010 0.010 0.014 5 1 0.047 0.054 0.068 5 2 0.175 0.149 0.160 5 3 0.648 0.712 0.705 5 4 0.816 0.740 0.713 M.Wernlietal.:improvedlow-temperatureCO−H rotationalrateconstants,OnlineMaterialp1 2 Online Material M.Wernlietal.:improvedlow-temperatureCO−H rotationalrateconstants,OnlineMaterialp2 2 I F a a a a a 0 1 2 3 4 1 0 -10.413 4.162 -20.599 32.563 -16.889 2 0 -9.202 -7.997 18.452 -18.717 6.910 2 1 -0.379 -59.429 131.662 -127.161 45.605 3 0 -3.319 -35.329 53.745 -29.641 2.471 3 1 -7.042 -20.755 48.788 -49.875 18.607 3 2 -1.976 -48.986 107.139 -102.134 36.288 4 0 -8.004 -16.164 28.359 -21.986 6.026 4 1 1.979 -69.801 140.821 -125.047 40.556 4 2 -5.102 -34.014 82.717 -87.211 33.665 4 3 -1.891 -49.861 109.419 -103.434 35.726 5 0 7.564 -106.151 220.187 -205.770 72.462 5 1 -5.209 -32.541 67.718 -63.996 23.105 5 2 4.736 -91.653 203.779 -201.295 73.681 5 3 -5.607 -31.380 78.077 -83.702 32.930 5 4 -0.510 -60.401 137.793 -134.344 46.449 Table .1. Fitting coefficients of CO-para-H rates, following 2 formula 3. I and F are the initial and final rotation states, re- spectively.Theratesthusobtainedareincm3/s. I F a a a a a 0 1 2 3 4 1 0 -7.351 -11.062 5.033 16.394 -14.176 2 0 0.331 -68.556 162.123 -167.243 63.863 2 1 4.370 -90.464 207.213 -207.995 77.557 3 0 4.128 -88.472 191.123 -181.945 64.170 3 1 -1.466 -57.252 138.316 -144.752 55.539 3 2 -0.194 -61.716 141.443 -142.699 53.788 4 0 -6.118 -31.232 70.967 -70.685 25.956 4 1 5.330 -96.359 215.047 -212.299 77.662 4 2 -2.940 -49.481 124.615 -135.311 53.609 4 3 -1.454 -53.713 122.102 -121.151 44.472 5 0 5.241 -96.162 206.655 -199.255 72.234 5 1 -6.365 -27.561 61.697 -61.299 22.802 5 2 6.689 -107.753 249.875 -256.409 97.478 5 3 -3.812 -45.669 119.845 -134.502 54.860 5 4 1.082 -71.954 169.486 -173.174 64.402 Table .2. Fitting coefficients of CO-ortho-H rates, following 2 formula 3. I and F are the initial and final rotation states, re- spectively.Theratesthusobtainedareincm3/s.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.