ebook img

Implementation of exponential and parametrized algorithms in the AGAPE project PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Implementation of exponential and parametrized algorithms in the AGAPE project

2 1 0 2 n a J 8 2 ] S D . s c [ Implementation of 1 v 5 exponential and 8 9 5 parametrized algorithms in . 1 0 2 the AGAPE project 1 : v i X r P. Berthomé, J.-F. Lalande, V. Levorato a LIFO, Université d’Orléans - ENSI de Bourges Report no RR-2012-01 Version 1 CONTENTS P.Berthomé,J.-F.Lalande,V.Levorato Contents Presentation 3 1 Installationnotes 3 2 Packagescontent 3 2.1 Packageagape.algos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 ClassColoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 ClassMinDFVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 ClassMIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.4 ClassMVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.5 ClassSeparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Packageagape.applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Graphicaleditor: theGraphEditorclass . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Agapecommandlineapplication: theAgapeCLclass . . . . . . . . . . . . . . . . . . . . 6 2.3 Packageagape.generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 Randomgraphgenerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.2 Structuredgraphgenerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Packageagape.io . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Packageagape.tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.6 Packageagape.visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Tutorials 9 3.1 Tutorialsforbasics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 CreatingJunggraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.2 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.3 Usingfactories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.4 Usinggenerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Tutorialsforalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 UsingColoringalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 UsingMinDFVSalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.3 UsingMISalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.4 UsingMVCalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.5 UsingSeparatorsalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 References 21 2 P.Berthomé,J.-F.Lalande,V.Levorato Presentation Thistechnicalreportdescribestheimplementationofexactandparametrizedexponentialalgorithms,developed during the French ANR Agape during 2010-2012. The developed algorithms are distributed under the CeCILL licenseandhavebeenwritteninJavausingtheJunggraphlibrary. 1 Installation notes The source code is available at http://traclifo.univ-orleans.fr/Agape/. Several dependencies arenecessaryinordertousetheAgapelibrary. Theyareincludedinthelib/directoryoftheSVNtrunk: • Junglibrary2.0.1,BSDlicense(jung*.jar). • Apachecommonsforcollections,ApacheLicense2.0(collections-generic-4.01.jar)1. • Guavai.e. Google’scollections,ApacheLicense2.0,(guava-r09.jar). • Mascoptoptimizationlibrary,LGPL,(mascoptLib.jar). TheprojectcanbedownloadedasanEclipseprojectfromtheSVNtrunkrepository(seeinstructionsonthe website). Itisparticularlyusefulforstudyingthesourcecodeoftheprovidedalgorithms. Tousethislibraryasa dependencyinanotherproject,onlytheagape.jarfileandthedependencies(dependencies.zip)areneeded. 2 Packages content Inthissection,webrieflydescribetheimplementedalgorithms. Section3describeshowtousethesealgorithms throughsimpletutorials. 2.1 Packageagape.algos This package contains the different implemented exponential or parametrized algorithms. The abstract class Algorithms groups the different factories for graph/vertices/arcs creation. The graphs are based on generic classes of the Jung library. Indeed, some algorithms require to instantiate vertices or arcs. The instanciation of such objects depends of the nature of the generic token, e.g. a vertex can be an Integer. Thus, as the type ofverticesarenotknowninadvance,thealgorithmsthatrequiretocreategraphsshouldobtainafactoryforthe providedgraph. The different classes and their hierarchy are represented in Figure 1. Table 1 sums-up the different imple- mented algorithms, their complexity in time and the references to the papers that provided the algorithms. The last column recalls the acronym used for the Agape Command Line tool (c.f. Section 2.2.2). In the following subsections,eachimplementedalgorithmisbrieflydescribed. 2.1.1 ClassColoring Thegoalofthisclassistocomputetheminimumnumberofcolorstoproperlycoloranundirectedgraph. intchromaticNumber(Graph<V,E>G): Computes the chromatic number of a graph G. This method is based ontheAnexactalgorithmforgraphcoloringwithpolynomialmemorybyBodlaenderandKratsch[4]. The algorithmsolvestheprobleminPSPACEandintimeO(5.283n). Set<Set<V>>graphColoring(Graph<V,E>G): Computes a solution having the minimum chromatic number usingthesamealgorithmasbefore. Itreturnsthepartitionoftheverticesintocolorclasses. Set<Set<V>>greedyGraphColoring(Graph<V,E>G): agreedyalgorithmthatcomputesiterativelythemaxi- mumindependetsetofGandremovesit. 1Thisisanew(veryoldi.e.2006)versionofthepopularJakartaCommons-Collectionsproject.ItfeaturessupportforJava1.5Generics. Genericsintroduceawholenewlevelofusabilityandtype-safetytotheCommons-Collectionsclasses. 3 2.1 Packageagape.algos P.Berthomé,J.-F.Lalande,V.Levorato Acronym Algorithm Timecomplexity References AgapeCL CN ChromaticNumber Bodlaender,Kratsch O(5.283n) [4] CN DFVS DirectedFeedbackVertexSet Razgon,Thomassé O(1.9977n) [14,16] DFVS MIS MaximumIndependentSet Brute-Force O(n2.2n) MISBF Moon,Moser O(1.4423n) [12] MISMM Fomin,Grandoni,Kratsch O(1.2201n) [9] MISFGK MVC MinimumVertexCover Brute-Force O((cid:0)n(cid:1)) MVCBF k Niedermeier O(1.47k) [13] MVCDBS Niedermeier O(1.33k) [13] MVCN Buss,Goldsmith – [13,5] MVCBG SEP Minimalab-Separators Berry,Bordat,Cogis O(n3) [3] SEP Table1: Algorithmssummary 2.1.2 ClassMinDFVS Thisclassisdedicatedtotheminimumdirectedfeedbackvertexset.Thisproblemconsistsinfindingtheminimum numberofverticestodeleteinordertogetadirectedacyclicgraphfromadirectedgraph. Set<V>minimumDirectedAcyclicSubset(Graph<V,E>G): Computes the Minimum Directed Acyclic Subset asthecomplementoftheMaximumDirectedFeedbackVertexSet(seebelow). Set<V>maximumDirectedAcyclicSubset(Graph<V,E>G): The implemented method solves the problem in timeO(1.9977n)usingtheRazgonworkComputingMinimumDirectedFeedbackVertexSetinO∗(1.9977n)[14]). ItuseskernelizationtechniquespresentedinA4k2kernelforfeedbackvertexsetbyThomassé[16]. Set<V>greedyMinFVS(Graph<V,E>G): ComputesanapproximationoftheFVSproblemusingthebigdegree heuristic,writtenbyLevorato.Startingfromtheinitialgraph,thealgorithmremovesthevertexwithhighest degreeuntilthegraphisacyclic. Thisclassalsoprovidesamethodthatenumeratesallthecycles. Thiscanbeusefulltofindallthecyclesthat areimpactedbyagivenvertexoftheminimumfeedbackvertexset. Set<ArrayList<V>>enumAllCircuitsTarjan(Graph<V,E>G) Enumeratesallcircuitsofagraph(Tarjan,Enu- merationoftheelementarycircuitsofadirectedgraph[15]). Algorithms DFVS Coloring MIS MVC Separators MarkMap Figure1: Theagape.algospackagehierarchy 4 2.1 Packageagape.algos P.Berthomé,J.-F.Lalande,V.Levorato 2.1.3 ClassMIS This class computes the maximum independ set of a graph (directed or undirected). This problem consists in findingthemaximumsetofverticessuchthattwoverticesofthecomputedsetarenotneighborsintheoriginal graph. Severalalgorithmshavebeenimplemented. Set<V>maximalIndependentSetGreedy(Graph<V,E>g): implementsapolynomialgreedyheuristicinO(n+ m). Thealgorithmchoosesverticesofminimumdegreeandremovestheneighborsiteratively. Set<V>maximumIndependentSetBruteForce(Graph<V,E>g): this algorithm examines every vertex subset andcheckswhetheritisanindependentsetusingtheisIndependentSetmethod.Thetimecomplexity isO(n2.2n). Set<V>maximumIndependentSetMaximumDegree(Graph<V,E>g): thisalgorithmcomputesanexactsolu- tionbybranchingonthemaximumdegreevertexthatiseitherinoroutofthefinalsolutionandcomputes theresultrecursively. ThisalgorithmhasbeenproposedbyI.TodincaandM.Liedloffbuthasnoproved upperbound. Set<V>maximumIndependentSetMoonMoser(Graph<V,E>g): thealgorithmsolvestheproblemintimeO(1.4423n). ItisbasedonOncliquesingraphs[12]. Set<V>maximumIndependentSetMoonMoserNonRecursive(Graph<V,E>g): thisisthenonrecurvisvever- sionofthepreviousalgorithm. Experimentalbenchmarksshowthatthisversionisslower. Set<V>maximuRmIndependentSetFominGrandoniKratsch(Graph<V,E>g): thismethodisbasedonAMea- sure & Conquer Approach forthe Analysis of Exact Algorithms [9]. The algorithm solves the problem in timeO(1.2201n). Twomethodshelptodetectifasetisanindependentsetforagivengraph: booleanisIndependentSet(Graph<V,E>g,Set<V>S): verifiesthatSisanindependentsetofG. booleanisMaximalIndependentSet(Graph<V,E>g,Set<V>S): verifiesthatSisamaximalindependentsetof G(cannotbecompleted). 2.1.4 ClassMVC ThisclassimplementsalgorithmsforsolvingtheMinimumVertexCoverproblem.Theproblemconsistsinfinding theminimumsetofverticessuchthatanyvertexisatdistanceatmost1ofthecomputedset.Thisclassonlyworks onundirectedgraphs. Set<V>twoApproximationCover(Graph<V,E>g): 2-approximation of the Minimum Vertex Cover problem. Thealgorithmreturnsacoverthatisatmostofdoublesizeofaminimalcover,O(|E|)time. Set<V>greedyCoverMaxDegree(Graph<V,E>g): this greedy heuristic computes a result by selecting itera- tivelythevertexhavingthemaximumdegree. booleankVertexCoverBruteForce(Graph<V,E>g,intk): thismethodselectsallthesetsofsizekamongnand checksifthissetcoversthegraph. TheresultingcomplexityisO((cid:0)n(cid:1)). Thealgorithmtriestopotentially k selecttheverticesthatarenotcoveredfirstwhichimprovestheexecutiontime. booleankVertexCoverDegreeBranchingStrategy(Graph<V,E>g,intk): thismethodusesDegree-Branching- Strategy (DBS) and has a time complexity of O(1.47k). This algorithm is extracted from Invitation to Fixed-ParameterAlgorithms[13]pp. 90. booleankVertexCoverNiedermeier(Graph<V,E>g,intk): this method is an implementation of Niedermeier algorithmofInvitationtoFixedParameterAlgorithms[13]pp.99-101,whichtimecomplexityisO(1.33k). booleankVertexCoverBussGoldsmith(Graph<V,E>g,intk): this method is an implementation of Buss and GoldsmithreductionalgorithmofNondeterminismwithinP[5],presentedbyNiedermeierin[13]pp. 54. 5 2.2 Packageagape.applications P.Berthomé,J.-F.Lalande,V.Levorato Figure2: Screencaptureofthegrapheditor 2.1.5 ClassSeparators Thisclassimplementsalgorithmsforsolvingtheminimalseparatorproblem. TheAB-separatorproblemconsists infindingtheminimumsetofverticessuchthatremovingthissetofverticesdisconnectsthevertexAfromB. Set<Set<V>>getABSeparators(Graph<V,E>g,Va,Vb): thismethodcomputesthesetofminimalab-separator in O(n3) per separator. It is an implementation based on Generating All the Minimal Separators of a Graph[3]. Set<Set<V>>getAllMinimalSeparators(Graph<V,E>g): this method returns all the minimal ab-separators forallpairsofvertices. 2.2 Packageagape.applications Thispackagecontaintwosoftware: agraphgraphicaleditorandcommandlineprogramthatallowstolaunchthe previouslypresentedalgorithms. 2.2.1 Graphicaleditor: theGraphEditorclass Thegraphicaleditorisasimpleexample, basedontheJunglibrary, asshowninFigure2. Onlythepossiblyof savingagraphintoafilehasbeenadded. 2.2.2 Agapecommandlineapplication: theAgapeCLclass Thecommandlineapplicationallowstoapplyanchosenalgorithmtoagraphorasetofgraphs. Allthegraphs mustbewritteninthe.netformat. ThisformatcomesfromthePajeksoftwareforsocialnetworkanalysis. A .net file is composed of the list of vertices and the adjacency list. An example of a Pajek file is presented in Listing2.2.2. Thegraphiscomposedof4verticesand4edges(a,b),(b,c),(b,d),and(c,d). TheAgapeCLcommandlineapplicationcanbeusedwiththestandalonepackagedistributedonthewebsite: java -jar AgapeCL.jar graphFilePath|graphDirectoryPath algorithm Thefirstparameteristhenameofthe.netfile(orthedirectorythatcontainsmultiplefiles)andthesecond oneisthealgorithmnamethathastobechosenamongCN,MISBF,MISMM,MISDegMax,MISFGK,MVCBF, 6 2.3 Packageagape.generators P.Berthomé,J.-F.Lalande,V.Levorato Exampleof.netfile ∗Vertices4 1"a" 2"b" 3"c" 4"d" ∗edgeslist 12 234 34 MVCBG,MVCDBS,MVCN,DFVS,SEPthatcorrespondtothealgorithmofTable1. Thetwofollowinglistings showexamplesofexecution. Exampleofexecutionontest.net Exampleofexecutiononadirectory java -jar AgapeCL.jar ../test.net MISFGK java -jar AgapeCL.jar ../GenGraphs/temp/ MISFGK V:50 E:238 660.0 ms 16cell.net Size: 14 V:8 E:24 [v0, v48, v17, v18, v36, v6, v25, v13, v9, 36.0 ms v40, v34, v44, v31, v32] Size: 2 [3, 2] snark.net V:12 E:15 5.0 ms Size: 6 [2, 10, 0, 5, 8, 11] thomassen20.net V:20 E:37 18.0 ms Size: 8 [1, 6, 19, 4, 17, 9, 14, 11] 2.3 Packageagape.generators This package contains several graph generators. Two categories of generators have been implemented: random and non random generators. Some generators are based on Jung generators and others have been implemented fromscratch. Belowislistedalltheavailablegenerators. Allthegeneratorsneedfactoriestoinstantiatevertices andedges. 2.3.1 Randomgraphgenerators • ErdösRényirandomgraphs[8]. • Eppsteinrandomgraphs(fromJung)[7]. • Barabasi-Albertrandomgraphs(fromJung)[2]. • Kleinbergsmallworldgraphs[10]. • Watts-Strogatzsmallworldgraphs[17]. • k-regularrandomgraphs. 7 2.4 Packageagape.io P.Berthomé,J.-F.Lalande,V.Levorato 2.3.2 Structuredgraphgenerators SeeSection3.1.4foranexampleofuseofthesetwogenerators. • 2Dgrids. • K-regularrings. Inordertousethegenerators,theuserhastodefinefirstagraphfactorybeforeusingoneofthegenerators. A tutorialaboutfactoriesispresentedinSection3.1.3. 2.4 Packageagape.io Thispackagecontainstwoclassesfortheread/writeoperationongraphs(ImportandExport). Formatssupportedforreading: • .netorientedornonoriented(Pajek)[6]. • .mglMascopt[11]. • .tgfWolframMathematicahttp://www.wolfram.com/mathematica/. Formatssupportedforwritting: • .netorientedornonoriented(Pajek)[6]. • .gvGraphVizhttp://www.graphviz.org/. Atutorialaboutinput/outputispresentedinsection3.1.2. 2.5 Packageagape.tools This package is a set of toolboxes for classical graph operations. In the Operations class, we implemented metric detection (diameter, degrees, ...), type identification (clique, regular, simple edge, ...), copy operations (copy,merge,subgraphs,...),...Forexample,thegetMinDeg(Graph<V,E> g)returnsthevertexthathas thesmallestdegreeandisRegular(Graph<V,E> gtestifthegraphisk-regular. IntheComponentsclass, weimplementedmethodsforconnectedcomponentsofagraph,forexampletheTarjan’smethodthatcomputes allthestronglyconnectedcomponentsingetAllStronglyConnectedComponent(Graph<V,E> g. 2.6 Packageagape.visualization This package contains the class Visualization that provides a method to display a graph (showGraph) and a methodtorepresentagraphasaB-matrix[1],asshowninFigure3. 8 P.Berthomé,J.-F.Lalande,V.Levorato 10 9 8 7 6 5 4 3 2 1 10 20 30 40 50 60 70 80 90 100 Figure3: B-matrixforaWatts-STrogatzsmallworld 3 Tutorials 3.1 Tutorialsforbasics 3.1.1 CreatingJunggraphs JunggraphsareeasytobuildusingtemplatedclassessuchasDirectedSparseGraph. Verticesandedgesare javaobjectsthataremanipulatedbytheJungclassgraphs. Tutorial: agape.tutorials.JungGraphTutorial Tutorial: consoleoutput /∗ Vertices:n1,n3,n2 ∗CopyrightUniversityofOrleans−ENSIdeBourges. Edges:1[n1,n2] ∗SourcecodeunderCeCILLlicense. Vertices:n1,n4,n3,n2 ∗/ Edges:1[n1,n2]2[n1,n4] packageagape.tutorials; Vertices:n4,n3,n2 Edges: importedu.uci.ics.jung.graph.DirectedSparseGraph; importedu.uci.ics.jung.graph.util.Pair; publicclassJungGraphTutorial{ publicstaticvoidmain(String[]args){ DirectedSparseGraph<String,Integer>g=new DirectedSparseGraph<String,Integer>(); g.addVertex("n1"); g.addVertex("n2"); g.addVertex("n3"); //Jungfindsmatchingnodesevenifpointersaredifferent g.addEdge(1,newPair<String>("n1","n2")); System.out.println(g); //Jungaddsautomaticallynewnodes g.addEdge(2,newPair<String>("n1","n4")); System.out.println(g); g.removeVertex("n1"); System.out.println(g); } } 9 3.1 Tutorialsforbasics P.Berthomé,J.-F.Lalande,V.Levorato 3.1.2 Input/Output A.netreaderhavebeenimplementedintheclassImport. Thefirstlineofthefileisignored(title), theneach lineisparsedtoreadvertices(name“label”)untilthestring*edgeslistisfound.Then,theedges/arcsareread until the end. The .net file instanciates Graph<String,Integer> which implies that vertices are String andedges/arcsareInteger. Exportingagraphtoafileworksthesameway. TheExportclasscanalsowrite filesusingthegraphvizformat. Tutorial: agape.tutorials.IOTutorial Tutorial: IOTutorial.net ∗Vertices4 1"a" 2"b" 3"c" /∗ 4"d" ∗CopyrightUniversityofOrleans−ENSIdeBourges. ∗edgeslist ∗SourcecodeunderCeCILLlicense. 12 ∗/ 234 packageagape.tutorials; 34 importjava.io.IOException; Tutorial: IOTutorial.gv importagape.io.Export; importagape.io.Import; digraphG{ importedu.uci.ics.jung.graph.Graph; size="100,20";ratio=auto; node[style=filled]; /∗∗ "a"−>"b"[color="0.6490.7010.701"]; ∗@authorjf "b"−>"c"[color="0.6490.7010.701"]; ∗/ "b"−>"d"[color="0.6490.7010.701"]; publicclassIOTutorial{ "c"−>"d"[color="0.6490.7010.701"]; publicstaticvoidmain(String[]args){ "d"[color=grey]; Graph<String,Integer>g=Import.readDNet("src/agape/tutorials/ "b"[color=grey]; IOTutorial.net"); "c"[color=grey]; System.out.println(g); "a"[color=grey]; try{ } Export.writeGV("src/agape/tutorials/IOTutorial",g); }catch(IOExceptione){ e.printStackTrace(); } } } 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.