2011.TheJournalofArachnology39:296-302 Impact ofdifferent land management on soil spiders (Arachnidai Araneae) in two Amazonian areas ofBrazil and Colombia NancyF.Lo-Man-Hung' RaphaelMarichal' DavidF.Candiani',LeonardoS.Carvalho^RafaelP.IndicattP,Alexandre B.Bonaldo',DarioH.R.Cobo^AlexanderFeijooM.^,StephanieTselouiko-,CatarinaPraxedes',GeorgeBrown®,Elena Velasquez^,ThibaudDecaens^JohanOszwald'^, MarluciaMartins' andPatrickLavelle-’: 'Museu Paraense Emilio Goeldi, CoordenagaodeZoologia, Belem, Para, Brazil. E-mail: [email protected]; -Universite Pierreet Marie Curieand IRD, UMR BIOEMCO 211, Centre IRD Hede France, Bondy, France; '’Universidade Federaldo Piaui, CampusAmilcarFerreiraSobral, Floriano, Piaui, Brazil;'‘Instituto Butantan, LaboratoriodeArtropodes, SaoPaulo, Sao Paulo, Brazil; ®UniversidadTecnologica de Pereira, Pereira, Colombia;®Embrapa Florestas, Colombo, Parana, Brazil; ’Centro InternacionaldeAgriculturaTropical (CIAT), Unidad Suelos, Cali, Colombia; ^Universitede Rouen, UFRSciencesetTechniques,MontSaintAignan,France;“^UniversitedeRennesLaboratoryofGeographyandRemote SensingCOSTEL, UMR CNRS LETG6554, France Abstract. Theglobaldemandfordifferentland-usepracticecommoditiesintheAmazoniaisgrowing,andthisregionis increasinglyaffectedbytheimpactsoflandmanagement.Theaimofthisstudywastoevaluatetheinfluenceofland-use intensificationonsoilspiderassemblagesfromsixdifferentland-usesystemsinColombiaandBrazil.Thesystemswere fallowsaftercropsandpastures,forest,crops,pasturesandplantations.Spiderspeciesrichnessanddensitydecreasedwith increasing farming management intensity. A principal component analysis (PCA) showed forests and fallows were separated from systems with stronger anthropogenic soil disturbance. The relationships often spider guilds differed significantlybetweenland-uses,suggestingthattheycanbeareliableparameterforstudiesofecologicalindicators. Keywords: Macroecology,agroecosystems,land-use,guilds,ecologicalindicators Soilisoneofthemostdiversehabitatsonearth(Gilleretal. 2006). Furthermore, arthropod diversity may be higher in 1997; Wolters 2001; Decaens et al. 2006). Unfortunately, the cultivated areas than in non-cultivated areas (e.g., secondary soildiversityinAmazoniaisthreatenedbythegrowingglobal forest), suggesting that arthropods are good candidates for demand foragricultural commodities produced in this region biodiversity correlates (see Duelli & Obrist 1998). Arachnids and also by increasing deforestation (Laurance et al. 2002). represent approximately 2% ofthe described species world- Additionally, climatechangecan resultindroughtand forest wide (Adis 2002) and are conspicuous components of fires(Lauranceetal.2002).ChangeinsoiluseinAmazoniais agricultural landscapes (Samu et al. 1999). Given their currently intense, and the conversion of native forest to prominence, several authors have studied the effect and agriculturalpracticesorpastureisthemaindisturbanceeffect relative importance of local environmental factors on impactingtheremainingnativeforests(Fearnside2005,2006). arachnids (mostly spiders) in agroecosystems. Studies of Thesocialandeconomicimportanceofthiskindofagriculture spiders deal with the potential use of these animals for iswell recognized (Alexandratos 1995), but itsenvironmental limiting arthropod pests through predation (Greenstone & impactisnotsatisfactorilyknown.Usuallythereisaconsensus Sunderland 1999; Hodge 1999; Marc et al. 1999; Riechert among researchers as to the negative effects of habitat 1999; Sunderland 1999; Maloney et al. 2003; Nyffeler & modification (e.g., deforestation by ranchersand farmers) on Sunderland 2003; Harwood et al. 2004), competition and dLiavuerrsaintcyeoeftnaalt.iv2e00p0l;anPterannedra&niMmaalltsp2e0c0i3e;sSinoaArmesa-zFoinlihoae(te.ga.l., ignutielrdactsitornusctu(rMears(hGailblso&n eRtypsalt.ra1919929;9;UWetizseetetaall.. 11999999)),, 2006). Understanding changes that directly influence these agrobiont species (Samu & Szinetar 2002; Pekar & Haddad processes is important for local people, whose livelihoods 2005; Thorbek &Topping2005; De Meester& Bonte2010), depend on agriculture practices or pasture areas. In fact, anddiversityanddistribution(Duelli&Obrist 1998;Samuet duentdeerrmsitnainndgintghethceoemcpoolsoigtiicoalncoofmpsolielximtaycrooffathuensaeaissscerumcbilaalgetso aslp.ide1r9s99;areSeyufsuelfiunlaa2s010p)o.tenAtlilaltheecsoelogsitcuadliesindsihcoatwoerds tahnadt (Franklinetal. 2005; Decaensetal. 2006; Lavelleetal. 2006; natural enemies ofpests, since the composition and species aaDrnetdcharseounpsstoadis2n)0a1bh0ia)l.viteySbe(evMeenarraplcroeoptroagsla.endi1sa99sm9sb;ioWoiifnldltiehcteat2o0sr0osi1l;ofLfsaaouwinleasquea(tel.igat.ly., dcriiocsmhtpnuoerssbisatnicioenn dlaeinvfedflesr,tehnetresgpliaaotnnidaallmapanondpaugtleeatmmipeoonnrtsalaosrfceaalssepsiddoeefrpeasnpdgeicvioeenns 200A5r)t.hropods are the most diverse group of animals, study. However, little information is available on theeffects inhabiting most habitats on Earth (Hawksworth & Bull ofdifferent forest management regimes on the composition ofarachnidassemblages(e.g., Downieetal. 1999; Rypstraet "’Currentaddress: PontificiaUniversidadeCatolicado RioGrande al. 1999;Jeanneretetal. 2003). Inaddition, inAmazoniathe doSul,MuseudeCienciaseTecnologia,LaboratoriodeAracnologia, consequences of different land management techniques on PortoAlegre,RioGrandedoSul,Brazil. this group are rarely studied. 296 LO-MAN-HUNGETAL.—IMPACTOFLANDUSEONSOILSPIDERS 297 COLOMBIA Caqueta 3landscapewindows 3landscapewindows n 1 Palmares Macaranduba 1 Traditional ’21>,%o a<>“O Agroforestry 3subwindows /I / i \ / J 1 / 1 \ / 11 0\ ) / i \ 1 — Figure 1. Siteselection,showingsamplingdesignforeachstudyarea(modifiedfromLavelleetal.2010).Areanamesmatchthoseidentified inthetext(studyareaandsiteselection). The purpose of this study was to assess the impacts of WGS84 for Traditional: -2316945.11 / 10179721.63; Agro- I landscape management on spider distribution patterns by sylvopastoral: -2335962.87 / 10176406.04; Agroforestry: i sampling two contrasting regions in a large-scale soil —2351790.15 / 10163206.21. Six land-use systems were iden- ecosystem project. It was also to evaluate the relationships tified after field confirmation: forest (F; preserved or ratio- betweenspiderbiodiversityparametersinprimaryforestsand nally exploited forests); fallows after crop (FAC; secondary I inawiderange ofderivedsystems oflandmanagement. We forest developed in abandoned crops dominated by native tested the hypotheses that spider species richness increases grasses, vegetables and weeds); fallows after pasture (FAP; with decreasingmanagement impact, and that overall spider secondaryforestsdevelopedinabandonedpasturesdominated : aresssteomrbaltaigoensefafreectssuiitnabdliestausrbreedlialbalnedseccoalpoegsic(aPlerinnedrica&torMsalotf Bbryachheirabrsiaasnsdp.,shirnuvbasd);edpabsytu“rbeasba(tPjaus”t,; aanreaAsmadzoomniinaantedpalbmy 2003). tree; Arecaceae: Orbygnia sp. or other trees); crops (Cr; METHODS shiftingcultivation ofcassava (manioc), rice ormaizecrops) — andplantations(PI;cocoa, rubbertree, agroforestrysystems) Study area and site selection. The experiment was estab- (seeMarichaletal. 2010,Table 1).Averageannualrainfallin lishedintwoAmazonianareaswithdifferentplantcoverage, the Brazilian sites is 1775.5 mm per annum (p.a.) in Pacaja, onerelativelyrecentlycolonized(10-15yrago)inthestateof 1881.4 mm/p.a. in Macaranduba, and 2452.6 mm/p.a. in Para, northeastern Brazil andanothercolonized60yragoin Palmares,withameanannualtemperatureof28.3°C. Inthe the Department of Caqueta, southwestern Colombia. Both Colombiansitestheaverageannualrainfallis4676.0mm/p.a., I study areas were separated into three landscapes (windows) withameanannualtemperatureof27.8°C. — , with different deforestation ages and/or different land Spidersampling. SpidersweresampledbetweenApriland I managementstructure. June2008,duringthedryseason.Thesamplingmethodology Each window was formed by three replicate groups (sub- usedtocollectsoilandlitterspiderswasbasedontheTropical windows) containing 17 farms. Three farms were selected in SoilBiologyandFertilityProgram(TSBF)method(Anderson eachsub-window, andeachselected farmwasdivided infive and Ingram 1993), which consists ofdiggingonecentral soil samplingpoints (sites) located 200 m apartalonga diagonal monolith (25cm long, 25 cmwideand 20cmdeep)and two transect(Fig. I).Wesampled54farmsand270sites(135sites additionalmonolithswith25 X 25 X 30cmdug5meastand ineachcountry). west, respectively, from the central monolith on each ofthe The landscape mosaic for all areas was analyzed using 270sites.Atotalof810monolithswastakenandhandsorted. satellite images - coordinates of the windows in UTM Thus,onesampledunitwascomposedofthreemonoliths.The i projection, zone 22S, WGS84 for Macaranduba: 682382.74/ macrofaunawashand-sortedinthefield,andthespiderswere 9469861.49; Pacaja; 494874.75 / 9586676.06; Palmares: stored in 80% alcohol. In the laboratory, the spiders were 627813.87 / 9351874.23, in UTM projection, zone 18N, counted, and the adults were sorted to morphospecies and I 298 THEJOURNALOFARACHNOLOGY o o identified. The spiders were classified by assemblage guilds UH and to provide trustworthy for the results, all the analyses were based only on adults (i.e., individuals susceptible to (H^3 o o o correctidentification).Thevoucherspecimensaredepositedin U the collection of Museu Paraense Emilio Goeldi in Belem, o o o o o ParSap,idBerrazgiulil(dA.eBs.tabBloinsahlmdeont,.—curWateorf)o.llowedtheclassicdefini- tionofguildsbyRoot(1967).Ourdesignationofspiderguilds o o o o was based on ecological characteristics obtained during numbers. fieldwork, observation, biology, taxonomy and additional literature reviewed (i.e., Coddington et al. 1996; Uetz et al. by o o 1999; Hofer&Br—escovit2001; Diasetal. 2010). Data analysis. Monte-Carlo test simulations were calcu- latedtoassessthesignificantdifferencesofspiderinteractions followed o o oo o with land use. A Principal Component Analysis (PCA) was performed to verify differences in the composition ofspider letters o o o O guildsamongland-usesystems.ThePCAwascarriedoutona as U< matrix composed of 270 sites and 10 spider guilds. We & assigned spiders to ecological categories rather than species, labeled <o2 o o o ^ vbaelcuaeusseinmothsettsapbelceiseswowuelrde rianrvealiadnadteathgerePatCnAumanbaelrysiosf.zTehreo < datawere subjected to natural logarithmictransformationIn < o o in (x + 1) to reduce the influence of common species and Sub-windows u differencesintotalsiteabundanceindeterminingcommunity patterns(seeKeene 1995).Statisticalanalyseswereconducted using R version 2.12 (R Development Core Team 2009), packageade4(Chesseletal.2004;Dray&Dufour2007;Dray areas. in o etal. 2007). RESULTS sampling in in o A total of 1906 individuals, including 178 individuals in Palmares, 344 in Magaranduba, 143 in Pacaja, 459 in Colombia Traditional, 340 in Agrosylvopastoral, and 442 in Agrofor- estry was collected. The adults corresponded to 206 individ- ualsand 101 morphospeciesbelongingto25families. Median and o CN o r^i lspoewceiresvarliucehsneosbssewravsed1.i5ncsrpoepcsi,espaisntufraelsloawsndapnldanftoarteisotsn,sw(0i.t4h, Brazil 0.2,and0.1,respectively:Fig. 2a);averagedensitiesofspiders in m (N variedfrom 1.1 iedividuals/m"inplantationsto7individuals/ in forest, with intermediate values in crops and fallows observed (Fig. 2b). The results ofthe analysis ofthe ten spiderguilds VO ^ o (Table2)collectedoneachland-usesystemweresubjectedto PCA. The correlation circle built with the first two factors systems r- o o wrieptrhes1e2n.t4ed%:28s.e2e%Foifg.th2e).totFaalcvtaorrian1cese(pFaIrwaittehd1t5h.e9%laanndd-uFs2e systemsfallowaftercrops(FAC), fallowafterpasture(FAP) Land-use andforest(F)fromcrops(Cr),pasture(Past)andplantation (PI). Monte-Carlo test (P < 0.01) simulations exhibited 1.— significant differences in the spider assemblage relationships with the land-use systems. The simultaneous comparison of Table ^M”3t-.S10-.-.0c^-(Soss'"oaS-coo 3Sh I^.•ga^^SID'^ioCIIuo^"Xyoag) soSc (tnFFhoAiecgPt.cuor3ran)ranesldlhagotriFwooenudhncatdivrhecahltuenstathtenerrdopsnofg(iancNttrGoseHrlli)aaot,lciaomgtnresahdopiufpnoasdrritwswhiieentaghvleafrnrtdshormu(eseGtehWseg)uFPiAlaCdCnsA,d: groundrunners(GR). DISCUSSION Theresultssuggestthatspiderspeciesrichnessanddensity decreased with regular disturbance and/or high levels of grazing (Fig. 2). This pattern can be partly explained by LO-MAN-HUNGETAL.~IMPACTOFLANDUSEONSOILSPIDERS 299 Crops Fallowaftercrops Fallowafterpastures Forests Pastures Plantations (a) Landuse (b) Landuse — Figure 2. Totalspidersrichness(a)anddensity(b)underdifferenttypesoflanduse.Theboxplotsshowthelowerquartile,themedianand the upper quartile, with whiskers extending to the most extreme data point unless outliers (more than 1.5 times the interquartile range) arepresent. — Table 2. GuildclassificationdefinedofthespiderssampledbyTropicalSoilBiologyandFertilityProgrammethod(seeDiasetal.2010). Totalnumberofmorphospeciesforfamily/generaoneachguild(n = 10)isinbrackets. Guild IncludedTaxa Aerialhunters(AH) Anyphaenidae(1)-Corinnidae(1):(1) Trachelas-Oxyopidae(1);(1)O.xyopes Diurnalaerialambushers(DAA) Thomisidae(3):(1)Bucranium,(I)Misiimenops Diurnalspacewebweavers(DSWW) Linyphiidae(8):(1)Meioneta-Pholcidae(2):(1)Mesabolivar,(1)Melagonia-Theridiidae(10):(1) Chrysso,(2)Dipoena,(2)Theridion,(1) Thwaitesia Groundrunners(GR) Corinnidae(7):(1)Castianeira,(1)Corinna,(2)Creugas,(1)Mazax,(1)Mynnecotypiis,(1)Orthohida Groundweavers(GW) Dip-lGunriadpaheos(1i)d:a(e1)(3D);ip(l1u)rAapo-pyHlalhunsi,i(d2a)eZi(2m)i:r(o2m)uNse-ohLayhcnoisaidae(1)-Prodidomidae(1):(1)Lygromma Nocturnalaerialambushers(NAA) Ctenidae(1):(1)Acanthocienus-Sparassidae(1):(1)Olios Nocturnalgroundambushers(NGA) Idiopidae(2):(1)Neocleniza-Theraphosidae(1) Nocturnalgroundhunters(NGH) Cyrtaucheniidae(2)-Oonopidae(18):(1)Brignolia,(1)Coxapopha,(3)Neoxyphiniis,(1)Xyccarph- Palpimanidae(4):(1)Fernandezma,(3)Otiothops-Salticidae(12)-Tetrablemmidae(1):(1) Tetrablemma Nocturnalspaceweb-weavers(NSW) Ochyroceratidae(1) Orbweavers(OW) Araneidae(13):(3)Alpaida,(3)Mangora,(2)Micrathena,(1)Spilasma,(1) Wagnerkma- Symphytognathidae(1):(1)Symphytognatha-Theridiosomatidae(3) 300 THEJOURNALOFARACHNOLOGY ecological effects at the vegetation level that are strongly dependentonboththeintensityofformerarablemanagement and the initial conditions of grassland succession (Van der Putten et al. 2000). Several studies predicted that spider densityanddiversitywouldbedisproportionallyimpactedby reduction in plant species richness and habitat complexity (Gibsonetal. 1992;Rypstraetal. 1999;Jeanneretetal.2003; Perner&Malt2003;Haddadetal.2009).However,Jeanneret et al. (2003) suggested that the most importantlocal habitat factorsarethosedirectlyinfluencedbymanagementpractices. Itiswellknownthatspiderscanexhibitshortreactiontimesto changesinlanduse(Jeanneretetal.2003;Perner&Malt2003) and subsequently to changes in microclimate (Nyffeler & Sunderland2003; Perner&Malt2003), soil-moisture(Perner & Malt 2003), litter cover, litter depth and twig cover (Oxbrough et al. 2005). Since the establishment of crops, pastures and plantations makes a significant impact on soil properties, we expected that the soil spiders would be more significantly affected than what was observed. In fact, most similar studies showed that spider species richness decreased duetosoilmanagementintensity(Downieetal. 1999;Perner &Malt2003).Furthermore,theincreaseinspiderdiversityon disturbedareasisoftenconstrained,evenwhennaturalabiotic conditions seem to be restored (e.g., on secondaryforestsee Lo-Man-Hungetal. 2008). Our PCA results separated the land-use systems offorest and fallows (F, FAC, FAP) from thosewith high anthropo- genicsoildisturbance(Fig. 3).ThePCAalsoshowedthatthe identification of ecological categories was sufficient to separatethesixsystemsstudied,andtoindicatewhichspider guildsweremostassociatedwithforestsystems.Spiderguilds are widely used in environmental management and impact assessment (e.g., Perner & Malt 2003) because of the assumption that the factor affecting a resource in the environment will also impact the whole spider guild (Sever- inghaus 1981; Simberloff& Dayan 1991). In our study the three guilds (GR, GW, NGH) associated with forest and fallows (F, FAC, FAP) are characterized by spiders that search actively for prey (i.e., Corinnidae, Cyrtaucheniidae, Gnaphosidae,Lycosidae,Oonopidae,Palpimanidae,Prodido- midae, SalticidaeandTetrablemmidae)oraresedentaryweb- weavers (Dipluridae, Hahniidae) (Hofer & Brescovit 2001; Dias et al. 2010; also see Table2). Potentially, these three guilds (GR, GW,NGH)favorcrypticandcomplexhabitats; in this study theywere significantly represented in theforest and fallows. Also, these guilds seem to be negatively influencedbyhumanimpactsonlandmanagement,although thelycosidsareusuallyobservedingrasslandhabitats(Jocque &Alderweireldt2005).Theseresultssuggestthatspiderguilds can be considered a useful tool for ecological studies, as predictedbyotherauthors(e.g.,Gibsonetal. 1992;Uetzetal. — 1999; Jeanneret et al. 2003). Such information can help to Figure 3. Principal component analysis (PCA) performed on identifytheirvalueinland-useareasandevaluatetheirrolein sDpSidWerW:guidlidusrn(aAlH:spaaecreialwehbuntweerasv,erDsA,AG:R:diugrnraolunaderiwaelavaemrbsu,shGerWs:, pest management (e.g., Maloney et al. 2003; Nyffeler & nocturnal ambushers, NAA: nocturnal aerial ambushers, NGA: nocturnal ground ambushers, NGH: nocturnal space web-weavers, NSW:nocturnalspaceweb-weavers,OW:orbweavers)forlanduse ofsoil land-usesystems. Thedots representthesites andthecolor (F:forests,FAC:fallowsaftercrops,FAP:fallowsafterpastures,PI: degradedindicatesland-usesystemsasdarkertolighterasfollows:jet plantations.Past:pastures,Cr:crops),(a)Correlationcircleofspider black,black,darkgray,gray,lightgray,verylightgrayforPast,F, guilddensityforsoilland-usesystems,(b)Factorialmapsandeffect FAC,Cr,FAP,PI,respectively. LO-MAN-HUNGETAL.—IMPACTOFLANDUSEONSOILSPIDERS 301 Sunderland 2003). Our study suggests that spider guilds can Fearnside,P.M.2005.DeforestationinBrazilianAmazonia:history, strongly and quickly respond to changes in environmental rates,andconsequences.ConservationBiology 19:680-688. conditions(asexemplifiedforwanderingspidersbyRegoetal. Fearnside, P.M. 2006. Fragile soils and deforestation impacts: The at2o0n0d5p,reec2vo0es0ny7tstaaennmdthJsreoorcpvqoiucgeeesn,eitcaaslc.th2hai0ns0g5ei)ss.tIihtneaelmscaooishnyisgthflaeicmgthoftrusnctcuhtreiroennneitenldyg drIKaemntvpoieawoclnltoaeslpdemgeoenfntorinpAaemCrnaoavzndisoirengorimnvama:ietnnitLoatanhlteiansneRAdromvleiDecreeisvcoeafl.oofpPTmprs.eatnda1tin5t.d8ii-on(n1gDa7.l1A.f.oIrEencPsotoHlsouegamyiscaa&nla affectingandthreateningbiodiversity(Chapinetal. 2000). M.J. Balick,eds.).ColumbiaUniversityPress,NewYork. ACKNOWLEDGMENTS Franklin,E.,W.E. Magnusson&F.J. Luizao.2005. Relativeeffects ThisworkwasapartoftheAMAZ Project (coordinador: cofombmiuotniictainedsaibniotaincfAamctaozrosnoinanthescaovamnpnoas.itiAopnploifesdoilSoiinlverEtceoblroagtye PatrickLavelle)supportedbyFrenchAgenceNationaledela 29:259-273. Recherche (ANR) and Brazilian Conselho Nacional de Gibson,C.W.D.,C.Hambler&V.K.Brown.1992.Changesinspider Desenvolvimento Cientifico e Tecnologico (CNPq), jointly (Araneae) assemblages in relation to succession and grazing i(ImRpDl)e,meUnntievderbsyidIansdteitFuetddeeraRlecdhoerPcahreap(oUuFrPlAe)D,evUneilvoeprpseimdeandte Gillmearn,aKg.eEm.e,nMt..H.JouBeranrael,oPf.ALpapvellileed,AEc.oMl.oNg.yI2z9a:c1&32MM.2J..Swift.1997. FederalRuraldaAmazonia(UFRA),MuseuParaenseEmilio Agricultural intensification, soil biodiversity and agroecosystem taGhoneadlnCdkeiOnlt(irMvoiPeEIrnGPt)le,rannaUccnhiioovnnearflsoriddecalAdigmrTaitececunldoatltuoar.gaiWTcraeopdaielcsaoPlewr(oeCuiIrlAadT)(li.UkTeWPte)o Gres2fepu6nin7sdc-tet2roi6son9ne..,inAMp.paHlg.ireod&ecSoKosi.ylDs.tEecSmouslnodgneyorlw6a?:n3d-.J16o.u1r99n9a.lWohfyAarascyhmnpoolsoiguym2o7n: thankAdalbertoJ.Santos,RicardoOtt,anonymousreviewers Haddad, N.M., G.M. Crutsinger, K. Gross, J. Haarstad, J.M.H. andtheeditorforcommentsthatgreatlyimprovedanearlier Knops&D.Tilman.2009.Plantspecieslossdecreasesarthropod versionofthismanuscript. diversity and shifts trophic structure. Ecology Letters 12:1029- 1039. LITERATURECITED Hawksworth, D.L. & A.T. Bull. 2006. Arthropod Diversity and Adis, J. 2002. Amazonian Arachnida and Myriapoda. Pensoft Conservation.Springer,Netherlands. Publishers,Sofia,Bulgaria. Harwood,J.D.,K.D.Sunderland&W.O.C. Symordson.2004.Prey Alexandratos,N. 1995.WordAgriculture:Towards2010-AnFAO selectionbylinyphiidspiders:moleculartrackingoftheeffectsof Study.FoodandAgriculturalOrganizationoftheUnitedNations alternative prey on rates of aphid consumption in the field. (FAO).JohnWileyandSonsPublishers,Sussex,Chichester,UK. MolecularEcology 13:3549-3560. Anderson, J.M. & J.S. Ingram. 1993. Tropical Soil Biology and Hodge, M.A. 1999.Theimplicationsofintraguildpredationforthe Fertility: A Flandbook of Methods. CAB International, Wall- role of spiders in biological control. Journal of Arachnology ingford,Oxfordshire,UK. 27:351-362. Chapin, F.S. Ill, E.S. Zavaleta, V.T. Eviner, R.L. Naylor, P.M. Hofer, H. &A.D. Brescovit. 2001. Speciesandguildstructureofa Vitousek, H.L. Reynolds, D.U. Hooper, S. Lavorel, O.E. Sala, Neotropical spider assemblage (Araneae) from Reserva Ducke, S.E. Hobble, M.C. Mack & S. Diaz. 2000. Consequences of Amazonas,Brazil.Andrias 15:99-119. changingbiodiversity.Nature405:234-242. Jeanneret, P., B. Schiipbach & H. Luka. 2003. Quantifying the Coddington,J.A.,L.H.Young&F.A.Coyle.1996.Estimatingspider impact of landscape and habitat features on biodiversity in speciesrichnessinasouthernAppalachiancovehardwoodforest. cultivated landscapes. Agriculture, Ecosystems & Environment JournalofArachnology24:111-128. 98:311-320. Chessel,D.,A.B.Dufour&J.Thioulouse.2004.Theade4package-I: Jocque, R. & M. Alderweireldt. 2005. Lycosidae: the grassland one-tablemethods.RNews4:5-10. spiders.ActaZoologica 1:125-130. Dray,S.&A.B.Dufour.2007.Theade4package:implementingthe Jocque, R., F. Samu&T. Bird. 2005. Densityofspiders(Araneae: duality diagram for ecologists. Journal of Statistical Software Ctenidae) in Ivory Coast rainforests. Journal of Zoology Dra2y2,:1S-.,20A..B.Dufour&D.Chessel.2007.Theade4package-II:two- Kee2n6e6,:1O05.-N1.10.1995. The log transformation is special. Statistics in tableandK-tablemethods.RNews7:47-52. Medicine 14:811-819. Decaens, T. 2010. Macroecological patterns in soil communities. Laurance,W.F.,H.L.Vasconcelos&T.E.Lovejoy.2000.Forestloss GlobalEcologyandBiogeography 19:287-302. and fragmentation in the Amazon: implications for wildlife Decaens,T.,J.J.Jimenez,C.Gioia,G.J.Measey&P.Lavelle.2006. conservation.Oryx34:34-45. The values ofsoil animals for conservation biology. European Laurance, W.F., A.K.M. Albernaz, G. Schroth, P.M. Fearnside, JournalofSoilBiology42:S23-S38. S. Bergen, E.M. Venticinque & C. Costa. 2002. Predictors of De Meester, N. & D. Bonde. 2010. Information use and density- deforestation in the Brazilian Amazon. Journal ofBiogeography dependentemigrationinanagrobiontspider. BehavioralEcology 29:137-148. 21:992-998. Lavelle,P.,T.Decaens,M.Aubert,S. Barot,M. Blouin,F.Bureau, Dias, S.C., L.S. Carvalho, A.B. Bonaldo & A.D. Brescovit. 2010. P. Margerie, P. Mora&J.-P. Rossi. 2006. Soil invertebratesand Refining the establishment of guilds in Neotropical spiders ecosystemservices.EuropeanJournalofSoilBiology42:S3-S15. (Arachnida:Araneae).JournalofNaturalHistory44:219-239. Lavelle,P.,1.Veiga,B.Ramirez,S.deSouza,W.Santos,X.Arnauld Downie, I.S.,W.L. Wilson,V.J. Abernethy, D.I. McCracken, G.N. de Sartre, V. Gond, T. Decaens, M. Grimaldi, B. Hubert, S. Foster, 1. Ribera, K.J. Murphy & A. Waterhouse. 1999. The Doledec, R. Poccard, P. Bommel, J. Oszwald, P. Lena, P. de impact of different agricultural land-uses on epigeal spider Robert, M. Martins,A. Feijoo, M.P. Hurtado,G. Rodriguez,O. diversityinScotland.JournalofInsectConservation3:273-286. Villanueva,D.Mitja,1.Miranda,T.Lima,R.Marichal,T.Otero, Duelli,P. &M.K. Obrist. 1998. Insearchofthebestcorrelatesfor P. Chacon, C. Sanabria & F. Dubs. 2010. Socioeconomic localorganismalbiodiversityincultivatedareas. Biodiversityand determinants of landscapes and consequences for biodiversity Conservation7:297-309. andtheprovisionofecosystemgoodsandservicesintheArchof 302 THEJOURNALOFARACHNOLOGY DeforestationofAmazonia.Onlineathttp://ciat-library.ciat.cgiar. Riechert, S.E. 1999. The hows and whys of successful pest org/Articulos_CIAT/Rapport_finalANR_AMAZ_BD.pdf. suppression by spiders: insights from case studies. Journal of Lawes, M.J., D.J. Kotze & S.L. Bourquin. 2005. Epigaeic inverte- Arachnology27:387-396. brates as potential ecological indicators ofAfromontane Forest Root, R.B. 1967. The niche exploitation pattern ofthe blue-gray conditioninSouthAfrica. Biotropica37:109-118. gnatcatcher.EcologicalMonographs37:317-350. Lo-Man-Hung,N.F.,T.A.Gardner,M.A.Ribeiro-Jiinior,J.Barlow Rypstra, A., P.E. Carter, R.A. Balfour & S.D. Marshall. 1999. ' & A.B. Bonaldo. 2008. The value of primary, secondary, and Architecturalfeaturesofagriculturalhabitatsandtheirimpacton plantation forests for Neotropical epigeic arachnids. Journal of thespiderinhabitants.JournalofArachnology27:371-377. Arachnology36:394^01. Samu, F., K.D. Sunderland & C. Szinetar. 1999. Scale-dependent Maloney,D.,F.A. Drummond&R.Alford.2003.Spiderpredation dispersal and distribution patterns of spiders in agricultural inagroecosystems:canspiderseffectivelycontrolpestpopulations? systems:areview.JournalofArachnology27:325-332. Technical Bulletin, Maine Agricultural and Forest Experiments Samu, F. &C. Szinetar. 2002. Onthe natureofagrobiontspiders. Station 190:1-32. JournalofArachnology30:389-402. > Marc,P.,A.Canard&A.Ysnel. 1999.Spiders(Araneae)usefulfor Severinghaus,W.D. 1981.Guildtheorydevelopmentasamechanism pest limitation and bioindication. Agriculture, Ecosystems & forassessingenvironmental impact. Environmental Management Environment74:229-273. 5:187-190. Marichal, R.,A.M. Feijoo,C. Praxedes, D. Ruiz,A.F. Carvajal,J. Seyfulina, R.R.2010.Thespiderassemblage(Arachnida,Aranei)in Oszwald, M. del Pilar-Hurtado, G.G. Brown, M. Grimald, T. agroecosystems of Kuban Plain: species composition, spatial Desjardins, M. Sarrazin,T. Decaens, E. Velasquez&P. Lavelle. distribution, and seasonal dynamics. Entomological Review 2010. Invasion of Pontoscole.x corethrurus (Glossoscolecidae, 90:494-510. Oligochaeta) in landscapes ofthe Amazonian deforestation arc. Simberloff,D.&Dayan,T. 1991.Theguildconceptandstructureof AppliedSoilEcology46:443-449. ecologicalcommunities. Annual ReviewofEcologyand System- Marshall,S.&A.L.Rypstra. 1999.Spidercompetitioninstructurally atics22:115-143. simpleecosystems.JournalofArachnology27:343-350. Soares-Filho, B.S., D.C. Nepstad, L.M. Curran, G.C. Cerqueira, Nyffeler,M.&K.D.Sunderland.2003.Composition,abundanceand R.A.Garcia,C.A.Ramos,E.Voll,A.McDonald,P.Lefebvre&P. pestcontrolpotentialofspidercommunitiesinagroecosystems:a Schlesinger. 2006. Modellingconservation in theAmazon basin. comparisonofEuropeanandUSstudies.Agriculture,Ecosystems Nature440:520-523. andEnvironment95:579-612. Sunderland,K.1999.Mechanismsunderlyingtheeffectsofspiderson OxbSrmoituhg.h,200A5..G.S,truTc.tuGriatltiinngdsi,catJ.orOo’fHaslplioderranc,omPm.uSn.itGiiellseracr&ossG.tFh.e Thoprebstekp,opuPl.at&ionCs..J.JoTuornpaplinogf.Ar2a00c5h.noTlohgeyi2n7f:l3u0e8n-c3e16o.f landscape plantationcycle. ForestEcologyandManagement212:171-183. diversity and heterogeneity on spatial dynamics of agrobiont Pekaavro,idS.a&surCf.aRc.ewHiatdhdapeds.tic2i0d0e5.reCsiadnuesa?grPoebsitonMtansapgideemresn(tArSacnieeanec)e Uetlzi,nyGp.hWii.d,sJp.iHdearlsa:ja&nAi.nBd.ivCiadduayl.-b1a9s9e9d.mGoudielld.stBriuocCtournetrooflsp5i0d:e1r-s33i.n I 61:1179-1185. majorcrops.JournalofArachnology27:270-280. Pertunsheeer:,rcJe.osn&pvoenSrs.seiMooanfltv.eogf2e0t0aa3tr.iaobAnls,esgerslosaumnneddn-tdiwoneftlolcihnaggnragssipsnilgdaenardgs.riacnAudglrtbuierceautllltelusarnet,do VanVD..Kd.eGroBrPrumotswtenen,n,,J.WGL.e.HpW.s.,,CS.K.oRRr.tohdMarolirsgt,uiemzSe-.rB,aLrarKvu.oerceHole,,dlJ.uI.nRSd.o,y,RCe.Tg.iVAna.aDn.&DLiejnkP,,. Ecosystems&Environment98:169-181. Smilauer. 2000. Plant species diversity as a driver of early R DevelopmentCoreTeam. 2009. R: A languageandenvironment succession in abandoned fields: amulti-siteapproach. Oecologia RReeggeOffDoooonem,,rrlneisssuFntit.mFaedNt.faai.NarsdAt.atfe.iAglshcAom.at.reAldte,n.pesct,:tEoaa/a.mt/rMpwfiaEwu.ron.wtanhM.Vigar.eomns-nengpten.riVrtforceaoRjainudenntrcaFtqit.eouc.CsutoeiBernn(i&ngqdoCi.uattiAeates.nisNDiop&ed.nioadteBferrorAeero.sppScDSoipot.pcaavturaiilats.Bsa5trst(i2eilic0sadao0c)lano7:esvC.l:i-o(tE8AmA.f.rrpfaaeuncn2ttee0isaa0nee5og:).f WWWioillsleliEt1eenvou2e,tig4rrtdg:sD,odee9,.epnTd1Hcce.-.eoVa9rR,.m.9n.ep.WdJo2Jo.2ws0o0uEo0iu0r.o1tr1n.din.aSoalSnslnpyBtoidiaofdeonffedrdAoris,Sorsv.odaePia.rlcRnsehTwBidsnutietoynoobolttlsrohoiaogegbtfryyouifonas23nopr77iatal::Ekhg32curr62aoool31nlep--io&co32mgod72aysJs07l.y..s9isHnt:ae4laoma1nlsj0dd.:^-g21ir0t9tso.9hw9e.tfouhrSnypcvitediraoesnnrud.ss Ctenidae) in central Amazonia, Brazil. Studies on Neotropical FaunaandEnvironment42:137-144. Manuscriptreceived1 October2010,revised16May2011.