REVIEWARTICLE published:24January2013 doi:10.3389/fimmu.2013.00006 − − Immunoregulatory CD4 CD8 T cells as a potential therapeutic tool for transplantation, autoimmunity, and cancer ErinE.Hillhouse1,2,Jean-SébastienDelisle2,3,4 andSylvieLesage1,2* 1DepartmentofMicrobiologyandImmunology,UniversityofMontreal,Montreal,QC,Canada 2ResearchCenter,Maisonneuve-RosemontHospital,Montreal,QC,Canada 3DepartmentofMedicine,UniversityofMontreal,Montreal,QC,Canada 4DivisionofHematologyandOncology,Maisonneuve-RosemontHospital,Montreal,QC,Canada Editedby: Acentralobjectiveinorgantransplantationandthetreatmentorpreventionofautoimmune LucienneChatenoud,UniversitéParis diseaseistheachievementofantigen-specificimmunetolerance.Anadditionalchallenge Descartes,France in bone marrow transplantation for the treatment of hematological malignancies is the Reviewedby: prevention of graft-vs-host disease (GVHD) while maintaining graft-vs-tumor activity. JulianDyson,ImperialCollege Interestingly, CD4−CD8− (double negative, DN)T cells, which exhibit a unique antigen- London,UK BinLi,ChineseAcademyofSciences, specific immunoregulatory potential, appear to exhibit all of the properties to respond to China these challenges. Herein, we review the therapeutic potential of immunoregulatory DN *Correspondence: T cells in various immunopathological settings, including graft tolerance, GVHD, cancer, SylvieLesage,ResearchCenter, andautoimmunity. Maisonneuve-RosemontHospital, 5415Boulevarddel’Assomption, Keywords:graft-vs-hostdisease,autoimmunity,cancer,grafttolerance,immunoregulation,doublenegativeTcells Montreal,QCH1T2M4,Canada. e-mail:[email protected], [email protected] INTRODUCTION proliferate vigorously against both MHC-sufficient and MHC- − − CD4 CD8 doublenegative(DN)Tcellscomposeapproximately deficientstimulatorcells,butnotintheabsenceofstimulatorcells 1–3% of total T cells in both mice and humans (Strober etal., (VanLaethemetal.,2007;Tikhonovaetal.,2012).Infact,arecent 1989; Abraham etal.,1992; Fischer etal.,2005). Phenotypically, study has revealed the native self-protein CD155 as at least one this rare T cell subset expresses a polyclonal αβT cell receptor of the ligands recognized by quad-deficient DN T cells via their (TCR)repertoire,lackstheexpressionofFoxp3aswellasnatural TCRandintheabsenceof antigen-processing(Tikhonovaetal., killer (NK) cell markers and mostly presents with a naïve T cell 2012).Therefore,thequad-deficientmousemodelhashelpedto phenotype(recentlyreviewed;HillhouseandLesage,2012).Inter- demonstratethatDNTcelldifferentiationcanproceedinthethy- estingly,theirdistinctphenotype,namelythelackofCD4andCD8 mus and that DN T cell activation can occur independently of co-receptors,isalsobelievedtoinfluencethemethodbywhichDN co-receptors. Tcellsrecognizeantigensandsubsequentlysignalthroughtheir DoublenegativeTcellshavenotonlybeenobservedinquad- TCR. In fact, major histocompatibility complex (MHC) restric- deficientmice. Forinstance,anincreasednumberof DNTcells tionisthecardinalfeatureofantigenrecognitionbyTcells,where has been observed in many TCR transgenic models (Hillhouse theCD4andCD8co-receptorsrespectivelyfacilitatetheinterac- andLesage,2012).IntheseTCRtransgenicmodels,duetoforced tionwithMHCclassIIandImolecules.AsDNTcellslackboth expressionof anαβTCRtransgene, theDNTcellsdorecognize CD4andCD8co-receptors, themeansbywhichtheαβTCRon peptide–MHC complexes in the absence of co-receptor expres- theDNTcellrecognizesMHCligandswithsufficientaffinityand sion,suggestingthattheyexhibitahighaffinityfortheseantigenic aviditytoprovideactivationofDNTcellsisunclear.Ithasbeen complexes. Moreover, in the absence of CD28 co-stimulation recently proposed that DN T cells recognize non-MHC ligands. which is required for clonal deletion of thymocytes (Punt etal., Indeed,usingquad-deficientmicethatlacktheexpressionofCD4 1994; Kishimoto and Sprent, 1997; Lesage etal., 1997), some andCD8co-receptorsaswellasMHCclassIandIIexpression,Van thymocytes that strongly recognize self-ligands survive negative Laethemetal.(2007)demonstratedthatTcelldevelopmentcould selectionandultimatelydevelopintomaturethymicDNTcells proceedinanMHC-independentmanner.Infact,intheabsence (Pobezinskyetal.,2012). Together,theseresultssuggestthatDN ofCD4orCD8co-receptorexpression,theintracellulartyrosine Tcellsmayexhibitarelativelystrongaffinitytowardtheircognate + + kinaseLckisnolongersequesteredbytheco-receptorsandisthus ligands. This property is reminiscent of CD4 Foxp3 regula- availabletopromoteMHC-independentTCRsignalinginthymo- toryTcells(Tregs)andNKTcells,twoimmunoregulatoryTcell cytes.Subsequently,thesethymocytesdevelopintomatureDNT subsetswhichundergoagonistselectioninthethymus(Baldwin cellsthatentertheperiphery(VanLaethemetal.,2007).Theabil- etal.,2004). ityofDNTcellstorecognizenon-MHCligandsisalsosupported Inadditiontotheirdistinctphenotype,DNTcellsalsoexhibit bythefindingthatmatureDNTcellsfromquad-deficientmice a unique antigen-specific immunoregulatory potential. Indeed, www.frontiersin.org January2013|Volume4|Article6|1 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 1 — #1 Hillhouseetal. ImmunoregulatoryDNTcellsfortherapy the immunoregulatory function of DN T cells was first identi- priortotheskingraftefficientlyinducedantigen-specificallograft fied almost 25 years ago, when Strober etal. (1989) successfully tolerance(Yangetal.,1998,1999;Figure1B).Theantigen-specific clonedDNTcellsfrommiceandsubsequentlydemonstratedthat tolerance to skin allografts induced by the transfer of donor T DN T cells mediate suppressor activity in a mixed-lymphocyte cells was proposed to be mediated by 2C TCR transgenic DN reaction (MLR). Subsequently, Dr. Zhang’s group was the first T cells as only the 2C TCR transgenic DN T cell subset, but + + torevealtheantigen-specificimmunoregulatorypotentialofDN not the 2C CD4 or 2C CD8 T cell subset, was able to sup- Tcells(Zhangetal.,2000). Specifically, theyshowedthatDNT pressanMLRresponseinvitro(Zhangetal.,2000).Accordingly, cellsfrom2CTCRtransgenicmicesuppresstheproliferationand Zhang’sgroupshowedthattheinjectionof2CTCRF1DNTcell + cytotoxic activity of 2C TCR CD8 T cells in vitro, but not of clones was sufficient to induce both prolonged survival of both + CD8 T cells carrying other antigen specificities (Zhang etal., skinandcardiacallografts(Zhangetal.,2000;Chenetal.,2003b; 2000; Young and Zhang, 2002). Moreover, the antigen-specific Figure 1C). Importantly, the allograft tolerance was antigen- propertyof2CTCRDNTcellsisconferred,atleastinpart,bytheir specific,asfullMHC-mismatchedthirdpartygraftswererapidly abilitytoacquirepeptide–MHCcomplexesfromantigenpresent- rejected (Zhang etal.,2000; Figure 1C). Collectively, these data ingcells(Zhangetal.,2000;Priateletal.,2001;YoungandZhang, demonstrate that 2C DN T cells are sufficient to induce both 2002;FordMcIntyreetal.,2008),aprocessknownastrogocytosis skin and cardiac allograft survival, suggesting that immunoreg- (JolyandHudrisier,2003). Notably,theinvitroantigen-specific ulatoryDNTcellscontributetothebenefitsof DLIonallograft + suppressiveactivityof 2CTCRDNTcellstowardCD8 Tcells survival. was replicated using non-transgenic mice and humans (Zhang Tofurtherunderstandthemechanismbywhich2CDNTcells etal.,2000;YoungandZhang,2002;Fischeretal.,2005).Together, promote antigen-specific allograft tolerance, Young etal. (2002) these observations described a unique antigen-specific mode of undertook the examination of the leukocytes found within the immunoregulationprovidedbyDNTcells,leadingtotheantigen- toleratedskingrafts. Indoingso,theydiscoveredthat2CDNT + specificeliminationofCD8 Tcells(Zhangetal.,2000;Youngand cellsarethepredominantleukocytefoundwithintheacceptedskin Zhang,2002). allografts.Moreover,the2CDNTcellsisolatedfrommicewhich The immunoregulatory potential of DN T cells has since hadreceiveddonorspleencellspriortotheskingraftdemonstrate + been shown to extend beyond T cells. Indeed, TCR transgenic anenhancedsuppressivefunctiontoward2CCD8 Tcellsinvitro and non-transgenic DN T cells can also inhibit NK cells (He (Youngetal.,2002).Finally,thecomparisonoftranscriptomepro- etal., 2007; Su etal., 2012), B cells (Zhang etal., 2006; Hill- filesbetween2CTCRF1DNTcellsclonesthatareableorunable houseetal.,2010;FordMcIntyreetal.,2011),anddendriticcells toconfercardiacallografttolerancerevealedFcRγasapotential (Gaoetal.,2011). Thecombinationof theirdistinctphenotypic moleculeinvolvedindefiningthetolerogenicpotentialof2CDN characteristics and their unique antigen-specific immunoregu- Tcells(Leeetal.,2005).TheimportanceofFcRγexpressionon2C latory properties toward multiple cellular targets has prompted DNTcellsfortheinductionofallografttolerancewasconfirmedas investigators to examine the role of DN T cells in various dis- theadoptivetransferof FcRγ-sufficient, butnotFcRγ-deficient, ease models. Herein, we will review the promising therapeutic 2C DN T cells prior to transplantation increased skin allograft potential of DN T cells in the context of various disease set- survival(Thomsonetal.,2006).Altogether,theseresultsdemon- tings.Morespecifically,wewilldescribetheimpactofDNTcell stratethat2CDNTcellsparticipateinallografttolerance,likely + transferontheinductionofgrafttoleranceandthepreventionof by inhibiting pathogenic 2C CD8 T cell responses, at least in autoimmunityaswellaspresenttheirdualroleinpreventinggraft- theMHCclassI-restrictedgrafttolerancemodel(Hillhouseand vs-hostdisease(GVHD)whilepromotinggraft-vs-tumor(GvT) Lesage,2012). responses. Importantly,theseobservationswerenotlimitedtothe2CTCR transgenicsetting.Indeed,theinjectionofallogeneicdonorspleen GRAFTTOLERANCE cellsbearingasingleMHCclassImismatchpriortoskintrans- Althoughbetterknownfortheiruseinhematopoieticcelltrans- plantationinthenon-transgenicsettingalsoresultedinprolonged plantationtoestablishdonorchimerismortreatneoplasticrelapse, allograftsurvival(Yangetal.,1999;Youngetal.,2002;Zhangetal., donorleukocyteinfusions(DLI)havealsobeenshowntoimprove 2002). Analogous to the 2C TCR model, DN T cells from non- allograft survival after solid organ transplantation (Fehr and transgenicmicethatareactivatedinvivofollowingtheinjection Sykes,2004). Amongpossiblemechanismslinkingdonorleuko- of donor spleen cells preferentially accumulate within the skin + cytetransferandallografttolerance,DNTcellshavebeenshown allograftandeliminateCD8 Tcellsinanantigen-specificman- toincreaseallograftacceptanceinvariousexperimentalsettings. ner in vitro (Young etal.,2002). In a full MHC-mismatch heart In an attempt to understand why DLI has a positive outcome allograft, injection of non-transgenic DN T cells further pro- on allograft survival, Dr. Zhang’s group took advantage of the motedrapamycin-inducedgrafttolerance(Zhangetal.,2011b).In antigen-specific2CTCRtransgenicmodel(Yangetal.,1998,1999), addition,invitro-generatedDNTcellscanalsoprovideantigen- wherethe2CTCRisalloreactivetotheLd MHCclassImolecule specificskinandpancreaticisletallografttolerance(Zhangetal., (Shaetal.,1988). Predictably,skingraftsbearingasingleMHC- 2007,2011a).Moreover,withregardstoxenografts,theinjection mismatchatLdarethusrapidlyrejectedbythe2CTCRrecipient ofnon-transgenicratdonorspleencellsinmicepreventedCD4+ mice due to the expression of Ld MHC class I molecule on the T cell-mediated cardiac xenograft rejection (Chen etal., 2003a, donor skin cells (Yang etal., 1998, 1999; Figure 1A). However, 2005). Similartothetransgenicsetting, xenografttolerancewas theinjectionof donorspleencellstothe2CTCRrecipientmice induced by DN T cells, as the transfer of DN T cells that had FrontiersinImmunology|ImmunologicalTolerance January2013|Volume4|Article6|2 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 2 — #2 Hillhouseetal. ImmunoregulatoryDNTcellsfortherapy FIGURE1|Inductionofallografttolerancebythepre-transplantation Rubockietal.,1986),togenerate2CF1mice(H2b,d,Ld−)bearingtheanti-Ld infusionofdonor-specificspleencellsorDNTcells.Thismodeltakes TCR(whitemouse).DuetoasingleMHC-mismatch,skingraftsfromLd+F1 advantageoftheantigen-specific2CTCRtransgenicsystemandskingraftsto micearerapidlyrejectedbythe2CF1mice.(B)However,thetransferof facilitatethestudyofallografttolerance,wherethe2CTCRtransgeneis donorspleencellsfromLd+F1miceto2CF1mice(Ld−)priortotheLd+skin alloreactivetotheLdMHCclassImolecule.(A)C57BL/6(H2b)micearebred grafttransplantationresultsingraftsurvival.(C)Immunoregulatory2CDNT toBALB/c(H2d)micetogenerateF1mice(H2b,d)thusbearingtheLdMHC cellclonesobtainedfrom2CF1TCRtransgenicmice(Ld−)preventthe molecule(blackmouse).C57BL/62Ctransgenicmice(H-2b)arebredto rejectionofsingleMHC-mismatch,allogeneic(Ld+,inblack)skingrafts. BALB/c(H2dm2)mice,whichareaBALB/cLdlossmutant(H2d,Ld−; However,fullMHC-mismatch,thirdpartygrafts(ingray)wererejected. been isolated from mice which had received xenogeneic donor variant of this cardiac xenograft model, it was also shown that spleen cells, was sufficient to ensure cardiac xenograft tolerance DN T cells can eliminate B cells, leading to a reduction in anti- (Chen etal., 2003a). In this xenogeneic model, DN T cells effi- donor-specific antibody levels and delayed graft rejection (Ma + + cientlysuppressedtheproliferationof bothCD4 andCD8 T etal.,2008).Takentogether,thesefindingssuggestthat,asopposed cell anti-donor reactive cells (Chen etal.,2003a,2005). Using a totheMHCclassI-restricted2CTCRDNTcells,DNTcellsfrom www.frontiersin.org January2013|Volume4|Article6|3 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 3 — #3 Hillhouseetal. ImmunoregulatoryDNTcellsfortherapy + + non-transgenic mice can suppress CD4 and CD8 T cells as and, as mentioned above, can efficiently induce graft tolerance well as B cells in an antigen-specific manner and potently sup- (Ford etal., 2002). Hence, as DN T cell-mediated suppression pressbothskinandcardiacallograft,aswellascardiacxenograft, depends on interactions between FasL on DN T cells and Fas rejection. on target T cells (Ford etal., 2002), it has been suggested that Fas–FasL interactions have been proposed as the molecular DN T cells accumulate in an attempt to compensate for their mechanismbywhichDNTcellseliminateanti-donorTcells,while inability to suppress autoimmune T cells in lpr/lpr mice (Ford the elimination of B cells is considered to be perforin-mediated etal.,2002). (Zhangetal.,2000,2006;Priateletal.,2001;Maetal.,2008;Ford McIntyre etal., 2011). Interestingly, an accumulation of DN T SYSTEMICLUPUSERYTHEMATOSUS cellsisobservedinbothFas-andFasL-deficientmice(Watanabe- Similar to ALPS patients, DN T cells are also found in greater Fukunagaetal.,1992;Takahashietal.,1994),suggestingthatthe numbers in the peripheral blood of patients with SLE (Crispin Fas–FasLpathwaymayregulatethenumberofDNTcellsinvivo. etal., 2008). However, in the case of SLE, these DN T cells are By taking advantage of lpr mice, which exhibit a Fas-deficiency, major producers of IL-17 (Crispin and Tsokos, 2009), which is Ford etal. (2002) demonstrated that DN T cells from lpr mice pathogenicinthisdisease(Wongetal.,2000;Doreauetal.,2009). can mediate their immunoregulatory function through the Fas Moreover,IL-17-producingDNTcellscanbefoundinthekid- pathwayaslongasthetargetTcellsexpressafunctionalFaspro- neysectionsofpatientswithlupusnephritis(Crispinetal.,2008). tein.Indeed,DNTcellsfromlprmicecouldeffectivelydelayboth TheseresultsleadCrispinetal.(2008)tosuggestthatDNTcells single MHC class I- and single MHC class II-mismatched skin themselves are pathogenic in SLE.Yet, it must be noted that, in allograftrejection(Fordetal.,2002).Insummary,DNTcellscan these studies, DN T cells were defined as CD4−CD8−TCRαβ+ − − clearlyinduceanantigen-specifictolerancetobothallograftsand cells, which may contain contaminating CD4 CD8 NKT cells xenografts by eliminating or inhibiting the function of various expressing a TCR restricted to CD1d molecules (Hillhouse and targetimmunecells. Lesage,2012). Of relevance,NKTcellsdoindeedincludeasub- − − setof CD4 NK1.1 IL-17-producingcells(Coquetetal.,2008). AUTOIMMUNITY Moreover, NKT cells have been implicated in SLE pathogenesis The antigen-specific immunoregulatory potential of DN T cells wheretheactivationofNKTcellsthroughtheadministrationof in graft tolerance suggests that they may also participate in the α-GalCerexacerbateddiseasewhereastheinhibitionofNKTcell inductionofimmunetoleranceinvariousautoimmunesettings. activationusingananti-CD1dblockingantibodyresultedindis- As a result, the role of DN T cells has been mostly explored easeamelioration(Zengetal.,2003). Thus,NKTcellscannotbe inautoimmunelymphoproliferativesyndrome(ALPS),systemic ruledoutasthetrueIL-17-producingcellsubsetinthisparticular lupuserythematosus(SLE)andmousemodelsoftype1diabetes study. Nevertheless, IL-17-producing DN T cells have also been (T1D),asdescribedbelow. showntoplayaprotectiveroleagainstbacterialinfections(Cow- leyetal.,2005;Riol-Blancoetal.,2010).Altogether,anuncertain, AUTOIMMUNELYMPHOPROLIFERATIVESYNDROME yetpossible,roleforDNTcellsinpatientswithSLEremainstobe Autoimmune lymphoproliferative syndrome is a rare disorder defined. characterized by mutations in either Fas or FasL (Rieux-Laucat etal., 1995; Del-Rey etal., 2006), which results in defective TYPE1DIABETES Fas-mediated apoptosis and, consequently, the abnormal accu- Type1diabetesoccursasaresultoftheantigen-specificelimina- mulation of activated lymphocytes. ALPS patients on average tionofpancreaticinsulin-producingβcells.Itthuspresentsasa presentwitha10-foldincreaseinDNTcellproportion(Bleesing relevantmodeltoinvestigatetheantigen-specificimmunoregula- etal., 2001a; Bristeau-Leprince etal., 2008; Magerus-Chatinet torypotentialofDNTcells. etal.,2009)andasizeableproportionof DNTcellscanalsobe The tolerogenic role of DN T cells in the prevention of found in the lymphoid organs of the murine models for ALPS, T1D was first revealed using the P14/RIP-gp transgenic mouse namely lpr/lpr (Fas-deficient) and gld/gld (FasL-deficient) mice model(Ohashietal.,1991),wheretheMHCclassI-restrictedP14 (Cohen and Eisenberg, 1992; Watanabe-Fukunaga etal., 1992; TCRtransgenerecognizesthelymphocyticchoriomeningitisvirus Takahashi etal., 1994). Moreover, a greater proportion of DN (LCMV)protein, gp33–41(gp33), whichisexpressedunderthe T cells from ALPS patients, in comparison to healthy controls, ratinsulinpromoter(RIP)forcingitsexpressioninthepancreatic expresstheBcellantigen,B220(Bleesingetal.,2001a),whichis tissue.RIP-gpmicethatarecrossedtoP14micecarryaveryhigh consistent with findings in lpr/lpr mice (Davidson etal., 1986). percentageofgp33-reactiveTcells,yettheresultingP14TCR:RIP- Accordingly, B220 expression is a general feature of proliferat- gpmicedonotspontaneouslydevelopdiabetesontheC57BL/6 + ing T cells (Bleesing etal., 2001b), which explains why B220 background(Ohashietal.,1991).Indeed,P14/RIP-gptransgenic DN T cells can also be found in healthy individuals. Although micerapidlydevelopdiabetesupontreatmentwithgp33peptide it cannot be denied that a drastic increase in the proportion andanti-CD40agonisticantibody,whichresultsintheinfiltration + of DN T cells can be observed in lpr/lpr and gld/gld mice, as ofpancreaticisletsbyactivatedCD8 Tcellsandthesubsequent well as ALPS patients, there is arguably no evidence to sug- destruction of the insulin-producing β cells (Garza etal.,2000). gest that the accumulation of DN T cells is pathogenic. Indeed, Usingthismodel,itwasshownthatthetransferofgp33activated Fas-deficient DN T cells found in lpr/lpr mice, but not FasL- P14DNTcells1daypriortodiabetesinductioncaninhibitdia- deficient DN T cells found in gld/gld mice, remain functional betesdevelopment(Fordetal.,2007).Theseresultswerethefirst FrontiersinImmunology|ImmunologicalTolerance January2013|Volume4|Article6|4 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 4 — #4 Hillhouseetal. ImmunoregulatoryDNTcellsfortherapy indicationthatDNTcellsmayparticipateinthepreventionofa biological function of these cells in the prevention of autoim- + CD8 Tcell-drivenT1Dpathology,furtherlendingsupportfora munediabetesindiabetes-susceptibleNODmice.Notably,further + potentialroleforDNTcellstowardtheeliminationof CD8 T investigation is still needed to verify the role of DN T cells in cellsinvivo. T1Ddevelopmentusingnon-lymphopenicNODmice,thusunder The protective role of DN T cells in diabetes development more physiological and spontaneous conditions. Nevertheless, wasfurtherinvestigatedbyourgroupusingthe3A9TCR:insHEL theseresultsdoprovideusefulinformationregardingthecritical transgenicsystem,inwhichtheMHCclassII-restricted3A9TCR timeoftreatmentinitiationaswellasevidencethatnon-transgenic transgenerecognizesapeptidefromhenegglysozyme(HEL)pre- DNTcellsmayexhibitthepotentialtoinhibitT1Ddevelopment sentedbyI-Ak,whiletheinsHELtransgeneforcestheexpression innon-transgenicmice. of HELinthepancreatictissue. AlthoughTCR:insHELBALB.K A more recent study further evaluated the role of non- micearerelativelyresistanttoT1D,CD47-deficientTCR:insHEL transgenic DN T cells in T1D. Here, it was shown that 50% + BALB.Kmicehaveahighandspontaneousincidenceofdiabetes. of CD4 T cells isolated from an MLR had been converted to − − + Using this model of spontaneous T1D, a single transfer of 3A9 CD4 CD8 T cells. These CD4 T cell-converted DN T cells DN T cells in the TCR:insHEL CD47-deficient BALB.K trans- sorted by flow cytometry were shown to delay T1D onset when genic model was able to significantly inhibit the development adoptively transferred to NOD.SCID mice in combination with of T1D (Dugas etal., 2010). Notably, a 3A9 DN T cell trans- diabetogenicTcells(Zhangetal.,2011a).Thisdelaywasfurther + ferledtoasignificantreductioninantigen-specificautoantibody enhanced when using GAD65 antigen to stimulate the CD4 T serumlevels(Dugasetal.,2010),suggestingtheinvivoelimina- cells, thereby likely generating a higher proportion of GAD65- tion of autoreactive B cells. We subsequently demonstrated that specificDNTcells.Moreover,asingletransferofGAD65-specific 3A9 DN T cells efficiently eliminate HEL-loaded B cells in vitro DNTcellsspecificitywasabletopreventdiabetesdevelopmentin (Hillhouseetal.,2010).Althoughthismodelisimperfectinthatit 5-week-oldNODmiceanddecreasebloodglucoselevelsinnew- isaCD47-deficientmodel,whereCD47isimplicatedinapopto- onset diabetic NOD mice (Zhang etal., 2011a). Therefore, this sis,phagocytosis,cellmigration,andTcellresponses(Oldenborg, studyoffersapotentiallytranslatabletherapeuticapproachforthe 2004; Chao etal.,2012), it is nevertheless a spontaneous model generation of antigen-specific DNT cells in the prevention and ofT1DwhereintheresultscomplementthefindingsofFordetal. treatmentofT1D. (2007)suggestingthatDNTcellsmaybeof therapeuticinterest Altogether, these findings point toward an antigen-specific forT1D. immunoregulatory role for DN T cells in autoimmune diseases. Interestingly, the proportion of DN T cells is significantly The therapeutic potential of these cells certainly merits further reduced in diabetes-prone mice in comparison to diabetes- investigationinadditionalpre-clinicalmodels. resistantmiceinboththetransgenicandnon-transgenicsystems (Dugasetal.,2010).Itisofrelevancethatboththenon-transgenic GRAFT-vs-HOSTDISEASEANDCANCER and TCR:insHEL transgenic diabetes-prone non-obese diabetic (NOD) mouse models exhibit a low number of DN T cells rel- In the treatment of hematological malignancies, allogeneic ative to other diabetes-resistant strains as it suggests that low hematopoieticcelltransplantation(AHCT)caneradicateseveral DN T cell numbers are associated with diabetes susceptibility. bloodcancersthatareincurablebychemotherapyalone.Despite Despiteareductionincellnumber,3A9DNTcellsfrom3A9TCR indisputable successes, the efficacy of AHCT is still limited by transgenicNOD.H2kmicecarryingadiabetes-pronegeneticback- cancer recurrence and the development of GVHD (Raiola etal., ground (Lesage etal., 2002) exhibit an equally potent cytotoxic 2003).WhiletheacuteformofGVHDistriggeredbydirectTcell functionincomparisonto3A9DNTcellsfromdiabetes-resistant recognitionofhistocompatibilityantigens,thepathophysiologyof 3A9TCRtransgenicB10.Brmice(Hillhouseetal.,2010).There- chronicGVHDremainsmoreelusiveandreliesonseveralimmune fore,theassociationof DNTcellswithdiabetessusceptibilityis cell types (Shlomchik, 2007). Currently, 40–80% of patients due to a deficiency in DN T cell number rather than function. developchronicGVHDafterAHCT,whichbringssubstantialmor- Altogether, these results further suggest that the restoration of bidityandmortality(Lee,2005).Severallinesofevidencesuggest DN T cell number can prevent T1D development in otherwise that immunoregulatory immune cells are paramount to GVHD + diabetes-susceptiblemice. prevention. Indeed, both CD4 Tregs and NKT cells have been The role of DN T cells in the prevention of T1D was also suggested as major contributors of allotolerance in hematopoi- recentlyevaluatedusingnon-transgenicDNTcells.Indeed,Dun- eticcelltransplantation(Hoffmannetal.,2002;Kohrtetal.,2010; can etal. (2010) have demonstrated that non-transgenic DN T Di Ianni etal., 2011; Chaidos etal., 2012). However, the ability cells can protect from autoimmune diabetes. Specifically, dia- of Tregs to maintain their anti-tumor T cell responses remains betes induction was inhibited if DN T cells were transferred controversial(Onizukaetal.,1999;Shimizuetal.,1999;Liyanage into recipient NOD.SCID (severe combined immunodeficiency) etal.,2002;Somasundarametal.,2002;Kohrtetal.,2010).Here, mice1monthpriortoco-infusionwithdiabetogenicspleencells, wereviewthepotentialof DNTcellsatinhibitingGVHDwhile whereasthesimultaneousco-infusionofdiabetogenicspleencells specificallypromotinganti-tumorresponses. and DN T cells does not protect from disease (Duncan etal., 2010). However, as NKT cells were not fully excluded from the GRAFT-vs-HOSTDISEASE cellular preparation, additional studies using NKT cell-depleted Mousemodelsof GVHD,althoughtheyadmittedlydonotfully non-transgenic DN T cells are warranted to firmly establish the replicatehumandisease,facilitatetheexaminationofthecellular www.frontiersin.org January2013|Volume4|Article6|5 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 5 — #5 Hillhouseetal. ImmunoregulatoryDNTcellsfortherapy processamidtheallogeneicresponseswhichgiverisetoaGVHD- THEANTI-TUMORRESPONSE likepathologyinvivo(Shlomchik,2007).ApotentialroleforDN In addition to preventing GVHD, DN T cells demonstrate an T cells in the prevention of GVHD can be traced back to over anti-tumor activity without causing GVHD in recipient mice two decades ago when Bruley-Rosset etal. (1990) demonstrated (Young etal., 2001, 2003b). Indeed, >90% of sublethally irra- that transfer of spleen cells from pre-immunized mice was able diated immunodeficient SCID mice that were co-infused with a to inhibit GVHD only when DN T cells were included in the lethal dose of A20 lymphoma cells together with allogeneic 2C cellularpreparations. AlthoughtheDNTcellswerenotvoidof TCRtransgenicspleencellssurvivedindefinitelyintheabsenceof contaminatingNKTcells,theseresultsstillsuggestedthatDNT GVHD.Interestingly,recipientmiceexhibiteda15-foldincrease cellsplayaroleinGVHDprevention.Becauseoftheirprominent inthenumberofDNTcellsintheirspleen(Youngetal.,2003b), antigen-specificimmunoregulatorypotentialaswellastheirabil- suggestinganassociationbetweenDNTcellsandtheinhibitionof ity to promote allotolerance, the contribution of DN T cells at GVHDaswellastumorgrowth.Accordingly,Youngetal.(2003b) preventing GVHD was later investigated using the 2C TCR sin- demonstrated that the injection of either 2C DN T cell clones gle MHC-mismatch model (Young etal.,2003a), for which DN ornon-transgenicDNTcellswassufficienttopreventA20lym- Tcellshavebeenshowntoeffectivelypreventallograftrejection phoma tumor growth, without inducing clinical or histological (Zhangetal.,2000;Youngetal.,2002;Chenetal.,2003b;Figure1). signsofGVHD.Altogether,theseresultsfurtherdemonstratethe Specifically, micebearingasingleMHC-mismatch(Ld)injected anti-tumoralpotentialofDNTcells. withLd-specific2CTCRtransgenicspleencellssurvivedformore TofurtherdefinethepotentialuseofDNTcellsinthetreatment than 150 days without any clinical or histological signs of acute of hematological malignancies, Merims etal. (2011) performed orchronicGVHD(Youngetal.,2003a;Figure2A).Thetolerance a pre-clinical study in acute myeloid leukemia (AML) patients of donor spleen cells may be explained, at least in part, by the undergoing complete remission following standard chemother- accumulationof2CTCRDNTcells,whichcaneffectivelyinhibit apy. In this study, they demonstrate that DN T cells can be + pathogenicCD8 Tcellresponses,inrecipientmice(Youngetal., readily isolated from the blood of AML patients. Moreover, 2003a). Subsequently, the role of non-transgenic DN T cells in the isolated DN T cells maintain their phenotype following bothparenttoF1andfullyMHC-mismatchedbonemarrow(BM) a proficient cellular expansion reaching nearly 500-fold in 2 transplantationfollowingeitheramyeloablative(Heetal.,2007) weeks (Merims etal.,2011). Of interest, the DN T cells isolated or non-myeloablative regimen (Su etal., 2012) was investigated and expanded in vitro demonstrated efficient cytolytic activity + + (Figure 2B). In stark contrast to CD4 and CD8 T cells, the towardtheautologousleukemiccellsinsixoutofsevenpatients co-injection of non-transgenic DN T cells with T cell-depleted (Merims etal., 2011). Importantly, the anti-tumoral activity of BM into a sublethally irradiated host ensured prolonged recipi- DN T cells may extend beyond hematological malignancies, as ent survival in the absence of clinical signs of GVHD (He etal., melanoma-reactiveDNTcellshavealsobeensuccessfullyisolated 2007; Su etal.,2012; Figure2B), indicating that DN T cells are from a previously immunized melanoma patient (Voelkl etal., not alloreactive nor pathogenic in this context. Moreover, this 2009). The mechanism by which DN T cells are able to confer ledtostablemixedchimerismand,asopposedtoBMtransplan- antigen-specificimmunetoleranceallthewhileprovidingananti- tation alone, promoted donor allotolerance (He etal., 2007; Su tumor response is counterintuitive and certainly merits further etal.,2012;Figure2B).Together,thesefindingsdemonstratethat, investigation. + + asopposedtoCD4 orCD8 Tcells, thetransferof allogeneic DN T cells does not cause GVHD. Rather, DN T cells prevent CONCLUSION GVHD, induce mixed chimerism and promote donor-specific Immunoregulatory DN T cells, which compose approximately allotolerance. 1–3%of TcellsinhumanPBMCs(Fischeretal.,2005),demon- Notably,thereisaccruedevidencethatDNTcellsalsoprevent strate a unique antigen-specific therapeutic potential, such that GVHD in humans uponAHCT. Indeed, the stem cells used for theyprovideafavorableoutcomeingrafttolerance,autoimmu- AHCTarecurrentlymostcommonlyobtainedfromtheperiph- nity and GVHD. In addition, DN T cells exhibit an interesting eral blood mononuclear cells of granulocyte colony-stimulating anti-tumoralpotential.ThisseeminglybroadapplicabilityofDN factor (G-CSF)-treated donors, where G-CSF is used to mobi- Tcellsatconferringantigen-specificimmunetolerancemustbe + lizeCD34 hematopoieticstemcellsintotheblood(Shlomchik, interpretedwithcaution. Indeed, DNTcellscomposeahetero- − − + 2007).Interestingly,inadditiontoskewingtowardaTh2pheno- geneous subset of cells, which include all CD4 CD8 CD3 T type,G-CSFtreatmentalsoresultsinanincreaseintheproportion cellsubsets,namelyTCRγδTcells,NKTcellsandimmunoregu- of immunoregulatory DN T cells in the blood (Kusnierz-Glaz latoryTCRαβDNTcells(HillhouseandLesage,2012). Despite etal., 1997). The combination of these two phenotypes may theheterogeneityinthedescriptionofDNTcellsinvariousstud- explain why the transfer of CD34+ stem cells isolated follow- ies,whichdonotalwaysexcludeTCRγδand/orNKTcells,most ing G-CSF treatment does not increase the incidence of acute studiesinTCRtransgenicandnon-transgenicmiceaswellasin GVHD relative to classical BM transplants. More recently, two humanspointtowardanimmunoregulatoryroleforDNTcells. studiesalsonotedaclearcorrelationbetweenanelevatedpropor- Afewnotableexceptionstothisarethedescriptionofpathogenic tion of DN T cells and a low incidence of GVHD development IL-17-producing DN T cells in SLE (Crispin and Tsokos, 2009) following AHCT (McIver etal., 2008; Ye etal., 2011). Together, andthecharacterizationofIL-23responsiveDNTcellscontrol- theseobservationssupporttheviewthathumanDNTcellsmay ling bacterial infections (Cowley etal., 2005, 2010; Riol-Blanco preventGVHD. etal., 2010). Clearly, additional studies aimed at identifying FrontiersinImmunology|ImmunologicalTolerance January2013|Volume4|Article6|6 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 6 — #6 Hillhouseetal. ImmunoregulatoryDNTcellsfortherapy FIGURE2|DoublenegativeTcellspromotetolerancewhileinhibiting cellsovertime.(B)BALB/c(H2d)miceunderwentmyeloablative(toppanel, GVHD.(A)ImmunodeficientSCIDF1mice(H2b,d,Ld+)weresublethally sublethalirradiation)ornon-myeloablative(bottompanel,busulfantreatment) irradiatedandreconstitutedwith2CF1(H2b,dm2,Ld−)Ld-specificspleen conditioningpriortobeingreconstitutedwithacombinationofC57BL/6(H2b) cells.Threeweekslater,recipientmiceweregivenskingraftsfromF1(Ld+, DNTcellsandTcell-depleted(TCD)C57BL/6(H2b)bonemarrow(BM)cells. inwhite)andfullMHC-mismatch,thirdparty(ingray)mice.Thethirdparty Subsequently,recipientmicereceivedskingraftsfromdonorC57BL/6(H2b, skingraftwasrejected,whereastheskingraftfromtheF1(Ld+)donor inblack)andthirdparty(H2k,ingray)mice.Regardlessofthetypeof mousewasaccepted.Importantly,therecipientmiceshowednosignsof conditioningregimenutilized,therecipientmiceacceptedallC57BL/6(H2b, GVHDandexhibitedaprominentincreaseinthelevelsofdonor-derivedDNT inblack)donorgraftswhilethirdparty(H2k,ingray)graftswererejected. uniquemarkersfortheseuniquecelltypeswillhelpclarifywhich exciting advances in the pre-clinical setting. As the function of specific cellular subset contributes to each specific biological DN T cells is mainly antigen-specific, the use of DN T cells in setting. immunotherapyshouldleadtofewerside-effectsandadecreased In conclusion, immunoregulatory DN T cells exhibit great riskofinfections,whichisamajorconcernintheapplicationof potentialasacellulartherapyforvariousmodelsofdisease,with broadimmunosuppressiveregimens.Moreover,DNTcellsexhibit www.frontiersin.org January2013|Volume4|Article6|7 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 7 — #7 Hillhouseetal. ImmunoregulatoryDNTcellsfortherapy apotentimmunosuppressivepotentialinmultiplemodelsystems, from the Fonds de recherche du Québec - Santé (FRQS) Junior- fromtransplantationtoautoimmunity,suggestingavastarrayof 1clinician-scientistandissupportedbytheLeukemia/Lymphoma applicabilityofDNTcellsincellulartherapy. Society of Canada. Sylvie Lesage holds a Canadian Insti- tutes of Health Research New Investigator scholarship. Sylvie ACKNOWLEDGMENTS LesageandJean-SébastienDelislearebothindependentlyfunded Erin E. Hillhouse is recipient of a Diabète Québec scholarship by the Foundation of the Maisonneuve-Rosemont Hospital andwasrecipientofaPhDscholarshipfromtheCanadianInsti- and National Sciences and Engineering Research Council of tutes of Health Research. Jean-Sébastien Delisle is an awardee Canada. REFERENCES Chao,M.P.,Weissman,I.L.,andMajeti, ExpandeddoublenegativeTcellsin Laumer, M., etal. (2005). Isola- Abraham,V.S.,Sachs,D.H.,andSykes, R. (2012). The CD47-SIRPalpha patientswithsystemiclupuserythe- tionandcharacterizationofhuman M.(1992).Mechanismofprotection pathwayincancerimmuneevasion matosusproduceIL-17andinfiltrate antigen-specific TCR alpha beta+ fromgraft-versus-hostdiseasemor- and potential therapeutic implica- thekidneys.J.Immunol.181,8761– CD4(−)CD8−double-negativereg- talitybyIL-2.III.Earlyreductionsin tions. Curr. Opin. Immunol. 24, 8766. ulatory T cells. Blood 105, 2828– donorTcellsubsetsandexpansionof 225–232. Crispin, J. C., and Tsokos, G. C. 2835. aCD3+CD4−CD8−cellpopulation. Chen, W., Ford, M. S., Young, K. (2009). Human TCR-alpha beta+ Ford, M. S., Chen, W., Wong, S., J.Immunol.148,3746–3752. J., Cybulsky, M. I., and Zhang, L. CD4− CD8− T cells can derive Li, C., Vanama, R., Elford, A. Baldwin, T. A., Hogquist, K. A., and (2003a).Roleofdouble-negativereg- from CD8+ T cells and display an R., etal. (2007). Peptide-activated Jameson, S. C. (2004). The fourth ulatoryTcellsinlong-termcardiac inflammatoryeffectorphenotype. J. double-negativeTcellscanprevent way? Harnessingaggressivetenden- xenograftsurvival.J.Immunol.170, Immunol.183,4675–4681. autoimmune type-1 diabetes devel- ciesinthethymus.J.Immunol.173, 1846–1853. Davidson,W.F.,Dumont,F.J.,Bedigian, opment.Eur.J.Immunol.37,2234– 6515–6520. Chen, W., Ford, M. S., Young, K. J., H.G.,Fowlkes,B.J.,andMorse,H.C. 2241. Bleesing, J. J., Brown, M. R., Dale, andZhang,L.(2003b).Infusionofin III. (1986). Phenotypic, functional, Ford, M. S., Young, K. J., Zhang, Z., J. K., Straus, S. E., Lenardo, M. vitro-generatedDNTregulatorycells and molecular genetic comparisons Ohashi,P.S.,andZhang,L.(2002). J., Puck, J. M., etal. (2001a). inducespermanentcardiacallograft of the abnormal lymphoid cells of Theimmuneregulatoryfunctionof TcR-alpha/beta(+)CD4(−)CD8(−) survivalinmice.Transplant.Proc.35, C3H-lpr/lprandC3H-gld/gldmice. lymphoproliferativedoublenegative Tcellsinhumanswiththeautoim- 2479–2480. J.Immunol.136,4075–4084. Tcellsinvitroandinvivo. J.Exp. munelymphoproliferativesyndrome Chen, W., Zhou, D., Torrealba, J. Del-Rey,M.,Ruiz-Contreras,J.,Bosque, Med.196,261–267. expressanovelCD45isoformthatis R., Waddell, T. K., Grant, D., A.,Calleja,S.,Gomez-Rial,J.,Roldan, FordMcIntyre,M.S.,Gao,J.F.,Li,X., analogoustomurineB220andrep- and Zhang, L. (2005). Donor lym- E.,etal. (2006). AhomozygousFas Naeini,B.M.,andZhang,L.(2011). resentsamarkerofalteredO-glycan phocyteinfusioninduceslong-term ligand gene mutation in a patient Consequencesofdoublenegativereg- biosynthesis. Clin. Immunol. 100, donor-specificcardiacxenograftsur- causes a new type of autoimmune ulatoryTcellandantigenpresenting 314–324. vivalthroughactivationofrecipient lymphoproliferativesyndrome.Blood cellinteractiononimmuneresponse Bleesing,J.J.,Morrow,M.R.,Uzel,G., double-negativeregulatoryTcells.J. 108,1306–1312. suppression.Int.Immunopharmacol. andFleisher,T.A.(2001b). Human Immunol.175,3409–3416. Di Ianni, M., Falzetti, F., Carotti, A., 11,597–603. Tcellactivationinducestheexpres- Cohen, P. L., and Eisenberg, R. A. Terenzi,A.,Castellino,F.,Bonifacio, FordMcIntyre,M.S.,Young,K.J.,Gao, sion of a novel CD45 isoform that (1992).Thelprandgldgenesinsys- E.,etal.(2011).TregspreventGVHD J., Joe, B., and Zhang, L. (2008). isanalogoustomurineB220andis temicautoimmunity: lifeanddeath andpromoteimmunereconstitution Cutting edge: in vivo trogocytosis associatedwithalteredO-glycansyn- intheFaslane.Immunol.Today13, in HLA-haploidentical transplanta- asamechanismof doublenegative thesis and onset of apoptosis. Cell. 427–428. tion.Blood117,3921–3928. regulatory T cell-mediated antigen- Immunol.213,72–81. Coquet,J.M.,Chakravarti,S.,Kyparis- Doreau,A.,Belot,A.,Bastid,J.,Riche, specificsuppression.J.Immunol.181, Bristeau-Leprince, A., Mateo, V., soudis,K.,Mcnab,F.W.,Pitt,L.A., B.,Trescol-Biemont,M.C.,Ranchin, 2271–2275. Lim, A., Magerus-Chatinet, A., Mckenzie,B.S.,etal.(2008).Diverse B., etal. (2009). Interleukin17acts Gao, J. F., McIntyre, M. S., Juvet, S. Solary, E., Fischer, A., etal. cytokineproductionbyNKTcellsub- insynergywithBcell-activatingfac- C., Diao, J., Li, X., Vanama, R. B., (2008). Human TCR alpha/beta+ sets and identification of an IL-17- tortoinfluenceBcellbiologyandthe etal.(2011).Regulationofantigen- CD4−CD8−double-negativeTcells producing CD4−NK1.1− NKT cell pathophysiology of systemic lupus expressingdendriticcellsbydouble in patients with autoimmune lym- population. Proc. Natl. Acad. Sci. erythematosus. Nat. Immunol. 10, negative regulatory T cells. Eur. J. phoproliferative syndrome express U.S.A.105,11287–11292. 778–785. Immunol.41,2699–2708. restricted Vbeta TCR diversity and Cowley,S.C.,Hamilton,E.,Frelinger,J. Dugas, V., Beauchamp, C., Chabot- Garza, K. M., Chan, S. M., Suri, R., areclonallyrelatedtoCD8+Tcells. A.,Su,J.,Forman,J.,andElkins,K. Roy,G.,Hillhouse,E.E.,andLesage, Nguyen,L.T.,Odermatt,B.,Schoen- J.Immunol.181,440–448. L.(2005).CD4−CD8−Tcellscontrol S.(2010). Implicationof theCD47 berger, S. P., etal. (2000). Role of Bruley-Rosset,M.,Miconnet,I.,Canon, intracellularbacterialinfectionsboth pathwayinautoimmunediabetes.J. antigen-presentingcellsinmediating C., andHalle-Pannenko, O.(1990). invitroandinvivo.J.Exp.Med.202, Autoimmun.35,23–32. toleranceandautoimmunity.J.Exp. Mlsa generated suppressor cells. I. 309–319. Duncan,B.,Nazarov-Stoica,C.,Surls, Med.191,2021–2027. Suppressionismediatedbydouble- Cowley, S. C., Meierovics, A. I., J., Kehl, M., Bona, C., Casares, He, K. M., Ma, Y., Wang, S., Min, negative (CD3+CD5+CD4−CD8−) Frelinger, J. A., Iwakura, Y., S., etal. (2010). Double negative W.P.,Zhong,R.,Jevnikar,A.,etal. alpha/beta T cell receptor-bearing and Elkins, K. L. (2010). Lung (CD3+4−8−) TCRαβ splenic cells (2007).Donordouble-negativeTreg cells.J.Immunol.145,4046–4052. CD4−CD8−double-negativeTcells fromyoungNODmiceprovidelong- promoteallogeneicmixedchimerism Chaidos, A., Patterson, S., Szydlo, R., areprominentproducersof IL-17A lastingprotectionagainsttype1dia- andtolerance. Eur. J.Immunol. 37, Chaudhry, M. S., Dazzi, F., Kan- andIFN-gammaduringprimaryres- betes. PLoS ONE 5:e11427. doi: 3455–3466. fer, E., etal. (2012). Graft invari- piratorymurineinfectionwithFran- 10.1371/journal.pone.0011427 Hillhouse, E. E., Beauchamp, C., antnaturalkillerT-celldosepredicts cisellatularensislivevaccinestrain.J. Fehr,T.,andSykes,M.(2004).Tolerance Chabot-Roy, G., Dugas, V., and risk of acute graft-versus-host dis- Immunol.184,5791–5801. inductioninclinicaltransplantation. Lesage, S. (2010). Interleukin-10 easeinallogeneichematopoieticstem Crispin, J. C., Oukka, M., Bayliss, Transpl.Immunol.13,117–130. limitstheexpansionofimmunoreg- celltransplantation.Blood119,5030– G., Cohen, R. A., Van Beek, C. Fischer, K., Voelkl, S., Heymann, ulatory CD4−CD8− T cells in 5036. A., Stillman, I. E., etal. (2008). J., Przybylski, G. K., Mondal, K., autoimmune-prone non-obese FrontiersinImmunology|ImmunologicalTolerance January2013|Volume4|Article6|8 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 8 — #8 Hillhouseetal. ImmunoregulatoryDNTcellsfortherapy diabeticmice.Immunol.CellBiol.88, adenocarcinoma. J. Immunol. 169, providedbyCD28.J.Exp.Med.179, marrow chimerism by inducing T- 771–780. 2756–2761. 709–713. cellclonaldeletionandsuppressing Hillhouse,E.E.,andLesage,S.(2012). Ma,Y.,He,K.M.,Garcia,B.,Min,W., Raiola, A. M., Van Lint, M. T., Val- NKcellfunction.Eur.J.Immunol.42, Acomprehensivereviewofthephe- Jevnikar,A.,andZhang,Z.X.(2008). bonesi,M.,Lamparelli,T.,Gualandi, 1216–1225. notype and function of antigen- Adoptivetransferofdoublenegative F.,Occhini,D.,etal.(2003).Factors Takahashi,T.,Tanaka,M.,Brannan,C. specific immunoregulatory double TregulatorycellsinducesB-celldeath predictingresponseandgraft-versus- I., Jenkins, N.A., Copeland, N.G., negativeTcells. J.Autoimmun. doi: invivoandaltersrejectionpatternof hostdiseaseafterdonorlymphocyte Suda, T., etal. (1994). Generalized 10.1016/j.jaut.2012.1007.1010[Epub rat-to-mouse heart transplantation. infusions:astudyon593infusions. lymphoproliferativediseaseinmice, aheadofprint]. Xenotransplantation15,56–63. Bone Marrow Transplant. 31, causedbyapointmutationintheFas Hoffmann, P., Ermann, J., Edinger, Magerus-Chatinet, A., Stolzenberg, 687–693. ligand.Cell76,969–976. M., Fathman, C. G., and M. C., Loffredo, M. S., Neven, Rieux-Laucat, F., LeDeist, F., Hivroz, Thomson,C.W.,Teft,W.A.,Chen,W., Strober, S. (2002). Donor-type B., Schaffner, C., Ducrot, N., C., Roberts, I. A., Debatin, K. M., Lee,B.P.,Madrenas,J.,andZhang, CD4(+)CD25(+)regulatoryTcells etal. (2009). FAS-L, IL-10, and Fischer, A., etal. (1995). Muta- L. (2006). FcR gamma presence in suppress lethal acute graft-versus- double-negativeCD4−CD8−TCR tionsinFasassociatedwithhuman TCR complex of double-negative T host disease after allogeneic bone alpha/beta+Tcellsarereliablemark- lymphoproliferative syndrome and cells is critical for their regulatory marrowtransplantation.J.Exp.Med. ers of autoimmune lymphoprolif- autoimmunity. Science 268, 1347– function. J. Immunol. 177, 2250– 196,389–399. erativesyndrome(ALPS)associated 1349. 2257. Joly,E.,andHudrisier,D.(2003).What withFASlossoffunction.Blood113, Riol-Blanco,L.,Lazarevic,V.,Awasthi, Tikhonova, A. N., Van Laethem, F., is trogocytosis and what is its pur- 3027–3030. A., Mitsdoerffer, M., Wilson, B. Hanada, K., Lu, J., Pobezinsky, L. pose?Nat.Immunol.4,815. McIver, Z., Serio, B., Dunbar, A., S., Croxford, A., etal. (2010). IL- A.,Hong,C.,etal.(2012).αβTcell Kishimoto, H., and Sprent, J. (1997). O’Keefe,C.L.,Powers,J.,Wlodarski, 23receptorregulatesunconventional receptorsthatdonotundergomajor Negative selection in the thymus M., etal. (2008). Double-negative IL-17-producingTcellsthatcontrol histocompatibility complex-specific includessemimatureTcells. J.Exp. regulatory T cells induce allotoler- bacterialinfections.J.Immunol.184, thymic selection possess antibody- Med.185,263–271. ancewhenexpandedafterallogeneic 1710–1720. likerecognitionspecificities. Immu- Kohrt,H.E.,Pillai,A.B.,Lowsky,R.,and haematopoieticstemcelltransplan- Rubocki, R. J., Hansen, T. H., and nity36,79–91. Strober, S.(2010). NKTcells, Treg, tation.Br.J.Haematol.141,170–178. Lee,D.R.(1986).Molecularstudies VanLaethem,F.,Sarafova,S.D.,Park, andtheirinteractionsinbonemar- Merims,S.,Li,X.,Joe,B.,Dokouhaki, ofmurinemutantBALB/c-H-2dm2 J.H.,Tai,X.,Pobezinsky,L.,Guinter, rowtransplantation.Eur.J.Immunol. P., Han, M., Childs, R. W., etal. define a deletion of several class I T.I.,etal. (2007). DeletionofCD4 40,1862–1869. (2011). Anti-leukemia effect of ex genes including the entire H-2Ld andCD8coreceptorspermitsgenera- Kusnierz-Glaz,C.R.,Still,B.J.,Amano, vivoexpandedDNTcellsfromAML gene.Proc.Natl.Acad.Sci.U.S.A.83, tionofalphabetaTcellsthatrecognize M.,Zukor,J.D.,Negrin,R.S.,Blume, patients: a potential novel autolo- 9606–9610. antigensindependentlyoftheMHC. K. G., etal. (1997). Granulocyte gousT-celladoptiveimmunotherapy. Sha,W.C.,Nelson,C.A.,Newberry,R. Immunity27,735–750. colony-stimulating factor-induced Leukemia25,1415–1422. D.,Kranz,D.M.,Russell,J.H.,and Voelkl, S., Moore, T. V., Rehli, M., comobilization of CD4− CD8− T Ohashi, P. S., Oehen, S., Buerki, K., Loh, D.Y.(1988). Selectiveexpres- Nishimura, M. I., Mackensen, A., cells and hematopoietic progenitor Pircher, H., Ohashi, C. T., Oder- sionofanantigenreceptoronCD8- and Fischer, K. (2009). Character- cells (CD34+) in the blood of matt, B., etal. (1991). Ablation of bearingTlymphocytesintransgenic ization of MHC class-I restricted normal donors. Blood 89, 2586– “tolerance”andinductionofdiabetes mice.Nature335,271–274. TCRalphabeta+CD4−CD8−dou- 2595. by virus infection in viral antigen Shimizu,J.,Yamazaki,S.,andSakaguchi, ble negative T cells recognizing the Lee, B. P., Mansfield, E., Hsieh, transgenicmice.Cell65,305–317. S.(1999).Inductionoftumorimmu- gp100 antigen from a melanoma S. C., Hernandez-Boussard, T., Oldenborg,P.A.(2004).RoleofCD47 nity by removing CD25+CD4+ T patientaftergp100vaccination.Can- Chen, W., Thomson, C. W., inerythroidcellsandinautoimmu- cells:acommonbasisbetweentumor cer Immunol. Immunother. 58, etal.(2005).Expressionprofilingof nity.Leuk.Lymphoma45,1319–1327. immunity and autoimmunity. J. 709–718. murinedouble-negativeregulatoryT Onizuka,S.,Tawara,I.,Shimizu,J.,Sak- Immunol.163,5211–5218. Watanabe-Fukunaga,R.,Brannan,C.I., cells suggest mechanisms for pro- aguchi,S.,Fujita,T.,andNakayama, Shlomchik,W.D.(2007).Graft-versus- Copeland,N.G.,Jenkins,N.A.,and longed cardiac allograft survival. J. E. (1999). Tumor rejection by in hostdisease. Nat. Rev. Immunol. 7, Nagata, S. (1992). Lymphoprolifer- Immunol.174,4535–4544. vivo administration of anti-CD25 340–352. ationdisorderinmiceexplainedby Lee, S. J. (2005). New approaches (interleukin-2receptoralpha)mon- Somasundaram, R., Jacob, L., Swo- defectsinFasantigenthatmediates for preventing and treating chronic oclonal antibody. Cancer Res. 59, boda, R., Caputo, L., Song, H., apoptosis.Nature356,314–317. graft-versus-hostdisease.Blood105, 3128–3133. Basak,S.,etal.(2002).Inhibitionof Wong, C. K., Ho, C. Y., Li, E. K., 4200–4206. Pobezinsky, L.A., Angelov, G.S., Tai, cytolyticTlymphocyteproliferation and Lam, C. W. (2000). Elevation Lesage, S., Charron, J., Winslow, G., X., Jeurling, S., Van Laethem, F., byautologousCD4+/CD25+regula- ofproinflammatorycytokine(IL-18, and Hugo, P. (1997). Induction of Feigenbaum,L.,etal.(2012).Clonal toryTcellsinacolorectalcarcinoma IL-17,IL-12)andTh2cytokine(IL-4) thymocytedeletionbypurifiedsin- deletion and the fate of autoreac- patientismediatedbytransforming concentrationsinpatientswithsys- glepeptide/majorhistocompatibility tive thymocytes that survive nega- growth factor-beta. Cancer Res. 62, temiclupuserythematosus.Lupus9, complex ligands. J. Immunol. 159, tive selection. Nat. Immunol. 13, 5267–5272. 589–593. 2078–2081. 569–578. Strober, S., Dejbachsh-Jones, S., Van Yang,L.,DuTemple,B.,Gorczynski,R. Lesage,S.,Hartley,S.B.,Akkaraju,S., Priatel, J. J., Utting, O., and Teh, H. Vlasselaer, P., Duwe, G., Salimi, S., M.,Levy,G.,andZhang,L.(1999). Wilson,J.,Townsend,M.,andGood- S.(2001). TCR/self-antigeninterac- and Allison, J. P. (1989). Cloned Evidence for epitope spreading and now,C.C.(2002).Failuretocensor tions drive double-negative T cell naturalsuppressorcelllinesexpress activesuppressioninskingrafttol- forbidden clones of CD4 T cells in peripheralexpansionanddifferentia- the CD3+CD4−CD8− surface phe- erance after donor-specific trans- autoimmune diabetes. J. Exp. Med. tionintosuppressorcells.J.Immunol. notype and the alpha, beta het- fusion. Transplantation 67, 1404– 196,1175–1188. 167,6188–6194. erodimer of the T cell antigen 1410. Liyanage,U.K.,Moore,T.T.,Joo,H.G., Punt, J. A., Osborne, B. A., Taka- receptor. J. Immunol. 143, 1118– Yang, L., DuTemple, B., Khan, Q., Tanaka,Y., Herrmann,V., Doherty, hama, Y., Sharrow, S. O., and 1122. andZhang, L.(1998). Mechanisms G.,etal.(2002).Prevalenceofregula- Singer,A.(1994).Negativeselection Su, Y., Huang, X., Wang, S., Min, oflong-termdonor-specificallograft toryTcellsisincreasedinperipheral ofCD4+CD8+thymocytesbyTcell W. P., Yin, Z., Jevnikar, A. M., survival induced by pretransplant bloodandtumormicroenvironment receptor-induced apoptosis requires etal. (2012). Double negative Treg infusion of lymphocytes. Blood 91, of patients with pancreas or breast a costimulatory signal that can be cellspromotenonmyeloablativebone 324–330. www.frontiersin.org January2013|Volume4|Article6|9 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 9 — #9 Hillhouseetal. ImmunoregulatoryDNTcellsfortherapy Ye, H., Chang, Y., Zhao, X., and double-negative regulatory T cells. Zhang, Z. X., Lian, D., Huang, Conflict of Interest Statement: The Huang, X.(2011). Characterization Blood100,3408–3414. X., Wang, S., Sun, H., Liu, W., authors declare that the research was ofCD3+CD4−CD8−(doublenega- Young, K. J., and Zhang, L. (2002). etal. (2011b). Adoptive transfer of conductedintheabsenceofanycom- tive)Tcellsreconstitutioninpatients The nature and mechanisms of DNT cells induces long-term car- mercial or financial relationships that following hematopoietic stem-cell DNregulatoryT-cellmediatedsup- diacallograftsurvivalandaugments couldbeconstruedasapotentialcon- transplantation. Transpl. Immunol. pression. Hum. Immunol. 63, recipientCD4(+)Foxp3(+)Tregcell flictofinterest. 25,180–186. 926–934. accumulation.Transpl.Immunol.24, Young, K. J., DuTemple, B., Phillips, Zeng, D., Liu, Y., Sidobre, S., 119–126. Received: 09 November 2012; paper M.J., andZhang, L.(2003a). Inhi- Kronenberg, M., and Strober, S. Zhang, Z. X., Ma, Y., Wang, H., pending published: 02 January 2013; bitionofgraft-versus-hostdiseaseby (2003).ActivationofnaturalkillerT Arp, J., Jiang, J., Huang, X., etal. accepted: 05 January 2013; published double-negativeregulatoryTcells.J. cells in NZB/W mice induces Th1- (2006). Double-negative T cells, online:24January2013. Immunol.171,134–141. typeimmuneresponsesexacerbating activated by xenoantigen, lyse Citation: Hillhouse EE, Delisle J-S Young, K. J., Kay, L. S., Phillips, M. lupus. J. Clin. Invest. 112, 1211– autologous B and T cells using andLesageS(2013)Immunoregulatory J., and Zhang, L. (2003b). Anti- 1222. a perforin/granzyme-dependent, CD4−CD8−Tcellsasapotentialther- tumoractivitymediatedbydouble- Zhang, D., Yang, W., Degauque, N., fas–fas ligand-independent path- apeutictoolfortransplantation,autoim- negativeTcells.CancerRes.63,8014– Tian,Y., Mikita, A., andZheng, X. way. J. Immunol. 177, 6920– munity,andcancer.Front.Immun.4:6. 8021. X.(2007).Newdifferentiationpath- 6929. doi:10.3389/fimmu.2013.00006 Young, K. J., DuTemple, B., Zhang, way for double-negative regulatory Zhang, Z. X., Stanford, W. L., and ThisarticlewassubmittedtoFrontiersin Z., Levy, G., and Zhang, L. Tcellsthatregulatesthemagnitude Zhang,L.(2002).Ly-6Aiscriticalfor ImmunologicalTolerance, aspecialtyof (2001). CD4(−)CD8(−) regulatory of immune responses. Blood 109, thefunctionofdoublenegativereg- FrontiersinImmunology. T cells implicated in prevent- 4071–4079. ulatoryTcells.Eur.J.Immunol.32, Copyright©2013Hillhouse,Delisleand ing graft-versus-host and promot- Zhang, D., Zhang, W., Ng, T. W., 1584–1592. Lesage.Thisisanopen-accessarticledis- inggraft-versus-leukemiaresponses. Wang,Y.,Liu,Q.,Gorantla,V.,etal. Zhang, Z. X., Yang, L., Young, K. tributedunderthetermsoftheCreative Transplant.Proc.33,1762–1763. (2011a).Adoptivecelltherapyusing J., Dutemple, B., and Zhang, L. Commons Attribution License, which Young, K. J., Yang, L., Phillips, antigen-specificCD4−CD8− Treg- (2000). Identification of a pre- permitsuse, distributionandreproduc- M. J., and Zhang, L. (2002). ulatorycellstopreventautoimmune viously unknown antigen-specific tioninotherforums,providedtheorigi- Donor-lymphocyteinfusioninduces diabetesandpromoteisletallograft regulatory T cell and its mecha- nalauthorsandsourcearecreditedand transplantationtolerancebyactivat- survivalinNODmice. Diabetologia nism of suppression. Nat Med 6, subjecttoanycopyrightnoticesconcern- ing systemic and graft-infiltrating 54,2082–2092. 782–789. inganythird-partygraphicsetc. FrontiersinImmunology|ImmunologicalTolerance January2013|Volume4|Article6|10 “fimmu-04-00006” — 2013/1/22 — 16:33 — page 10 — #10