APRIL2006 VOLUME54 NUMBER4 IETMAB (ISSN0018-9480) PART I OF TWO PARTS PAPERS DesignandColdTestingofaRadialExtractionOutputCavityforaFrequency-DoublingGyroklystron .................. ................................... K.Bharathan,W.Lawson,J.Anderson,E.S.Gouveia,B.P.Hogan,andI.Spassovsky 1301 TissueSensingAdaptiveRadarforBreastCancerDetection—InvestigationsofanImprovedSkin-SensingMethod T.C.Williams,E.C.Fear,andD.T.Westwick 1308 PerformanceAnalysisofSignalViasUsingVirtualIslandsWithShortingViasinMultilayerPCBs ....................... ...................................................... S.Nam,Y.Kim,Y.Kim,H.Jang,S.Hur,B.Song,J.Lee,andJ.Jeong 1315 ANovelToroidalInductorStructureWithThrough-HoleViasinGroundPlane....... M.D.PhillipsandR.K.Settaluri 1325 NovelCircuitModelforThree-DimensionalGeometriesWithMultilayerDielectrics ....................................... ......................................................................... J.Jayabalan,B.-L.Ooi,M.-S.Leong,andM.K.Iyer 1331 AugmentedHammersteinPredistorterforLinearizationofBroad-BandWirelessTransmitters ............................. .................................................................................... T.Liu,S.Boumaiza,andF.M.Ghannouchi 1340 AFull-WaveNumericalApproachforModalAnalysisof1-DPeriodicMicrostripStructures .............................. .................................................................... P.Baccarelli,C.DiNallo,S.Paulotto,andD.R.Jackson 1350 Close-in Phase-Noise Enhanced Voltage-Controlled Oscillator Employing Parasitic V-NPN Transistor in CMOS Process .............................................................................. Y.Ku,I.Nam,S.Ha,K.Lee,andS.Cho 1363 A10–35-GHzSix-ChannelMicrostripMultiplexerforWide-BandCommunicationSystems..... S.HongandK.Chang 1370 ComparisonsBetweenSerpentineandFlatSpiralDelayLinesonTransientReflection/TransmissionWaveformsandEye Diagrams .................................................................. W.-D.Guo,G.-H.Shiue,C.-M.Lin,andR.-B.Wu 1379 AnalysesofEllipticalCoplanarCoupledWaveguidesandCoplanarCoupledWaveguidesWithFiniteGroundWidth ... ................................................................................. M.Duyar,V.Akan,E.Yazgan,andM.Bayrak 1388 Powerand EfficiencyEnhancement of 3G Multicarrier AmplifiersUsing Digital Signal Processing WithExperimental Validation .................................................... M. Helaoui,S.Boumaiza,A.Ghazel,andF.M.Ghannouchi 1396 DesignofNewThree-LineBalunandItsImplementationUsingMultilayerConfiguration ................................. .............................................................................. B.H.Lee,D.S.Park,S.S.Park,andM.C.Park 1405 ADigitalDispersiveMatchingNetworkforSAWDevicesinChirpTransformSpectrometers ............................. ................................................................................ G.L.Villanueva,P.Hartogh,andL.M.Reindl 1415 CompensationMethodforaNonlinearAmplifierUsingtheGainExpansionPhenomenoninaDohertyAmplifier....... ........................................................................................ H.T.Jeong,I.S.Chang,andC.D.Kim 1425 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) MeasurementofFrequency-DependentEquivalentWidthofSubstrateIntegratedWaveguide .............................. ...................................................................................................... C.-H.TsengandT.-H.Chu 1431 Subwavelength-Resolution Microwave Tomography Using Wire Grid Models and Enhanced Regularization Techniques ........................................................................ B.Omrane,J.-J. Laurin,andY.Goussard 1438 Left-Handed Electromagnetic Properties of Split-Ring Resonator and Wire Loaded Transmission Line in a Fin-Line Technology..................................... T. Decoopman,A.Marteau,E.Lheurette,O.Vanbésien,andD.Lippens 1451 Wide-BandPredistortionLinearizationforExternallyModulatedLong-HaulAnalogFiber-OpticLinks .................. .......................................................... V.J.Urick,M.S.Rogge,P.F.Knapp,L.Swingen,andF.Bucholtz 1458 A16-TermErrorModelBasedonLinearEquationsofVoltageandCurrentVariables....................................... .............................................................................................. K.Silvonen,N.H.Zhu,andY.Liu 1464 IntegratedPlanarSpatialPowerCombiner..................................................................... L.LiandK.Wu 1470 SignalModelandLinearizationforNonlinearChirpsinFMCWRadarSAW-IDTagRequest.............................. ..................................................................................... S.Scheiblhofer,S.Schuster,andA.Stelzer 1477 IterativeImageReconstructionofTwo-DimensionalScatterersIlluminatedbyTEWaves................................... ................................................................. D.Franceschini,M.Donell,G.Franceschini,andA.Massa 1484 5.8-GHzCircularlyPolarizedDual-DiodeRectennaandRectennaArrayforMicrowavePowerTransmission............ ...........................................................................................................Y.-J.RenandK.Chang 1495 PatchEnd-Launchers—AFamilyofCompactColinearCoaxial-to-RectangularWaveguideTransitions................... ...................................................................................... M.Simeoni,C.I.Coman,andI.E.Lager 1503 AnLTCCBalanced-to-UnbalancedExtracted-PoleBandpassFilterWithComplexLoad ...... L.K.YeungandK.-L.Wu 1512 StudyandSuppressionofRipplesinPassbandsofSeries/ParallelLoadedEBGFilters ...................................... .....................................................................C.Gao,Z.N.Chen,Y.Y.Wang,N.Yang,andX.M.Qing 1519 DesignandExperimentalVerificationofBackward-WavePropagationinPeriodicWaveguideStructures ................. ........................................................................ J.Carbonell,L.J.Roglá,V.E.Boria,andD.Lippens 1527 Two-ResonatorMethodforMeasurementofDielectricAnisotropyinMultilayerSamples................... P.I. Dankov 1534 TheEffectsofComponent DistributiononMicrowaveFilters ................................. C.-M.TsaiandH.-M.Lee 1545 ANoiseOptimizationFormulationforCMOSLow-NoiseAmplifiersWithOn-ChipLow- Inductors ................... ..................................................................................K.-J.Sun,Z.-M.Tsai,K.-Y.Lin,andH.Wang 1554 DesignandFabricationofMultibandp-i-nDiodeSwitchesWithLadderCircuits............................................ ..............................................................................S.Tanaka,S.Horiuchi,T.Kimura,andY.Atsumi 1561 -BandDual-PathDual-PolarizedAntennaSystemforSatelliteDigitalAudioRadioService(SDARS)Application .... ....................................... Y.-P.Hong,J.-M.Kim,S.-C.Jeong,D.-H.Kim,M.-H.Choi,Y.Lee,andJ.-G.Yook 1569 AComparativeTestofBrillouinAmplificationandErbium-DopedFiberAmplificationfortheGenerationofMillimeter WavesWithLowPhaseNoiseProperties ...................................................................................... ......................... M.Junker,M.J.Ammann,A.T.Schwarzbacher,J.Klinger,K.-U.Lauterbach,andT.Schneider 1576 CompositeRight/Left-HandedTransmissionLineMetamaterialPhaseShifters(MPS)inMMICTechnology ............ ....................................................................................J.Perruisseau-CarrierandA.K.Skrivervik 1582 ANewFeedbackMethodforPowerAmplifierWithUnilateralizationandImprovedOutputReturnLoss................. ........................................................................... Z.-M.Tsai,K.-J.Sun,G.D.Vendelin,andH.Wang 1590 SensitivityAnalysisofScatteringParametersWithElectromagneticTime-DomainSimulators............................. .................................................................................... N.K.Nikolova,Y.Li,Y.Li,andM.H.Bakr 1598 Self-ConsistentCoupledCarrierTransportFull-WaveEMAnalysisofSemiconductorTraveling-WaveDevices ......... .................................................. F.Bertazzi,F.Cappelluti,S.DonatiGuerrieri,F.Bonani,andG.Ghione 1611 Periodic FDTD Analysis of Leaky-Wave Structures and Applications to the Analysis of Negative-Refractive-Index Leaky-WaveAntennas .................................................. T.Kokkinos,C.D.Sarris,andG.E.Eleftheriades 1619 LETTERS Correctionsto“Complex-PermittivityMeasurementonHigh- MaterialsviaCombinedNumericalApproaches” ...... ........................................................................................... X.C.Fan,X.M.Chen,andX.Q.Liu 1631 Corrections to “Error Correction for Diffraction and Multiple Scattering in Free-Space Microwave Measurement of Materials” ............................................................................................................ K.M.Hock 1631 InformationforAuthors ............................................................................................................ 1632 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheory andtechniques.AllmembersoftheIEEEareeligibleformembershipintheSocietyuponpaymentoftheannualSocietymembershipfeeof$14.00,plusanannualsubscriptionfee of$16.00peryearforelectronicmediaonlyor$32.00peryearforelectronicandprintmedia.Forinformationonjoining,writetotheIEEEattheaddressbelow.Membercopiesof Transactions/Journalsareforpersonaluseonly. ADMINISTRATIVECOMMITTEE K.VARIAN, President J.S.KENNEY, PresidentElect W.H.CANTRELL, Secretary N.KOLIAS, Treasurer M.P.DELISIO D.HARVEY L.KATEHI N.KOLIAS D.LOVELACE V.J.NAIR W.SHIROMA K.VARIAN K.WU S.M.EL-GHAZALY J.HAUSNER S.KAWASAKI T.LEE J.MODELSKI B.PERLMAN R.SNYDER R.WEIGEL R.YORK M.HARRIS K.ITOH J.S.KENNEY J.LIN A.MORTAZAWI D.RUTLEDGE R.SORRENTINO S.WETENKAMP HonoraryLifeMembers DistinguishedLecturers PastPresidents T.ITOH T.S.SAAD K.TOMIYASU L.E.DAVIS W.HOEFER J.LASKAR M.SHUR K.C.GUPTA(2005) A.A.OLINER P.STAECKER L.YOUNG W.GWAREK T.ITOH J.C.RAUTIO P.SIEGEL R.J.TREW (2004) W.HEINRICH B.KIM D.RYTTING R.J.TREW F.SCHINDLER(2003) MTT-SChapterChairs Albuquerque:S.BIGELOW Foothill: C.ANTONIAK NorthJersey:K.DIXIT Singapore: O.B.LEONG Atlanta: D.LEATHERWOOD France:O.PICON NorthQueensland: A.TSAKISSIRIS SouthAfrica: P.W.VANDERWALT Austria: R.WEIGEL Germany:W.HEINRICH NorthernNevada: B.S.RAWAT SouthAustralia: H.HANSON Baltimore: D.KREMER Greece:I.XANTHAKIS Norway:Y.THODESEN SouthBrazil: L.C.KRETLEY Beijing: Z.FENG HongKong: W.Y.TAM OrangeCounty:H.J.DELOSSANTOS SoutheasternMichigan: L.M.ANNEBERG Beijing,Nanjing: W.X.ZHANG Houston:J.T.WILLIAMS Oregon: T.RUTTAN SouthernAlberta: E.C.FEAR Belarus: A.GUSINSKY Houston,CollegeStation: K..MICHALSKI Orlando:T.WU Spain:L.DEHARO Benelux: D.V.-JANVIER Hungary: T.BERCELI Ottawa: J.E.ROY Springfield:S.C.REISING Brasilia: A.KLAUTAU,JR. Huntsville:H.G.SCHANTZ Philadelphia:J.B.MCCORMACK Sweden:A..RYDBERG Buenaventura: L.HAYS India/Calcutta:P.K.SAHA Phoenix: C.WEITZEL Switzerland:J.HESSELBARTH Buffalo: E.M.BALSER IndiaCouncil:K.S.CHARI Poloand: M.P.MROZOWSKI Syracuse:E.ARVAS Bulgaria: K.ASPARUHOVA Israel:S.AUSTER Portugal: C.A.CARDOSOFERNANDES Taipei: C.-S.LU CedarRapids/CentralIowa: D.JOHNSON JapanCouncil:Y.TAKAYAMA Princeton/CentralJersey: W.CURTICE/A.KATZ Thailand:M.KRAIRIKSH CentralNewEngland: F.SULLIVAN Kitchener-Waterloo:R.R.MANSOUR Queensland:A.ROBINSON Toronto: G.V.ELEFTHERIADES Central&SouthItaly: R.TIBERIO Lithuania:V.URBANAVICIUS RiodeJaneiro: F.J.V.HASSELMANN Tucson:N.BURGESS/S.MORALES CentralNo.Carolina:T.IVANOV LongIsland/NewYork: J.COLOTTI Rochester:S.M.CICCARELLLI/ Turkey: O.A.CIVI Chicago: R.KOLLMAN LosAngeles,Coastal: A.SHARMA J.VENKATARAMAN TwinCities: M.J.GAWRONSKI Cleveland: G.PONCHAK LosAngeles,Metro: J.WEILER Romania:I.SIMA UkraineWest: M.I.ANDRIYCHUK Columbus:F.TEIXEIRA Malaysia:Z.AWANG Russia,Nizhny-Novgorad: Y.BELOV UK/RI:A.REZAZADEH Connecticut:C.BLAIR/R.ZEITLER Melbourne:R.BOTSFORD Russia,SaintPetersburg: M.SITNIKOVA Ukraine,CentralKiev: Y.POPLAVKO Croatia: Z.SIPUS Milwaukee:S.G.JOSHI Russia,Moscow:V.KALOSHIN Ukraine,East: E.I.VELIEV Czech/Slovakia: P.HAZDRA MohawkValley: P.RATAZZI Russia,Saratov-Penza: N.RYSKIN Ukraine,Rep.ofGeorgia:R.ZARIDZE Dallas: R.D.BALUSEK MonterreyMexico: R.M.RODRIGUEZ-DAGNINO SaintLouis:D.MACKE Ukraine,Vinnitsya:V.DUBOVOY Dayton: A.TERZOULI, JR. Montreal:K.WU SanDiego: J.TWOMEY Venezuela:M.PETRIZZELLI Denver: K.BOIS NewHampshire:T.PERKINS SantaClaraValley/SanFrancisco: S..KUMAR Victoria:A.MITCHELL EasternNo.Carolina:D.PALMER NewJerseyCoast: E.HU Seattle: K.POULSON VirginiaMountain: D.MILLER Egypt: I.A.SALEM NewSouthWales: G.TOWN SeoulCoucil: H.-Y.LEE WashingtonDC/NorthernVirginia: J.QIU Finland: T.KARTTAAVI NewZealand:J.MAZIERSKA Siberia,Novosibirsk: V.SHUBALOV Winnipeg:S.NOGHANIAN FloridaWestCoast:S.O’CONNOR NorthItaly: G.GHIONE Siberia,Tomsk: O.STUKACH Yugoslavia:B.MILOVANOVIC Editor-In-Chief MICHAEL STEER AssociateEditors NorthCarolinaStateUniv. Raleigh,NC27695-7911USA ANDREASCANGELLARIS ZOYA POPOVIC RUEY-BEEI WU MANH ANH DO Phone:+19195155191 Univ.ofIllinois,UrbanaChampaign Univ.ofColorado,Boulder NationalTaiwanUniv. NanyangTechnologicalUniv. Fax:+19195131979 USA USA Taiwan, R.O.C. Singapore email:[email protected] email:[email protected] email:[email protected] email:[email protected] email:[email protected] AMIR MORTAZAWI DYLANF.WILLIAMS ALESSANDROCIDRONALI VITTORIO RIZZOLI Univ.ofMichigan,AnnArbor NIST Univ. of Florence Univ. of Bologna USA USA Italy Italy email:[email protected] email:[email protected] email:alessandro.cidronal@unifi.it email:[email protected] YOSHIO NIKAWA KENJI ITOH STEVEN MARSH SANJAY RAMAN Kokushikan Univ. Mitsubishi Electronics Midas Consulting VirginiaPolytech.Inst.andStateUniv. Japan Japan U.K. USA email:[email protected] email:[email protected] email:[email protected] email:[email protected] JOSÉ PEDRO DAVID LINTON TADEUSZ WYSOCKI ALEXANDERYAKOVLEV Univ. of Aveiro Queen’s Univ.Belfast Univ. of Wollongong Univ. of Mississippi Portugal Northern Ireland Australia USA email:jcp.mtted.av.it.pt email:[email protected] email:[email protected] email:[email protected] M.GOLIO, Editor,IEEEMicrowaveMagazine G.PONCHAK, Editor,IEEEMicrowaveandWirelessComponentLetters T.LEE, WebMaster IEEE Officers MICHAELR.LIGHTNER, PresidentandCEO SAIFURRAHMAN, VicePresident,PublicationServicesandProducts LEAHH.JAMIESON, President-Elect PEDRORAY, VicePresident,RegionalActivities J.ROBERTODEMARCA, Secretary DONALDN.HEIRMAN, President,IEEEStandardsAssociation JOSEPHV.LILLIE, Treasurer CELIAL.DESMOND, VicePresident,TechnicalActivities W.CLEONANDERSON, PastPresident RALPHW.WYNDRUM,JR., President,IEEE-USA MOSHEKAM, VicePresident,EducationalActivities STUARTA.LONG, Director,DivisionIV—ElectromagneticsandRadiation IEEE Executive Staff JEFFRYW.RAYNES, CAE,ExecutiveDirector&ChiefOperatingOfficer DONALDCURTIS, HumanResources MATTHEWLOEB, CorporateStrategy&Communications ANTHONYDURNIAK, PublicationsActivities RICHARDD.SCHWARTZ, BusinessAdministration JUDITHGORMAN, StandardsActivities CHRISBRANTLEY, IEEE-USA CECELIAJANKOWSKI, RegionalActivities MARYWARD-CALLAN, TechnicalActivities BARBARACOBURNSTOLER, EducationalActivities SALLYA.WASELIK, InformationTechnology IEEE Periodicals Transactions/JournalsDepartment StaffDirector: FRANZAPPULLA EditorialDirector:DAWNMELLEY ProductionDirector:ROBERTSMREK ManagingEditor:MONAMITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibility forthecontentsrestsupontheauthorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997. IEEEOperationsCenter:445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEE Members$20.00(firstcopyonly),nonmember$77.00percopy.(Note:Postageandhandlingchargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest. Availableinmicroficheandmicrofilm.CopyrightandReprintPermissions:Abstractingispermittedwithcredittothesource.Librariesarepermittedtophotocopyforprivateuseof patrons,providedtheper-copyfeeindicatedinthecodeatthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA01923.For allothercopying,reprint,orrepublicationpermission,writetoCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,P.O.Box1331,Piscataway, NJ08855-1331.Copyright©2006byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailing offices.Postmaster:SendaddresschangestoIEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,IEEE,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.GST RegistrationNo.125634188. DigitalObjectIdentifier10.1109/TMTT.2006.874636 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.54,NO.4,APRIL2006 1301 Design and Cold Testing of a Radial Extraction Output Cavity for a Frequency-Doubling Gyroklystron Karthik Bharathan, Student Member, IEEE, WesLawson, Senior Member, IEEE, James Anderson, Emmanuel Steven Gouveia, Bart P.Hogan,and Ivan Spassovsky Abstract—Research in the University of Maryland at College Park’sGyroklystron(GKL)Projecthasrecentlycenteredaround the development of a high-power high-gain frequency-doubling 17.136-GHz system. The current tube is a four-cavity (input, buncher, penultimate, and output) coaxial frequency-doubling system that will be used to drive a linear accelerator structure. Thispaperpresentsthedesign,simulation,optimization,coldtest methodology,andperformancedataofaproposedradialextrac- tion output cavity in which the microwave energy is extracted through an inner coaxial conductor in the TE01 circular mode. Thepositioningofdielectricsinthedriftspacesandtheeffectof Fig.1. UniversityofMarylandatCollegePark’sGKLtestfacilitylayout.Am- axialandradialmisalignmentsbetweentheinnerandouterwalls plifiedmicrowavesinTE circularmodeexitfromlargeuptaperontheright. ofthecavitywerestudiedindepth.Oneadvantageofthistopology isthatitreducesthesizeandcomplexityoftheoutputwaveguide chainotherwiseneededtoconverttheTE02 circularmodefrom the GKL into the standard rectangular waveguide mode for injection into the Haimson Research Corporation accelerator structure. Cold test results show that this new cavity, which has a of 458 and a resonant frequency of 17.112 GHz, is a viable replacementfortheoutputcavitycurrentlyinthesystem,aslong asthecavityiswellaligned. Index Terms—Accelerator drivers, gyroklystron (GKL), mi- crowavecouplingscheme. I. INTRODUCTION SIGNIFICANTmilestonesrecentlyachievedintheUniver- Fig.2. PowertransportfromUniversityofMarylandatCollegePark’sGKL toHRCacceleratorstructure.TheamplifiedoutputsignalfromtheGKLfeeds sity of Maryland at College Park’s Gyroklystron (GKL) intothelargedowntaperontheright. Project include a three-cavity first harmonic coaxial system, whichproducedover75MWofpeakpowerat8.57GHz,anda to condition the four-cavity system to act as a driver for the three-cavityfrequency-doublingsystemthatproduced27MW acceleratorstructuredesignedanddeliveredtotheUniversityof at17.14GHz[1],[2].Thelatterservedasastartingpointforthe MarylandatCollegeParkbytheHaimsonResearchCorporation designofafour-cavityfrequency-doublingsystem[3]thatwas (HRC),SantaClara,CA[4]. expectedtohavealarge-signalgainofabove50dB.Thiswas The HRC accelerator structure employs a compact power achievedinpartbytheintroductionofanadditionalgaincavity multiplier system based on a dual hybrid feed ( rectan- (penultimate cavity) before the output cavity. Fig. 1 shows a gular mode) bridge configuration, effectively generating high schematicofthetestfacilitywherethedifferentGKLtubesare acceleratinggradients[4].Toenabletheexperimentalsystemto testedandcharacterized.Thecurrentfocusoftheexperimentis beadriverfortheHRCacceleratorstructure,apowertransport system that connects the output of the GKL ( circular mode) to the two rectangular WR-62 injection arms of the ManuscriptreceivedJanuary13,2005;revisedAugust12,2005.Thiswork HRCstructurewasdesignedandfabricated(Fig.2).Theoutput wassupportedbytheDivisionofHigh-EnergyPhysics,DepartmentofEnergy signalfromthelargeuptaper(whichwouldordinarilyfeedthe underagrant. anechoic chamber) is now diverted via a nonlinear downtaper K.BharathaniswithSprint,Chicago,IL60657USA. W.Lawson,E.S.Gouveia,andB.P.HoganarewiththeInstituteforResearch toaripplewallmodeconverterthatconvertsthe circular inElectronicsandAppliedPhysics,UniversityofMarylandatCollegePark, mode into the circular mode. It then passes through a CollegePark,MD20742USA(e-mail:[email protected]). pumping cross before entering a compact circular to J.AndersoniswiththeMassachusettsInstituteofTechnologyLincolnLab- oratory,Lexington,MA02420USA. rectangular mode converter (Tantawi converter) [5]. A I.SpassovskyiswiththeFree-ElectronLaserLaboratory,ItalianNational bifurcation then divides the power equally between the two AgencyforNewTechnologies,Energy,andtheEnvironment,ResearchCentre, injection arms by converting the rectangular mode into 00044Frascati,Italy. DigitalObjectIdentifier10.1109/TMTT.2006.871351 a rectangular mode in eacharm. -and -plane bends 0018-9480/$20.00©2006IEEE 1302 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.54,NO.4,APRIL2006 the downtapering of the output waveguide is minimized will haveimprovedzero-drivestability. The axial extraction scheme also necessitates a ripple wall modeconvertersectiondownstreamtoconvertthe coaxial mode from the GKL into the circular mode, which is the desired output mode for accelerator applications that re- quirepulsecompression(Fig.2).Suchadesignwouldinvolve a tradeoff between bandwidth and mode purity, in addition to compensating for any spurious modes generated in the chain [6]. Thus, an improved extraction scheme would provide for a methodtoseparatethemicrowavesfromthespentbeamrapidly, whilesimultaneouslyensuringthatthesignalisextractedfrom theoutputcavityinamodethatminimizestheneedtosignifi- cantlyreducetheoutputwaveguidedimensionsandenablethe systemtobezerodrivestable. As shown in Fig. 3(b), the radial extraction output cavity is definedbychangesintheradiiofboththeinnerandouterwalls [7]. Strong axial magnetic fields at the inner and outer con- ductingwallsareacharacteristicofthe coaxialmodethat isexcitedintheoutputcavity.Thismodeismagneticallycou- pledtothe coaxialmodeintheinnercoaxguidethrough fourcouplingslotssymmetricallydistributedaboutitsazimuth. Fig.3. (a)Schematicofatypicalaxialpowerextractionschemewherethe The -field near the slots should be small since, ideally, this separationofamplifiedmicrowavesandspentelectronbeamtakesplaceinthe field goes to zero at the metal boundaries. The inner coaxial beamdumpbeyondtheoutputcavity.(b)Schematicofproposedradialpower structureterminateswithavariableshortontheupstreamside, extractionoutputcavityinwhichtheamplifiedmicrowavescouplefromthe cavitytotheinnerconductor. whichcanbeadjustedtoreinforcethesignalpropagatingdown- stream.Aconicalcoaxialtocylindricaltransitiononthedown- stream end converts the coaxial mode generated in the are used to orient the drive signal for the HRC accelerator innercoaxialregionintothe circularmode,whichistrans- structure,andaphaseshifterisprovidedforphaseequalization portedthroughtheoutputwaveguidesystem.Theupstreamand ofthesignalsinthedualfeedarms. downstreamboundariesofthemaincavityregionareoccupied A common feature of various GKL amplifiers, differing in bydriftregionsthatarecut offtothe mode.Thephys- theiroperatingfrequency,number,andgeometricprofileoftheir ical dimensions of this new cavity need to be comparable to cavities, cavity modes, and harmonic number is the axial mi- that of the current one to ensure that the tube can be housed crowavepowerextractionscheme[seeFig.3(a)].Inthisscheme, in its original assembly (vacuum jacket and related hardware) the amplified microwave signal and the spent electron beam without a major overhaul of the circuit. Additionally, the new travel together in the output waveguide, where a beam dump cavity would have essentially the same gain and efficiency as dissipatestheremainingelectronenergy.Intheseschemes,the theexistingoutputcavity.Thevolumeoftheinnercoaxguide crosssectionofthe outputwaveguidediffersslightlyfrom the iscomparabletothatoftheTantawiconverter,thusavoidingthe crosssectionoftheoutputcavityandundergoesagradualvari- need for a long problematic downtaper scheme. It would also ation overan axial distance of several wavelengths. In this re- obviatetheneedfortheripplewallmodeconvertersection,and gion of the microwave circuit, the electron beam energy is as shouldinsurethezero-drivecapabilityofthesystem. yet unexhaustedwithessentiallythe same beamcross section, andremainspotentiallywellcoupledtotheoperatingmodeor II. COMPUTERMODELING variousspuriousmodes.Thus,reverseenergytransferfromthe The principal dimensions of the current axial extraction microwaves to the electron beam, which significantly reduces output cavity obtained with GYCOAX and MAGYKL [8] theefficiencyofthesystem,ispossible. served as the starting point for the radial extraction cavity Zero-drive instability is a concern because without a drive design. A three-dimensional (3-D) model of the cavity is signaltoinitiatebunching,thebeamqualityremainsveryhigh generated using Ansoft’s High Frequency Structure Simulator even after the output cavity. The large reduction in the output (HFSS) [14]. The model includes a WR-62 injection arm for waveguide dimensions prior to injecting into the accelerator exciting the coaxial mode in the cavity for cold test structure increases the likelihood of trapped modes in the ta- purposes only. By taking advantage of cylindrical symmetry, peredsections.Reflectionsmayoccurintheoutputwaveguide a 90 slice of the HFSS model is constructed (Fig. 4), which oratthewindowwhendowntaperingpushespropagatingmodes requiresthesimulationofonlyoneinjection/probingportwith belowcutoff.Alongnonlineartaperedwaveguidesectioncould the symmetry cuts defined as perfect electric boundaries. The actasacavityorasabackwardwaveoscillatorwithalowstart variable short, however, makes the system asymmetric in the oscillationcondition.Thus,apowerextractionschemeinwhich -direction, necessitating a simulation of its complete axial BHARATHANetal.:DESIGNANDCOLDTESTINGOFRADIALEXTRACTIONOUTPUTCAVITYFORFREQUENCY-DOUBLINGGKL 1303 Fig.4. Quartered3-DsectionalviewofHFSSoutputcavitymodel. length.HFSSevaluatesthecoldtestperformanceofthecavity by simulating the injection of a signal at the drive frequency through the WR-62 waveguide. The design was optimized by the variation of several parameters, the primary ones being the angular width and axial length of the coupling slots, the Fig. 5. HFSS simulated electric field patterns for perfectly aligned output numberofslots,theaxialpositionofthevariableshort,andthe cavity.(a)z=0cutshowingtheazimuthaldistributionofelectricfields.Note thickness of the inner wall of the output cavity. The coupling lackofazimuthalvariationindicatingthatitisacircularelectric(TE )mode. (b)Longitudinalsliceshowingpowertransportincavitystructure.Thedrift slotswerethemostsensitiveanddifficultelementtodesign,as regionsaredesignedtobecutofftothecavitymode,whichisconfirmedby theygreatlyinfluencetheresonantfrequencyandqualityfactor theminimalpenetrationofcavityfieldsinthedriftregions. of the cavity. The is particularly sensitive to fluctuations in slotlength,varyingbyafactoroftenforaslotlengthchangeof roughly 0.5 cm. However, the cavity characteristics are not as tolerances that can be introduced in the fabrication process sensitivetotheazimuthalpositioningoftheslots,ascompared without adversely affecting cavity performance, two cases, to their axial length sensitivity [15]. Another constraint was which could occur independently or in unison, were investi- to make the metal conducting gaps between the slots as large gated, namely: 1) a radial offset between the inner conductor asnecessarytoensuremechanicalstrengthofthesystem.The andtheinserts,resultinginthemhavingdissimilaraxesofsym- final optimized design called for four slots each having an metryand2)anaxialoffsetoftheinnerconductorwithrespect angularwidthof81.5 withanaxiallengthof5.08mm. totheinserts,resultinginamisalignmentofthedepressionson AsseeninFig.5(a),thedoubleradialvariationfieldpattern theinnerandouterradialwallsthatconstitutethecavity. indicative of the coaxial mode is excited between the Toaccommodatearadialoffsetoftheinnerconductorrelative innerconductorandouterwall.This,inturn,magneticallycou- totheouterhousing,themodelismirroredintoahalfsection. ples through the slots to the coaxial mode in the inner The inner conductor is then shifted in steps of, say, 0.05 mm conductor.Themetalconductinggapsshowupinwhitealong (2mil)alongeitherthe -or -axis,withnoalterationinthe thecircumferenceoftheinnerconductor.Fig. 5(b)isalongi- positioning.Fig.7(a)showstheelectricfielddistributionacross tudinal slice of the cavity, which in addition to illustrating the thecavitycenter,whileFig.7(b)indicatesthepowertransport electricfieldcoupling,alsoshowshowtheconicaltaperconverts throughthestructureforaradialoffsetof2mil,whichwouldbe the coaxialmodeintheinnerconductorintothe cir- thelimitingradialtoleranceconsideringthedistortionobserved cularmodefurtherdownstream.Fig.6(a)showsthetheoretical in the cavity modes. This distortion manifests itself in an transmissioncurveforthecavity,exhibitingaresonantfre- transmission curvewith twodistinctresonant frequencies [see quencyof17.08GHzanda of354. Fig. 6(b)] staggered in frequency by 75 MHz. A Fourier anal- Practically, the cold and hot test prototypes of this cavity ysisinvolvingtwoelectricfields(whosevariationasafunction would be realized using discrete sections for the inner con- of time was represented by an amplitude factor, an exponen- ductor, outer wall, and the insets. The eccentricities of the tiallydecayingcomponentdependentontheresonantfrequency, individual cylindrical sections, as well as any relative shift qualityfactor,andarelativephase-shiftterm)yieldedacurveof or slop could have an unpredictable effect on the cavity per- asimilarnature,whichledustobelievethatthereweretwodis- formance. To provide clear guidelines on the limits of design tinctcompetingmodesinthemisalignedcavity. 1304 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.54,NO.4,APRIL2006 Fig.7. HFSSsimulatedelectricfieldpatternsforaradialoffsetof2mil.(a)z= 0 slice shows that the TE cavity mode though visible, lacks perfect az- imuthalsymmetry.(b)LongitudinalsliceindicatinghowthedistortedTE coaxialcavitymodecouplesimperfectlytotheTE coaxialmodeintheinner conductor. Fig.6. TheoreticalS transmissioncurvesfortheoutputcavity.(a)Perfectly alignedcase,exhibitingasingleresonancepeakat17.08GHz.(b)2-milradial offsetcase,exhibitingaprominentpeakat17.08GHzandaspuriouspeak6dB lowerat17.155GHz.(c)1-milaxialoffsetcase,exhibitingtwopeaksofnearly equalamplitude,separatedinfrequencyby85MHz. Fig.8. Coldtestbenchsetupoftheradialextractionoutputcavityconnected totheHP8757Cscalarnetworkanalyzer. Tosimulate the effect of an axial displacement between the arenotshown,asthe -fieldisseverelydistortedwiththecavity inner coax and outer conductor, the quarter symmetry section modesbarelydiscernable. is again used to cut down on computation time. Keeping the and positions of the inner conductor as per the base line modelconstant,itisthenoffsetaxiallyalong .Thisresultsin III. COLDTESTRESULTS amisalignmentofthechangesintheradiioftheinnerandouter Fig.8illustratestheexperimentalsetupwhereanaluminum conductors that define the output cavity. As seen in Fig. 6(c), prototypeofthecavitywascoldtested.Thecavityispositioned the effectofanaxialoffsetofeven0.025mm(1mil)is much at the center of a 150-mm-long cylindrical support structure. more pronounced with the transmission curve exhibiting The WR-62 waveguide section that breaches through the two humps of nearly equal amplitude, staggered in frequency housing is also visible, connected to a detector probe for the by85MHz.HFSSsimulatedelectricfieldpatternsforthiscase HP8757C scalar network analyzer. Cylindrical inserts, which BHARATHANetal.:DESIGNANDCOLDTESTINGOFRADIALEXTRACTIONOUTPUTCAVITYFORFREQUENCY-DOUBLINGGKL 1305 serve as the cut off/drift regions fit snugly into this housing. Eccosorb BSRII/SS-6M, an elastomeric microwave absorber, wasappliedtothedriftregionstominimizespuriousmodesand reflections from the walls of the inserts [10]–[12]. The inner coaxial conductor is rigidly supported between the microm- eter-drivenvariableshortontheupstreamendandadepression in the faceplate on the downstream end. A Marié converter accepts the circular mode and converts it into the rectangular mode. To mitigate the effect of spurious modes that may be generated in the process, the converter is cascadedwitha -modefilter[6].Themodefilterconsists ofasix-finFiberglassresistancecardwedgedsymmetricallyin thecylindricalhousing.Apairofcrossguidecouplersareused tomeasuretheincidentandreflectedpowersinthesetup. Preliminarytestsshowedadual-humpstructureindicativeof some degree of misalignment in the cavity housing. The indi- vidualassembliesthatconstitutethecavitywerefoundtohave eccentricityrangesbelow0.2milwhenmeasuredonthecoor- dinatemeasurementmachine(CMM).Thisruledoutthepossi- bilityofalossofcircularityintheassembliescausingthemode competitionpredictedearlier.Theupstreamanddownstreamin- sets,however,werefoundtohaveasmallamountofplaywhen insertedinthecavityhousing,andthiswascompensatedforby insertingshimstocktocentertheinsertsperfectlywithrespect totheinnerconductor.The transmissioncurveofthiscor- rectedcavityisshowninFig.9(a),whichcloselyapproximates theHFSSpredictedtransmissioncurveofFig.6(a).Theexper- imental resonant frequency of 17.112 GHz is 32 MHz higher thanthetheoreticalestimate,whilethemeasured of458ex- ceedstheHFSSestimatebyapproximately100.Toverifytheef- fectofaradialoffsetonthetransmissioncurve,theinsertswere shimmedwith2-milstocktoexaggeratetheoffsetpresent.The corresponding experimental transmission curve, shown in Fig.9(b),exhibitsthefamiliardual-humpfeaturewithapromi- nent peak at 17.094 GHz and a secondaryresonant peak 6 dB lowerat17.183GHz.Anaxialoffsetoftheinnerconductorthat willmisaligntheinnerandoutercavitywalls,canbemimicked by taking advantage of the compressibility of the O-ring seal onthedownstreamfaceplate.Astheinnerconductorisrigidly supportedbetweenthefaceplates,shimstockthatwouldcom- presstheinsertstowardtheO-ringsealwasinsertedtoproduce anoffsetof1mil.Fig.9(c)illustratesthetransmissioncurvein theaxialoffsetcaseinwhichthedualresonantpeaksofnearly equalamplitude,separatedby71MHz,arevisible. Fine tuning of the cavity and resonant frequency can be Fig.9. ExperimentalS transmissioncurves.(a)Correctedcavitywithradial achievedbyadjustmentoftheaxiallengthofthecouplingslots. andaxialmisalignmentscompensatedfor(b)cavityhousingshimmedtomimic Theeffectivecouplingslotlengthisprogressivelyreducedfrom 2-milradialoffsetand(c)cavityhousingshimmedtomimic1-milaxialoffset. itsmaximumof5.08mmtoapproximately50%ofitsoriginal lengthusingastripofadhesive-backedcoppertapetomaskthe slots.Theresonantfrequencyand arethenplottedasafunc- placeinthecavityarenotaresultoftheBSRII/SS-6Mabsorber tion of the slot opening (Fig. 10). The same procedure is sim- in the drift regions. The optimum placement is with the lossy ulated in HFSS to obtain experimental trends in the resonant materialbackedupapproximately1.35cmawayfromthecavity frequencyand .Inthecorrectedcavity,thecoldtest of458 lipintheupstreamanddownstreamdriftregions.Applyingthe observedwiththeslotscompletelyopenisabitoffthepredicted lossy material all the way up to the cavity edge contributes valueof354.Moresignificantly,however,the experimental to higher losses in the drift regions, which suppresses the inthecorrectedcavityrisestoapproximately1200withthecou- well below the theoretical value predicted by HFSS. The ex- plingslotsclosed50%,whichisinkeepingwiththetheoretical perimentalresonantfrequencyplotshowsanupshiftofaround estimate. This trend is a good indicator that the losses taking 30MHz,ascomparedtothetheoreticalcurve. 1306 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.54,NO.4,APRIL2006 the circularmode,and obviatethe need forlarge reduc- tionintheoutputwaveguidedimensionsoraripplewallmode convertersection.Thus,itwouldbeideallysuitedtoinjectdi- rectlyintothecompact circularto rectangularmode converterinthelinearacceleratorstructurefeedchain. REFERENCES [1] J.Cheng,X.Xu,W.Lawson,J.P.Calame,M.Castle,B.P.Hogan,V. L.Granatstein,G.S.Nusinovich,andM.Reiser,“Experimentalstudies ofahigh-power,X-band,coaxialgyroklystron,”IEEETrans.Plasma Sci.,vol.27,no.8,pp.1175–1187,Aug.1999. [2] V.L.GranatsteinandW.Lawson,“Gyro-amplifiersascandidateRF driversforTeVlinearcolliders,”IEEETrans.PlasmaSci.,vol.24,no. 6,pp.648–664,Jun.1996. [3] P.E.Latham,W.Lawson,andV.Irwin,“Thedesignofa100MW, Ku-band second harmonic gyroklystron experiment,” IEEE Trans. PlasmaSci.,vol.22,no.10,pp.804–817,Oct.1994. [4] J.HaimsonandB.Mecklenburg,“Alinearacceleratorpoweramplifi- Fig.10. ExperimentalandtheoreticalvariationofresonantfrequencyandQ cationsystemforhighgradientstructureresearch,”inProc.AIPAdv. asafunctionofcouplingslotlength. AcceleratorConcepts,Jul.1998,vol.472,pp.1003–1013. [5] I. Spassovsky, E. S. Gouveia, S. P. Tantawi, B. P. Hogan, W. Lawson,andV.L.Granatstein,“Designandcold-testingofacompact TE (cid:0)>TE modeconverter,”IEEETrans.PlasmaSci.,vol.30, IV. SUMMARYANDCONCLUSIONS no.6,pp.787–793,Jun.2002. [6] W.Lawson,M.Esteban,H.Raghunathan,B.Hogan,andK.Bharathan, “Ripple-wallmodeconvertersforhighpowermicrowaveapplications,” IEEETrans.Microw.TheoryTech.,tobepublished. [7] J. P. Anderson, “The advanced-concept gyroklystron design,” M.S. Inthispaper,wehavecharacterizedthedesignperformance thesis, Elect.Comput.Eng.Dept., Univ. Marylandat CollegePark, CollegePark,MD,1997. oftheradialextractionoutputcavityandpresenteditasaviable [8] E.S.Gouveia,“Developmentofafourcavitysecond-harmonicgy- solutiontoreplacetheaxialextractionoutputcavitycurrentlyin roklystronasdriverforalinearaccelerator,”Ph.D.dissertation,Phys. thesystem.Finerpointsontheoperationofthecavity,suchas Dept.,Univ.MarylandatCollegePark,CollegePark,MD,2004. [9] W. Lawson, “Theoretical evaluation of nonlinear tapers for a high- thepositioningofdielectricsinthedriftregions,arerevealedin powergyrotron,”IEEETrans.Microw.TheoryTech.,vol.38,no.11, thecoldtesting.Italsogivesclearguidelinesonthelimitsofde- pp.1617–1622,Nov.1990. signtolerancesthatcanbeintroducedinthefabricationprocess [10] J.CalameandW.Lawson,“Amodifiedmethodforproducingcarbon loaded vacuum compatible microwave absorbers from a porous ce- without adversely affecting cavity performance. The electro- ramic,”IEEETrans.ElectronDevices,vol.38,no.6,pp.1538–1543, magneticparametersofthecavity(resonantfrequency, ,etc.) Jun.1991. areacutelysensitivetoanymisalignmentbetweentheinnercon- [11] W. Lawson, J. Cheng, M. Castle, B. Hogan, V. L. Granatstein, M. Reiser, and G. P. Saraph, “High-power operation of a three-cavity ductorandtheinsertsthatconstitutethecavity.Aradialoffset X-band coaxial gyroklystron,” Phys. Rev. Lett., vol. 81, pp. of 2 mil (or greater) between the inner and outer conductors 3030–3033,Oct.1998. producesadualpeaktransmissioncurve,andamoderatelydis- [12] ECCOSORB-BSRSpecificationSheetEmerson&CumingMicrowave Products,Randolph,MA,Rev.Rep.,2002. tortedfieldstructureoftheexpected coaxialmode.The [13] Microwave Div., Elisra Electron. Syst. Ltd.. Bene Beraq, Israel, differencebetweentheamplitudesoftheresonantpeaksis,how- YEAR. ever, in excess of 5 dB, allowing for sufficient discrimination [14] HighFrequencyStructureSimulator(HFSS).ver.9.1,Ansoft,Pitts- burgh,PA,2004. betweenthe two.Theeffectofa 1-milaxial misalignmentbe- [15] K.Bharathan,“Coldtestingofaradialextractionoutputcavityfora tweentheinnerconductorandtheinsertsismorepronounced. frequencydoublinggyroklystron,”M.S.thesis,Elect.Comput.Eng. It is characterized by two competing modes, a distorted field Dept.,Univ.MarylandatCollegePark,CollegePark,MD,2004. structure of the mode, and nearly equal amplitude of the two resonant peaks. The experimentally determined reso- nant frequency of the cavity compensated for radial and axial misalignmentsis17.112GHz,whichis32MHzhigherthanthe theoretical HFSS predicted frequency of 17.08 GHz. The cor- responding cold test measured is 458, which is higher than thetheoretical byapproximately100.Thesimulationproce- Karthik Bharathan (S’00) was born in Bombay, India.HereceivedtheB.E.degreeinelectronicsand duretoextractcavityparametersfromHFSSisinherentlydiffi- telecommunicationsfromtheUniversityofBombay, cultand,hence,itspredictedcavityperformanceshouldnotbe Bombay,India,in2002,andtheM.S.degreeinelec- treated as an exact result. They serve as guidelines for the de- tricalengineeringfromtheUniversityofMaryland at College Park, in 2004. His thesis concerned the signofacoldtestpiece,whichcansubsequentlybefinetunedto coldtestingofaradialextractionoutputcavityfora obtainexactcavitydimensionsforadesiredresonantfrequency frequency-doublingGKL. and . From2002to2004,hewasaResearchAssistant withtheInstituteforPlasmaResearch,Universityof Thiscavityshouldenablethesystemtobezerodrivestable, MarylandatCollegePark.HeiscurrentlyanAsso- permitextractionoftheamplifiedmicrowavesfromtheGKLin ciateRFEngineerwithSprint,Chicago,IL. BHARATHANetal.:DESIGNANDCOLDTESTINGOFRADIALEXTRACTIONOUTPUTCAVITYFORFREQUENCY-DOUBLINGGKL 1307 WesLawson(S’84–M’85–SM’97)receivedtheB.S. Bart P. Hogan was born in Bethesda, MD. He degree in mathematics and B.S., M.S., and Ph.D. receivedtheB.S.degreeinmechanicalengineering degrees in electrical engineering from the Univer- fromtheUniversityofMarylandatCollegePark,in sity of Maryland at College Park, in 1980, 1980, 1986. 1981,and1985,respectively.Hisdoctoralresearch Heworkedbrieflyinindustrybeforejoiningthe concerned theoretical and experimental studies of InstituteforPlasmaResearch,UniversityofMary- microwavegenerationinvariouslarge-orbitgyrotron landatCollegePark.HeiscurrentlyaResearchEn- configurations. gineerwiththeInstituteforResearchinElectronics From 1978 to 1982, he was with the Electronic andAppliedPhysicsonAdvancedAcceleratorTech- SystemsBranch,HarryDiamondLaboratories.For nologies,UniversityofMarylandatCollegePark.His thepast20years,hehasbeenwiththeLaboratoryfor otherareasofinterestincludeenergy-efficientbiome- PlasmaResearch,UniversityofMarylandatCollegePark,whereheiscurrently chanicaltechnologiesandultraefficientcompactlightingtechnologies. aProfessorwiththeDepartmentofElectricalEngineering.Hisprincipalinterest liesinnovelfast-wavemicrowavesources.Hisrecenteffortshavebeendirected towardhigh-powerfast-waveandhybridamplifiersandassociatedhigh-power microwavecomponents. JamesAndersonreceivedtheB.S.degreefromthe UniversityofWisconsin–Madison,in1995,theM.S. degreefromtheUniversityofMarylandatCollege Park,in1997,andthePh.D.degreefromtheMassa- chusettsInstituteofTechnology(MIT),Cambridge, in2005,allinelectricalengineering. Heperformedexperimentalstudiesonhigh-power Ivan Spassovsky received the Ph.D. degree in gyrotron oscillators with the Plasma Science and physicsfromtheUniversityofSofia,Sofia,Italy. Fusion Center, MIT, during his doctoral studies. His earlier research withthe University of Sofia He is currently with the MIT Lincoln Laboratory, concentrated on the physics and applications of Lexington, MA, where he is involved with radar intenseelectronbeamsandhigh-powermicrowaves. technologyusinghigh-powermicrowavedevices. From 1992 to 1993, and 1998, he was with the Plasma Physics Laboratory, Instituto Nacional de Pesquisas Espaciais (INPE), São Jose dos Campos Emmanuel Steven Gouveia received the B.S. SP,Brazil,wherehewasinvolvedwiththeresearch degreeinphysicsfromtheUniversityofOklahoma, and development of 35-GHz gyrotrons. In 1995, Norman,in1993,andtheM.S.andPh.D.degreesin heheldatwo-yearcontractwiththeLaboratoryfor physicsfromtheUniversityofMarylandatCollege Quantum Optics, Korean Atomic Energy Institute (KAERI), Daejon, Korea, Park,in1997and2004,respectively. whereheparticipatedintheconstructionofmicrotron-drivenfarinfraredfree From1997to1999,hewasinvolvedwithhigh-en- electron laser (FEL). In 1999, he joined the Institute for Plasma Research, ergy physics as a member of the D0 collaboration University of Maryland at College Park, as a Visiting Researcher, where he withtheFermiNationalAcceleratorLaboratory.He remaineduntil2002,duringwhichtimehewasinvolvedwiththeexperimental iscurrentlyaResearchAssociatewiththeGKLpro- evaluationofasecondharmonicGKL.HeiscurrentlyaResearcherwiththe gramattheUniversityofMarylandatCollegePark. Free-ElectronLaserLaboratory, ENEA ResearchCentre, Frascati, Italy. His Since1999,hehasbeeninvolvedinhigh-powermi- majorresearchinterestsfocusondevelopmentofterahertzfree-electronlaser. crowaveresearch.Hisresearchinterestsincludegyro-devicesandnovelaccel- HealsoparticipatesintheSPARCproject,whichisafirststageofresearchand eratorconcepts. developmentactivitytowardX-rayFELsources.