ebook img

Identities involving Frobenius-Euler polynomials arising from non-linear differential equations PDF

0.12 MB·English
by  T. Kim
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Identities involving Frobenius-Euler polynomials arising from non-linear differential equations

IDENTITIES INVOLVING FROBENIUS-EULER POLYNOMIALS ARISING FROM NON-LINEAR DIFFERENTIAL EQUATIONS 2 1 TAEKYUNKIM 0 2 Abstract. In this paper we consider non-linear differential equations which n are closely related to the generating functions of Frobenius-Euler polynomi- a als. Fromournon-lineardifferential equations, wederivesomenew identities J between thesumsofproductsofFrobenius-EulerpolynomialsandFrobenius- 4 Eulerpolynomialsofhigherorder. 2 ] T N 1. Introduction . h t Let u ∈ C with u 6= 1. Then the Frobenius-Euler polynomials are defined by a generating function as follows: m [ (1) Fu(t,x)= e1t−−uuext = ∞ Hn(x|u)tnn!, (see [1,2]). 1 n=0 X v In the special case, x = 0, H (0 | u) = H (u) are called the n-th Frobenius-Euler 8 n n numbers (see [2]). 8 0 By (1), we get 5 n 1. (2) Hn(x|u)= nl xn−lHl(u) for n∈Z+ =N∪{0}. 0 l=0(cid:18) (cid:19) X 2 Thus, by (1) and (2), we get the recurrence relation for H (u) as follows: 1 n : v 1−u if n=0, n i (3) H0(u)=1, H(u)+1 −Hn(u)= X ( 0 if n>0. (cid:0) (cid:1) ar with the usual convention about replacing H(u)n by Hn(u) (see [2,10,12]). The Bernoulli and Euler polynomials can be defined by t ∞ tn 2 ∞ tn ext = B (x) , ext = E (x) . et−1 n n! et+1 n n! n=0 n=0 X X Inthespecialcase,x=0,B (0)=B arethen-thBernoullinumbersandE (0)= n n n E are the n-th Euler numbers. n The formula for a product of two Bernoulli polynomials are given by (4) ∞ m n B B (x) m!n! B (x)B (x)= n+ m 2r m+n−2r +(−1)m+1 B , m n 2r 2r m+n−2r (m+n)! m+n r=0 (cid:18) (cid:19) (cid:18) (cid:19) ! X where m+n≥2 and m = m! = m(m−1)···(m−n+1) (see [1,3]). n n!(m−n)! n! 1 (cid:0) (cid:1) 2 TAEKYUNKIM From (1), we note that H (x | −1) = E (x). In [10], Nielson also obtained n n similar formulas for E (x)E (x) and E (x)B (x). n m m n In view point of (4), Carlitz have considered the following identities for the Frobenius-Euler polynomials as follows: (5) (1−α)(1−β) H (x|α)H (x|β)=H (x|αβ) m n m+n 1−αβ m n α(1−β) m β(1−β) n + H (α)H (x|αβ)+ H (β)H (x|αβ), 1−αβ r r m+n−r 1−αβ s s m+n−s r=0(cid:18) (cid:19) s=0(cid:18) (cid:19) X X where α,β ∈C with α6=1, β 6=1 and αβ 6=1 (see [2]). In particular, if α6=1 and αβ =1, then m m B (x) H (x|α)H (x|α−1)=−(1−α) H (α) m+n−r+1 m n r r m+n−r+1 r=1(cid:18) (cid:19) X n n B (x) −(1−α−1) H (α−1) m+n−s+1 s s m+n−s+1 s=1(cid:18) (cid:19) X m!n! +(−1)n+1 (1−α)H (α). (m+n+1)! m+n+1 Forr ∈N,then-thFrobenius-Eulerpolynomialsoforderraredefinedbygenerating function as follows: Fr(t,x)=F (t,x)×F (t,x)×···×F (t,x) u u u u r−times 1−u 1−u 1−u =| × {z ×···× } ext (6) et−u et−u et−u (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) r−times =|∞ H(r)(x|u)tn {zfor u∈C with u6=}1. n n! n=0 X Inthespecialcase,x=0,H(r)(0|u)=H(r)(u)arecalledthen-thFrobenius-Euler n n numbers of order r (see [1-15]). In this paper we derive non-linear differential equations from (1) and we study the solutions of non-linear differential equations. Finally, we give some new and interesting identities and formulae for the Frobenius-Euler polynomials of higher order by using our non-linear differential equations. 2. Computation of sums of the products of Frobenius-Euler numbers and polynomials In this section we assume that 1 F =F(t)= , and FN(t,x)=F ×···×F ext for N ∈N. (7) et−u N−times Thus, by (7), we get | {z } dF(t) −et 1 u (8) F(1) = = =− + =−F +uF2. dt (et−u)2 et−u (et−u)2 IDENTITIES INVOLVING FROBENIUS-EULER POLYNOMIALS 3 By (8), we get F(1)(t,x)=F(1)(t)etx =−F(t,x)+uF2(t,x), (9) and F(1)+F =uF2. Let us consider the derivative of (8) with respect to t as follows: ′ ′′ ′ (10) 2uFF =F +F . Thus, by (10) and (8), we get (11) 2!u2F3−2uF2 =F′′ +F′. From (11), we note that (12) 2!u2F3 =F(2)+3F′ +2F, where F(2) = d2F. dt2 Thus, by the derivative of (12) with respect to t, we get (13) 2!u23F2F′ =F(3)+3F(2)+2F(1), and F(1) =uF2−F. By (13), we see that (14) 3!u3F4F =F(3)+6F(2)+11F(1)+6F. Thus, from (14), we have 3!u4F4(t,x)=F(3)(t,x)+6F(2)(t,x)+11F(1)(t,x)+6F(t,x). Continuing this process, we set N−1 (15) (N −1)!uN−1FN = a (N)F(k), k k=0 X where F(k) = dkF and N ∈N. dtk Now we try to find the coefficient a (N) in (15). From the derivative of (15) k with respect to t, we have N−1 N (16) N!uN−1FN−1F(1) = a (N)F(k+1) = a (N)F(k). k k−1 k=0 k=1 X X By (8), we easily get (17) N!uN−1FN−1F(1) =N!uN−1FN−1(uF2−F)=N!uNFN+1−N!uN−1FN. From (16) and (17), we can derive the following equation (18): N N!uNFN+1 =N(N −1)!uN−1FN + a (N)F(k) k−1 k=1 (18) X N−1 N =N a (N)F(k)+ a (N)F(k). k k−1 k=0 k=1 X X In (15), replacing N by N +1, we have N (19) N!uNFN+1 = a (N +1)F(k). k k=0 X 4 TAEKYUNKIM By (18) and (19), we get N a (N +1)F(k) =N!uNFN+1 k k=0 (20) X N−1 N =N a (N)F(k)+ a (N)F(k). k k−1 k=0 k=1 X X By comparing coefficients on the both sides of (20), we obtain the following equa- tions: (21) Na0(N)=a0(N +1), aN(N +1)=aN−1(N). For 1≤k ≤n−1, we have (22) ak(N +1)=Nak(N)+ak−1(N), where a (N)=0 for k ≥N or k <0. From (21), we note that k (23) a0(N +1)=Na0(N)=N(N −1)a0(N −1)=···=N(N −1)···2a0(2). By (8) and (15), we get 1 (24) F +F′ =uF2 = a (2)F(k) =a (2)F +a (2)F(1). k 0 1 k=0 X By comparing coefficients on the both sides of (24), we get (25) a0(2)=1, and a1(2)=1. From(23)and(25),we havea (N)=(N−1)!. By the secondtermof(21), we see 0 that (26) aN(N +1)=aN−1(N)=aN−2(N −1)=···=a1(2)=1. Finally, we derive the value of a (N) in (15) from (22). k Let us consider the following two variable function with variables s, t: tN (27) g(t,s)= ak(N) sk, where |t|<1. N! N≥10≤k≤N−1 X X By (22) and (27), we get tN a (N +1) sk k+1 N! N≥10≤k≤N−1 X X tN tN (28) = Nak+1(N +1)N!sk+ ak(N)N!sk N≥10≤k≤N−1 N≥10≤k≤N−1 X X X X tN = Na (N) sk+g(t,s). k+1 N! N≥10≤k≤N−1 X X IDENTITIES INVOLVING FROBENIUS-EULER POLYNOMIALS 5 It is not difficult to show that (29) tN 1 tN Na (N) sk = Na (N) sk+1 k+1 N! s k+1 N! N≥10≤k≤N−1 N≥10≤k≤N−1 X X X X 1 tN 1 tNsk a (N)tN = a (N) sk = a (N) − 0 k k s (N −1)! s (N −1)! (N −1)! ! N≥11≤k≤N N≥1 0≤k≤N X X X X 1 tN t tN−1sk 1 = a (N) sk−tN = a (N) − k k s (N −1)! s (N −1)! 1−t ! ! N≥1 0≤k≤N N≥10≤k≤N X X X X t ′ 1 = g (t,s)− . s 1−t (cid:16) (cid:17) From (28) and (29), we can derive the following equation: tNsk t ′ 1 (30) ak+1(N +1) N! = s g (t,s)− 1−t +g(t,s). NX≥10≤kX≤N−1 (cid:16) (cid:17) (31) tN−1 The left hand side of (13)= a (N) sk k+1 (N −1)! N≥21≤k≤N−2 X X tN−1sk−1 1 tN−1 = a (N) = a (N) sk k k (N −1)! s (N −1)! ! N≥21≤k≤N−1 N≥21≤k≤N−1 X X X X 1 tN−1 tN−1 = a (N) sk−a (N) s k (N −1)! 0 (N −1)! ! NX≥2(cid:16)0≤kX≤N−1 (cid:17) 1 tN−1 t = a (N) sk− k s (N −1)! 1−t ! N≥20≤k≤N−1 X X = 1 a (N) tN−1 sk−a (1)− t = 1 g′(t,s)− 1 . s k (N −1)! 0 1−t s 1−t ! NX≥10≤kX≤N−1 (cid:16) (cid:17) By (30) and (31), we get t ′ 1 1 ′ 1 (32) g(t,s)+ g (t,s)− = g (t,s)− . s 1−t s 1−t (cid:16) (cid:17) (cid:16) (cid:17) Thus, by (32), we easily see that t−1 ′ 1−t t−1 ′ 1 (33) 0=g(t,s)+ g (t,s)+ =g(t,s)+ g (t,s)+ . s s(1−t) s s By (33), we get t−1 ′ 1 (34) g(t,s)+ g (t,s)=− . s s To solve (34), we consider the solution of the following homogeneous differential equation: t−1 ′ (35) 0=g(t,s)+ g (t,s). s 6 TAEKYUNKIM Thus, by (35), we get t−1 ′ (36) −g(t,s)= g (t,s). s By (33), we get ′ g (t,s) s (37) = . g(t,s) 1−t From (37), we have the following equation: (38) logg(t,s)=−slog(1−t)+C. By (38), we see that (39) g(t,s)=e−slog(1−t)λ where λ=eC. By using the variant of constant, we set (40) λ=λ(t,s). From (39) and (40), we note that g′(t,s)= dg(t,s) =λ′(t,s)e−slog(1−t)+ λ(t,s)e−slog(1−t)s dt 1−t (41) =λ′(t,s)e−slog(1−t)+ g(t,s)s, 1−t where λ′(t,s)= dλ(t,s). dt By multiply t−1 on both sides in (41), we get s (42) t−1g′(t,s)+g(t,s)=λ′t−1e−slog(1−t). s s From (34) and (42), we get (43) −1 =λ′t−1e−slog(1−t). s s Thus, by (43), we get (44) λ′ =λ′(t,s)=(1−t)s−1. If we take indefinite integral on both sides of (44), we get (45) λ= λ′dt= (1−t)s−1dt=−1(1−t)s+C , s 1 Z Z where C is constant. 1 By (39) and (45), we easily see that 1 (46) g(t,s)=e−slog(1−t) − (1−t)s+C . s 1 Let us take t=0 in (46). Then, by (27) a(cid:0)nd (46), we get (cid:1) 1 1 (47) 0=− +C , C = . s 1 1 s IDENTITIES INVOLVING FROBENIUS-EULER POLYNOMIALS 7 Thus, by (46) and (47), we have 1 1 1 g(t,s)=e−slog(1−t) − (1−t)s = (1−t)−s 1−(1−t)s s s s (48) (1−t)−s−(cid:16)1 1 (cid:17) (cid:0) (cid:1) = = e−slog(1−t)−1 . s s From (48) and Taylor expansion, we(cid:0)can derive the f(cid:1)ollowing equation (49): 1 sn n sn−1 ∞ tl n g(t,s)= −log(1−t) = s n! n! l ! n≥1 n≥1 l=1 X (cid:0) (cid:1) X X sn−1 ∞ tl1 ∞ tln (49) = ×···× n! l l 1 n ! nX≥1 lX1=1 lXn=1 sn−1 1 = tN. n! l l ···l 1 2 n! nX≥1 NX≥n l1+··X·+ln=N Thus, by (49), we get sk 1 g(t,s)= tN (k+1)! l l ···l 1 2 k+1! (50) kX≥0 NX≥k+1 l1+···+Xlk+1=N N! 1 tN = sk. (k+1)! l l ···l N! 1 2 k+1! NX≥1 0≤kX≤N−1 l1+···+Xlk+1=N From (27) and (50), we can derive the following equation (51): N! 1 a (N)= . (51) k (k+1)! l l ···l 1 2 k+1 l1+···+Xlk+1=N Therefore, by (15) and (51), we obtain the following theorem. Theorem 1. For u ∈ C with u 6= 1, and N ∈ N, let us consider the following non-linear differential equation with respect to t: N−1 N 1 1 (52) FN(t)= F(k)(t), uN−1 (k+1)! l l ···l 1 2 k+1 Xk=0 l1+···+Xlk+1=N where F(k)(t) = dkF(t) and FN(t) = F(t)×···×F(t). Then F(t) = 1 is a dtk et−u N−times solution of (52). | {z } Let us define F(k)(t,x)=F(k)(t)etx. Then we obtain the following corollary. Corollary 2. For N ∈N, we set N N 1 1 (53) FN(t,x)= F(k)(t,x). uN−1 (k+1)! l l ···l 1 2 k+1 Xk=0 l1+···+Xlk+1=N Then etx is a solution of (53). et−u 8 TAEKYUNKIM From (1) and (6), we note that 1−u ∞ tn = H (u) , et−u n n! n=0 X and (54) 1−u 1−u 1−u ∞ tn × ×···× = H(N)(u) , et−u et−u et−u n n! (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) nX=0 N−times | {z } where H(N)(u) are called the n-th Frobenius-Euler numbers of order N. n By (7) and (54), we get 1 1 1 FN(t)= × ×···× et−u et−u et−u (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) N−times 1 1−u 1−u 1−u =| {z× ×···×} (1−u)N et−u et−u et−u (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) N−times (55) = 1 |∞ H(N)(u)tl, {z } (1−u)N l l! l=0 X and 1−u 1 1 ∞ tl F(t)= = H (u) . et−u 1−u 1−u l l! (cid:16) (cid:17)(cid:16) (cid:17) Xl=0 From (55), we note that dkF(t) ∞ tl (56) F(k)(t)= dtk = Hl+k(u)l!. l=0 X Therefore, by (52), (55) and (56), we obtain the following theorem. Theorem 3. For N ∈N, n∈Z , we have + 1−u N−1N−1 1 H (u) H(N)(u)=N n+k . n u (k+1)! l l ···l 1 2 k+1 (cid:16) (cid:17) kX=0 l1+···+Xlk+1=N IDENTITIES INVOLVING FROBENIUS-EULER POLYNOMIALS 9 From (55), we can derive the following equation: ∞ tn 1−u 1−u 1−u H(N)(u) = × ×···× n n! et−u et−u et−u nX=0 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) N−times | ∞ tl {z ∞ } tlN = H (u) 1 ×···× H (u) l1 l ! lN l ! 1 ! N ! (57) lX1=0 lXN=0 ∞ H (u)H (u)···H (u)n! tn = l1 l2 lN l !l !···l ! n! nX=0 l1+··X·+lN=0 1 1 N ! ∞ n tn = H (u)···H (u) . l ,··· ,l ! l1 lN n! nX=0 l1+··X·+lN=0(cid:18)1 N (cid:19) ! Therefore, by (57), we obtain the following corollary. Corollary 4. For N ∈N, n∈Z , we have + n H (u)H (u)···H (u) l ,··· ,l ! l1 l2 lN l1+··X·+lN=n(cid:18)1 N (cid:19) 1−u N−1N−1 1 H (u) =N n+k . u (k+1)! l l ···l 1 2 k+1 (cid:16) (cid:17) kX=0 l1+···+Xlk+1=N By (53), we obtain the following corollary. Corollary 5. For N ∈N, n∈Z , we have + H(N)(x|u) n 1−u N−1N−1 1 1 n n =N H (u)xn−m. u (k+1)! l l ···l m m+k (cid:16) (cid:17) kX=0 l1+···+Xlk+1=N 1 2 k+1 mX=0(cid:18) (cid:19) From (6), we note that ∞ tn 1−u 1−u 1−u H(N)(x|u) = × ×···× ext n n! et−u et−u et−u nX=0 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) N−times (58) =| ∞ H(N)(u)tn {z ∞ xmtm } n n! m! ! ! n=0 m=0 X X ∞ n n tn = xn−lH(N)(u) . l l n! n=0 l=0(cid:18) (cid:19) ! X X By comparing coefficients on both sides of (58), we get n n (59) H(N)(x|u)= xn−lH(N)(u). n l l l=0(cid:18) (cid:19) X 10 TAEKYUNKIM By the definition of notation, we get ∞ tl ∞ xm F(k)(t,x)=F(k)(t)etx = H (u) tm l+k l! m! ! ! l=0 m=0 X X ∞ n n tn = H (u)xn−l . l l+k n! n=0 l=0(cid:18) (cid:19) ! X X From (6), we note that (60) ∞ tn 1−u 1−u H(N)(x|u) = ×···× ext n n! et−u et−u nX=0 (cid:16) (cid:17) (cid:16) (cid:17) N−times =| ∞ H (u){Hzl1(u)tl1 ×}···× ∞ HlN(u)tlN ∞ xmtm l1 l ! l ! m! lX1=0 1 ! lXN=0 N !mX=0 ∞ H (u)H (u)···H (u) tn = l1 l2 lN xmn! l !l !···l !m! n! nX=0 l1+···+XlN+m=n 1 1 N ! ∞ n tn = H (u)···H (u)xm . l ,··· ,l ,m l1 lN n! nX=0 l1+···+XlN+m=n(cid:18)1 N (cid:19) ! By comparing coefficients on both sides of (58), we get n H(N)(x|u)= H (u)···H (u)xm. n l ,··· ,l ,m l1 lN l1+···+XlN+m=n(cid:18)1 N (cid:19) References [1] L.Carlitz,TheproductoftwoEulerianpolynomials,MathematicsMagazine 23(1959), 247-260 [2] L.Carlitz,TheproductoftwoEulerianpolynomials,MathematicsMagazine 36(1963), 37-41. [3] L. Carlitz, Note on the integral of the product of several Bernoulli polyno- mials, J. London Math.Soc. 34(1959), 361-363. [4] I.N.Cangul,Y.Simsek,AnoteoninterpolationfunctionsoftheFrobenious- Euler numbers, Application of mathematics in technical and natural sci- ences, 59-67, AIP Conf. Proc., 1301, Amer. Inst. Phys., Melville, NY, 2010. [5] K.-W. Hwang, D.V. Dolgy, T. Kim, S.H. Lee, On the higher-order q-Euler numbers and polynomials with weight alpha, Discrete Dyn. Nat. Soc. 2011(2011),Art. ID 354329,12 pp. [6] L. C. Jang, On multiple generalized w-Genocchi polynomials and their ap- plications, Math. Probl. Eng. 2010, Art. ID 316870,8 pp. [7] T. Kim, New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys. 17 (2010), no. 2, 218-225.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.