ebook img

Hydrogen sulfide in redox biology. Volume 554, Part A PDF

321 Pages·2015·13.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hydrogen sulfide in redox biology. Volume 554, Part A

METHODS IN ENZYMOLOGY Editors-in-Chief JOHN N. ABELSON and MELVIN I. SIMON Division of Biology California Institute of Technology Pasadena, California ANNA MARIE PYLE Departments of Molecular, Cellular and Developmental Biology and Department of Chemistry Investigator Howard Hughes Medical Institute Yale University Founding Editors SIDNEY P. COLOWICK and NATHAN O. KAPLAN AcademicPressisanimprintofElsevier 225WymanStreet,Waltham,MA02451,USA 525BStreet,Suite1800,SanDiego,CA92101-4495,USA 125LondonWall,London,EC2Y5AS,UK TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK Firstedition2015 Copyright©2015ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. ISBN:978-0-12-801512-4 ISSN:0076-6879 ForinformationonallAcademicPresspublications visitourwebsiteatstore.elsevier.com CONTRIBUTORS AbbasAbou-Hamdan InsermU1016;CNRSUM8104,andUniversite´ ParisDescartesUMR-S1016,Institut Cochin,Paris,France MireilleAndriamihaja INRA-CRNH-IdF-AgroParisTech,UMR914NutritionPhysiologyandIngestive Behavior,Paris,France RumaBanerjee DepartmentofBiologicalChemistry,UniversityofMichiganMedicalSchool,AnnArbor, Michigan,USA Jin-SongBian DepartmentofPharmacology,YongLooLinSchoolofMedicine,NationalUniversityof Singapore,Singapore Franc¸oisBlachier INRA-CRNH-IdF-AgroParisTech,UMR914NutritionPhysiologyandIngestive Behavior,Paris,France Fre´de´ricBouillaud InsermU1016;CNRSUM8104,andUniversite´ ParisDescartesUMR-S1016,Institut Cochin,Paris,France ChristopherJ.Chang DepartmentofChemistry;DepartmentofMolecularandCellBiology,Universityof California,Berkeley,California,andHowardHughesMedicalInstitute,ChevyChase, Maryland,USA TauraiChiku DepartmentofBiologicalChemistry,UniversityofMichiganMedicalSchool,AnnArbor, Michigan,USA BrianW.Dymock DepartmentofPharmacy,NationalUniversityofSingapore,Singapore HalaGuedouari-Bounihi InsermU1016;CNRSUM8104,andUniversite´ ParisDescartesUMR-S1016,Institut Cochin,Paris,France TakaakiIto DepartmentofPathologyandExperimentalMedicine,GraduateSchoolofMedicalScience, KumamotoUniversity,Kumamoto,Japan MichaelR.Jackson DepartmentofBiochemistryandMolecularBiology,CollegeofMedicine,Drexel University,Philadelphia,Pennsylvania,USA xi xii Contributors MarilynSchumanJorns DepartmentofBiochemistryandMolecularBiology,CollegeofMedicine,Drexel University,Philadelphia,Pennsylvania,USA OmerKabil DepartmentofBiologicalChemistry,UniversityofMichiganMedicalSchool,AnnArbor, Michigan,USA ChristopherG.Kevil DepartmentofPathology,LouisianaStateUniversityHealthSciencesCenter–Shreveport, Shreveport,Louisiana,USA GopiK.Kolluru DepartmentofPathology,LouisianaStateUniversityHealthSciencesCenter–Shreveport, Shreveport,Louisiana,USA Ve´roniqueLenoir InsermU1016;CNRSUM8104,andUniversite´ ParisDescartesUMR-S1016,Institut Cochin,Paris,France Zhong-GuangLi SchoolofLifeSciences;EngineeringResearchCenterofSustainableDevelopmentand UtilizationofBiomassEnergy,MinistryofEducation;KeyLaboratoryofBiomassEnergy andEnvironmentalBiotechnology,YunnanNormalUniversity,Kunming,Yunnan Province,PRChina MarouaneLibiad DepartmentofBiologicalChemistry,UniversityofMichiganMedicalSchool,AnnArbor, Michigan,USA VivianS.Lin DepartmentofChemistry,UniversityofCalifornia,Berkeley,California,USA AlexanderR.Lippert DepartmentofChemistry,andCenterforDrugDiscovery,Design,andDelivery(CD4), SouthernMethodistUniversity,Dallas,Texas,USA ScottL.Melideo DepartmentofBiochemistryandMolecularBiology,CollegeofMedicine,Drexel University,Philadelphia,Pennsylvania,USA PhilipK.Moore NeurobiologyProgram,LifeScienceInstituteandDepartmentofPharmacology,National UniversityofSingapore,Singapore NicoleMotl DepartmentofBiologicalChemistry,UniversityofMichiganMedicalSchool,AnnArbor, Michigan,USA NoriyukiNagahara IsotopeResearchCenter,NipponMedicalSchool,Tokyo,Japan MasatoshiNagano DepartmentofPharmacology,NipponMedicalSchool,Tokyo,Japan Contributors xiii Pe´terNagy DepartmentofMolecularImmunologyandToxicology,NationalInstituteofOncology, Budapest,Hungary Chung-MinPark DepartmentofChemistry,WashingtonStateUniversity,Pullman,Washington,USA BoPeng DepartmentofChemistry,WashingtonStateUniversity,Pullman,Washington,USA MichaelD.Pluth DepartmentofChemistryandBiochemistry,InstituteofMolecularBiology,Materials ScienceInstitute,UniversityofOregon,Eugene,Oregon,USA PeterRose UniversityofLincoln,Lincoln,Lincolnshire,UnitedKingdom XingguiShen DepartmentofPathology,LouisianaStateUniversityHealthSciencesCenter–Shreveport, Shreveport,Louisiana,USA T.SpencerBailey DepartmentofChemistryandBiochemistry,InstituteofMolecularBiology,Materials ScienceInstitute,UniversityofOregon,Eugene,Oregon,USA HidenoriSuzuki DepartmentofPharmacology,NipponMedicalSchool,Tokyo,Japan VictorVitvitsky DepartmentofBiologicalChemistry,UniversityofMichiganMedicalSchool,AnnArbor, Michigan,USA MingXian DepartmentofChemistry,WashingtonStateUniversity,Pullman,Washington,USA XueXue DepartmentofPharmacology,YongLooLinSchoolofMedicine,NationalUniversityof Singapore,Singapore PramodK.Yadav DepartmentofBiologicalChemistry,UniversityofMichiganMedicalSchool,AnnArbor, Michigan,USA ShuaiYuan DepartmentofPathology,LouisianaStateUniversityHealthSciencesCenter–Shreveport, Shreveport,Louisiana,USA PREFACE Hydrogensulfideisviewedasthethirdgasotransmmitter,gaseoussignaling molecule, together with nitric oxide and carbon monoxide. The cellular sources of hydrogen sulfide involve enzymes of the trans-sulfuration path- wayCBS(cystathionineβ-synthase),CSE(cystathioineγ-lyase),and3MST (3-mercaptopyruvatesulfur-transferase).Storagesofhydrogensulfideoccur inmitochondria(iron–sulfurclustersofenzymes)andcytosol(boundsulfane sulfur). Of course, the release of hydrogen sulfide from these storages is tightly regulated by several pathophysiological processes. In addition to the myriad of effects arising from hydrogen sulfide as a signalingmolecule,italsoprotectsagainstoxidativestressandglutamatetox- icity,inhibitsthereleaseofinsulin,preservesmitochondrialfunction,andisa modulatorofinflammatoryresponses.Thesepleiotropiceffectsofhydrogen sulfidehavebeenthesubjectofnumerousinvestigationsinthelastyearsand are largely accounted for by as its role as a gaseous signaling molecule. Hydrogen sulfide may act alone or in conjunction with other gas- otransmitters and, in doing so, it regulates a number of physiological pro- cessesandisinvolvedinsomestagesofthepathogenesisofseveraldiseases. These volumes of Methods in Enzymology were designed as a compen- diumforhydrogensulfidedetectionmethods,thepharmacologicalactivity ofhydrogensulfidedonors,theredoxbiochemistryofhydrogensulfideand itsmetabolisminmammaliantissues,themechanismsinherentinhydrogen sulfidecellsignalingandtranscriptionalpathways,andcellsignalinginspe- cificsystems,suchascardiovascularandnervoussystemaswellasitsfunction in inflammatory responses. Three chapters are also devoted to hydrogen sulfideinplantsandanewcomer,molecularhydrogen,itsfunctionasanovel antioxidant. In bringing these volumes of Methods in Enzymology to fruition, credit mustbegiventotheexpertsinvariousaspectsofhydrogensulfideresearch, whose thorough and innovative work is the basis of these Methods in Enzymology volumes. We hope that these volumes will be of help to both new and established investigators in the field. ENRIQUE CADENAS LESTER PACKER xv CHAPTER ONE Mechanistic Chemical Perspective of Hydrogen Sulfide Signaling Péter Nagy1 DepartmentofMolecularImmunologyandToxicology,NationalInstituteofOncology,Budapest,Hungary 1Correspondingauthor:e-mailaddress:[email protected] Contents 1. Introduction 5 2. BioavailabilityofSulfide—TheSignal 5 2.1 Endogenoussulfideproduction 6 2.2 Sulfidecatabolism 8 2.3 Endogenoussulfidebuffers 9 3. InorganicPolysulfides 9 3.1 Biologicalrelevance 9 3.2 Speciationandredoxcapacityofpolysulfides 10 3.3 Polysulfideformationbysulfideoxidation 11 3.4 Stabilityofpolysulfides 12 4. SulfideSignalingViaProteinSulfhydration 13 4.1 Mechanismsofpersulfideformation 14 5. SulfideSignalingviaSulfide–HemeproteinInteractions 18 5.1 Sulfidemediateshemeproteinfunctions 19 5.2 Hemeproteinsgeneratesulfideoxidationproducts 21 5.3 Antioxidantpropertiesofsulfideviareductionofmetal centerswithhigheroxidationstates 22 6. Conclusions 23 Acknowledgments 24 References 24 Abstract Hydrogensulfideisnowawell-appreciatedmasterregulatorinadiversearrayofphys- iologicalprocesses.However,asaconsequenceoftherapidgrowthofthearea,sulfide biologysuffersfromanincreasingnumberofcontroversialobservationsandinterpre- tations. A better understanding of the underlying molecular pathways of sulfide's actions is key to reconcile controversial issues, which calls for rigorous chemical/ biochemicalinvestigations. Proteinsulfhydrationandcoordination/redoxchemicalinteractionsofsulfidewith hemeproteinsarethetwomostextensivelystudiedpathwaysinsulfidebiochemistry. These pathways are important mediators of protein functions, generate bioactive MethodsinEnzymology,Volume554 #2015ElsevierInc. 3 ISSN0076-6879 Allrightsreserved. http://dx.doi.org/10.1016/bs.mie.2014.11.036 4 PéterNagy sulfidemetabolites,contributetosulfidestorage/traffickingandcarryantioxidantfunc- tions. In addition, inorganic polysulfides, which are oxidative sulfide metabolites, are increasinglyrecognizedasimportantplayersinsulfidebiology. Thischapterprovidesanoverviewofourmechanisticperspectiveonthereactions thatgovern(i)sulfide'sbioavailability(includingthedelicateenzymemachineriesthat orchestrate sulfide production and consumption and the roles of the large sulfide- storingpoolsasbiologicalbuffers),(ii)biologicalsignificanceandmechanismsofper- sulfide formation (including the reduction of disulfides, condensation with sulfenic acids, oxidation of thiols with polysulfides and radical-mediated pathways), (iii)coordinationandredoxchemicalinteractionsofsulfidewithhemeproteins(includ- ing cytochrome c oxidase, hemoglobins, myoglobins and peroxidases), and (iv) the chemistryofpolysulfides. ABBREVIATIONS 3MST 3-mercaptopyruvatesulfurtransferase AAT aspartate/cysteineaminotransferase CBS cystathionine-β-synthase CcO cytochromeCoxidase CSE cystathionine-γ-lyase CySOH Cyssulfenicacids CySSHandGSSH,respectively Cys-andGSH-persulfides DTNB 5,50-dithiobis-(2-nitrobenzoicacid) ER endoplasmicreticulum ERK1/2 extracellularsignal-regulatedkinases½ Ero1 ERoxidoreductin Erv1 essentialforrespirationandvegetativegrowthsulfhydryloxidase GAPDH glyceraldehyde-3-phosphatedehydrogenase GOR glutathioneoxido-reductase Hb Hemoglobin HSSH(cid:2)(cid:129) disulfideanionradicalspecies Keap1 Kelch-likeECH-associatedprotein1 LPO lactoperoxidase Mb myoglobin MEK1 mitogen-activatedproteinkinasekinase MPO myeloperoxidase NfκB nuclearfactorkappa-light-chain-enhancerofactivatedBcells Nrf2 nuclearfactor(erythroid-derived2)-like2 PARP-1 poly[ADP-ribose]polymerase1 PDI proteindisulfideisomerase PLP pyridoxalphosphate PTEN phosphataseandtensinhomolog PTP1B protein-tyrosinephosphatase1B roGFP reduction–oxidationsensitivegreenfluorescentprotein ROS reactiveoxygenspecies RPS3 ribosomalproteinS3 SAM S-adenosylmethionine MechanisticChemistryofSulfideSignaling 5 SDO sulfidedioxigenase SO sulfiteoxidase SQR sulfidequinonereductase SUMO smallubiquitin-likemodifier TNB 5-thio-2-nitrobenzoicacid TPO thyroidperoxidase Trx thioredoxin TST thiosulfate:glutathionesulfurtransferase 1. INTRODUCTION Sulfide biology has expanded very rapidly in the past decade with a great number of groundbreaking fundamental discoveries (see, e.g., Abe & Kimura, 1996; Blackstone, Morrison, & Roth, 2005; Coletta et al., 2012; Elrod et al., 2007; Flannigan et al., 2014; Mustafa et al., 2009; Papapetropoulos et al., 2009; Suzuki et al., 2011; Szabo et al., 2013;Yangetal.,2008).However,thefieldsuffersfromasideeffectcom- montomanyextensivelygrowingareas,thatofgeneratingalargenumberof controversial reports. Better understanding of the underlying molecular mechanismsofsulfideactions isafundamental requirementfor reconciling these controversial physiological observations. Therefore, this review is intendedtoprovideourmechanisticchemicalperspectiveonwhatarecur- rently considered to be the most important reactions in sulfide biology. 2. BIOAVAILABILITY OF SULFIDE—THE SIGNAL In considering the mechanistic details of sulfide signaling, the first obvious parameter to address is the physiological concentration of sulfide, i.e.,thesignal.Moreover,indynamic,livingsystems,itisratherthechange in sulfide concentration over time that triggers the cascade of biochemical reactions that constitute the signaling process. Sulfide concentrations can change: (i) as a result of physiological or pathophysiological events (for example, in some cancer cells the sulfide-producing enzymes, cystathionine-β-synthase (CBS), and/or cystathionine-γ-lyase (CSE) are overexpressed and could increase sulfide levels,butininflammationoratsitesofoxidativestress,sulfidelevelscould besignificantlydiminished),(ii)duetoadministrationofauthenticsulfideor slow releasing sulfide donor molecules, or (iii) simply as a result of normal cellularfunctions.Thelattercanbedemonstratedbythefactthatincellular 6 PéterNagy systems metabolic pathways work in parallel to strictly govern free sulfide levels,andasmallperturbationofsulfide-producingorconsumingreactions can have a profound effect on steady-state concentrations (Vitvitsky, Kabil, & Banerjee, 2012). 2.1. Endogenous sulfide production Endogenous sulfide production via cysteine metabolism is catalyzed by at least three different enzymatic systems, the main ones being the two pyridoxal phosphate (PLP) dependent CBS and CSE enzymes and the cooperative actions of aspartate/cysteine aminotransferase (AAT) and 3-mercaptopyruvate sulfurtransferase (3MST) (reviewed recently in Kabil & Banerjee, 2014; Nagahara, 2013). Although these enzymes all use cysteine as their biological substrate, their individual enzyme kinetic properties are very different. Differences include the involvement of (i) a variety of co-substrates,(ii)parallelenzymaticactivities,and(iii)mechanismsofinhi- bition/potentiation (Fig. 1). Therefore,thedominantcysteinemetabolism-mediatedsulfide-producing pathwayinacertainbiologicalsituationdependsnotonlyontherelativeCSE: CBS:AAT/3MSTconcentrationsonsite,butalsoonmanyothercomponents including thebioavailabilityof cysteine, homocysteine, α-ketoglutarate, and other enzyme activity modulating factors (Chiku et al., 2009; Yadav, Yamada,Chiku,Koutmos,&Banerjee,2013).Theprimarysulfide-producing reactionscatalyzedbytheseenzymesarealsoverydifferentchemically:CSEand CBScatalyzeα,β-eliminationandβ-replacementreactionsofcysteine,respec- tively, while 3MST produces sulfide via reductive elimination from a pref- ormedcysteine-persulfideintermediatespecies(seeFig.1). Twoadditional mechanismshave thepotential to produce sulfide indi- rectly, from Cys- and GSH-persulfides (CySSH and GSSH, respectively). TheseareCSE(Yamanishi&Tuboi,1981)andCBS(Idaetal.,2014)cat- alyzed beta-elimination from cystine and subsequent transsulfuration betweenCySSHandGSH.Notethatthesepathwaysexcludethedirectpar- ticipationofsulfideinthepersulfideformationprocess,whichisanimpor- tant difference from sulfide-mediated persulfide generation reactions (see later). Based on the measured K and k values, Ida et al. proposed that M cat under biologically relevant Cys:CySSCy ratios, CySSCy could be the pre- ferredsubstrateforCSEandCBS.Hence,thesereactionscouldprovidethe majority of the large amounts (tens to hundreds of μM-s) of persulfides (mostly as GSSH) that were detected in cellular systems (Ida et al., 2014).

Description:
These new volumes of Methods in Enzymology (554 and 555) on Hydrogen Sulfide Signaling continue the legacy established by previous volumes on another gasotransmitter, nitric oxide (Methods in Enzymology volumes 359, 396, 440, and 441), with quality chapters authored by leaders in the field of hydrog
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.