C S James Hydraulic Structures Hydraulic Structures C S James Hydraulic Structures 123 CSJames Schoolof Civil andEnvironmental Engineering University of the Witwatersrand Johannesburg, SouthAfrica ISBN978-3-030-34085-8 ISBN978-3-030-34086-5 (eBook) https://doi.org/10.1007/978-3-030-34086-5 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This textbook is intended to provide for the needs of senior undergraduate and postgraduate students in civil engineering programmes and graduate engineers in civil engineering practice. It aims to provide a solid grounding in the theory underlying the design and analysis of hydraulic structures, including underflow gates,transitions,spillways,culverts,energydissipators,flowmeasuringstructures and river intakes, as well as the prediction and prevention of scour. Well-established theory and procedures are presented, as well as recent develop- mentsgleanedfromtheresearchliteraturewithadesign-orientedperspective.Asa learning resource, the book is not intended to provide complete design details, but rather to develop understanding and competence in applying basic theoretical concepts; the reader is directed to many freely available design guides for more detailed treatment. There is, however, sufficient detail for preliminary design of manystructuresandcompletedesignofsomestandardstructuressuchasmeasuring weirs and flumes and stilling basins. Worked examples are presented in each chapter and exercise problems are provided. Thecontentofthebookisbasedonapostgraduatecourseinhydraulicstructures presentedattheUniversityoftheWitwatersrand,Johannesburgovermanyyears.At this level, mastery of basic hydraulic theory is assumed. For revision, the intro- ductory chapter provides an overview of the basic concepts relevant to the subse- quentcontent,particularlycoveringsteadyrapidlyandgraduallyvariedflowinopen channels, and flow resistance. At postgraduate level, students and practitioners should be aware of the incompleteness of current knowledge, and be adept at keeping abreast of new developments. Knowledge of some topics presented in the book is clearly not yet definitive, but their inclusion exemplifies the evolving state oftheartandthereferencescitedprovidefirstrecourseforpursuingadvancements. I am indebted to the authors of the many books and articles from which I have gainedtheknowledgethatispresentedinthiswork.Ihaveacknowledgedalldirect sources as far as possible, but there is much accumulated influence that is implicit v vi Preface anddifficulttosourceandattribute.IamespeciallyindebtedtoDr.HeinzWeissfor inspiring my interest in open channel hydraulics as an undergraduate student so many years ago, and to my many students since who have challenged my under- standing and explanations. Johannesburg, South Africa C S James Contents 1 Basic Hydraulic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Flow Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 The Conservation Laws in Hydraulics . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Conservation of Mass—The Continuity Equation . . . . . . . 7 1.3.2 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.3 Conservation of Momentum. . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Steady Uniform Flow and Flow Resistance . . . . . . . . . . . . . . . . . 14 1.4.1 The General Resistance Equation . . . . . . . . . . . . . . . . . . . 15 1.4.2 The Chézy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.3 The Darcy–Weisbach Equation. . . . . . . . . . . . . . . . . . . . . 18 1.4.4 The Manning Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5 Steady Rapidly Varied Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.1 Application of Energy and Momentum Conservation. . . . . 28 1.5.2 The Control Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.6 Steady Gradually Varied Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.6.1 The Gradually Varied Flow Equation . . . . . . . . . . . . . . . . 50 1.6.2 Classification of Gradually Varied Profiles . . . . . . . . . . . . 51 1.6.3 Gradually Varied Flow Computation. . . . . . . . . . . . . . . . . 52 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2 Underflow Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.2 Unsubmerged Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3 Submerged Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4 Hysteretic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 vii viii Contents 3 Open Channel Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Subcritical Flow Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3 Supercritical Flow Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.1 Straight Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3.2 Curvilinear Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.3.3 Suppression of Standing Wave Propagation. . . . . . . . . . . . 94 3.4 Dual Stable States and Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4 Spillways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.1 Introduction to Conveyance Structures. . . . . . . . . . . . . . . . . . . . . 105 4.2 Spillway Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.2.1 The Overflow Spillway . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.2.2 Labyrinth and Piano Key Weirs . . . . . . . . . . . . . . . . . . . . 117 4.2.3 The Side-Channel Spillway . . . . . . . . . . . . . . . . . . . . . . . 119 4.2.4 The Side Weir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.2.5 Shaft (Morning Glory) Spillways . . . . . . . . . . . . . . . . . . . 130 4.2.6 Siphon Spillways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.7 Chutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.2.8 Stepped Chutes and Spillways . . . . . . . . . . . . . . . . . . . . . 146 4.3 Cavitation and Aeration on Spillways and Chutes. . . . . . . . . . . . . 150 4.3.1 Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.3.2 Aeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5 Culverts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.2 Inlet Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.3 Outlet Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6 Energy Dissipation Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.2 The Hydraulic Jump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6.2.1 Hydraulic Jump Characteristics. . . . . . . . . . . . . . . . . . . . . 184 6.2.2 Controlled Hydraulic Jumps. . . . . . . . . . . . . . . . . . . . . . . 195 6.3 Standard Stilling Basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.4 Other Energy Dissipators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.4.1 Bucket-Type Dissipators . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.4.2 Impact-Type Dissipators. . . . . . . . . . . . . . . . . . . . . . . . . . 228 6.4.3 Baffled Spillways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Contents ix 6.4.4 Stepped Chutes and Spillways . . . . . . . . . . . . . . . . . . . . . 231 6.4.5 Spillway Splitters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7 Flow-Measuring Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 7.2 Weirs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 7.2.1 Sharp-Crested Weirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 7.2.2 Broad-Crested Weirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 7.2.3 Advantages and Disadvantages of Weirs for Flow Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 7.3 Flumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 7.3.1 Throated (Venturi) Flume. . . . . . . . . . . . . . . . . . . . . . . . . 257 7.3.2 The Parshall Flume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 7.3.3 The Cutthroat Flume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 7.4 Long-Throated Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 7.5 Errors and Measuring Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 8 Intake Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.1.1 Reservoir Intakes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.1.2 River Intakes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 8.2 River Intake Design for Sediment Control . . . . . . . . . . . . . . . . . . 285 8.2.1 Vertical Sediment Distribution . . . . . . . . . . . . . . . . . . . . . 286 8.2.2 Bed Load Movement Around Bends. . . . . . . . . . . . . . . . . 290 8.2.3 Sediment Exclusion Structures . . . . . . . . . . . . . . . . . . . . . 292 8.3 Pump Sumps and Intakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 8.3.1 Desirable Flow Conditions. . . . . . . . . . . . . . . . . . . . . . . . 307 8.3.2 Intake and Sump Design . . . . . . . . . . . . . . . . . . . . . . . . . 309 8.3.3 Model Testing for Intakes . . . . . . . . . . . . . . . . . . . . . . . . 315 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 9 Scour and Scour Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 9.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 9.3 Empirical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 9.4 Design Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 9.4.1 Critical Shear Stress Design . . . . . . . . . . . . . . . . . . . . . . . 327 9.4.2 Permissible Velocity Design. . . . . . . . . . . . . . . . . . . . . . . 336 9.4.3 Protection of Underlying Material. . . . . . . . . . . . . . . . . . . 339 x Contents 9.5 Scour Around Bridge Piers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 9.5.1 Scour Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 342 9.5.2 Bridge Scour Countermeasures. . . . . . . . . . . . . . . . . . . . . 351 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Postscript. .... .... .... .... ..... .... .... .... .... .... ..... .... 365 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 367