ebook img

How does radiative feedback from a UV background impact reionization? PDF

2.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview How does radiative feedback from a UV background impact reionization?

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed30January2013 (MNLATEXstylefilev2.2) How does radiative feedback from a UV background impact reionization? Emanuele Sobacchi1(cid:63), Andrei Mesinger1 1ScuolaNormaleSuperiore,PiazzadeiCavalieri7,56126Pisa,Italy 3 30January2013 1 0 2 ABSTRACT AnionizingUVbackground(UVB)inhibitsgasaccretionandphoto-evaporatesgasfromthe n a shallowpotentialwellsofsmall,dwarfgalaxies.Duringcosmologicalreionization,thiseffect J can result in negative feedback: suppressing star-formation inside HII regions, thus imped- 8 ingtheircontinuedgrowth.Itisdifficulttomodelthisprocess,giventheenormousrangeof 2 scales involved. We tackle this problem using a tiered approach: combining parameterized results from single-halo collapse simulations with large-scale models of reionization. In the ] resultingreionizationmodels,theionizingemissivityofgalaxiesdependsonthelocalvalues O of the reionization redshift and the UVB intensity. We present a physically-motivated ana- C lyticexpressionfortheaverageminimummassofstar-forminggalaxies,M¯ ,whichcanbe min . readily used in modeling galaxy formation. We find that UVB feedback: (i) delays the end h stagesofreionizationby∆z <0.5;(ii)resultsinamoreuniformdistributionofHIIregions, p ∼ peaked on smaller-scales (with large-scale ionization power suppressed by tens of percent); - o and(iii)suppressestheglobalphotoionizationrateperbaryonbyafactorof<2towardsthe ∼ r endofreionization.However,theimpactismodest,sincethehydrodynamicresponseofthe t s gastotheUVBoccursonatime-scalecomparabletoreionization.Inparticular,thepopular a approachofmodelingUVBfeedbackwithaninstantaneoustransitioninM ,dramatically [ min overestimatesitsimportance.UVBfeedbackdoesnotsignificantlyaffectreionizationunless: 1 (i) molecularly-cooled galaxies contribute significantly to reionization; or (ii) internal feed- v back processes strongly couple with UVB feedback in the early Universe. Since both are 1 consideredunlikely,weconcludethatthereisnosignificantself-regulationofreionizationby 8 UVBfeedback. 7 6 Key words: cosmology: theory – early Universe – galaxies: formation – high-redshift – . evolution 1 0 3 1 : 1 INTRODUCTION UVBradiativefeedbackiscrucialindevelopingmodelsofreion- v ization,aswellasinterpretingobservations. Xi Early generations of luminous objects reionized the Universe within the first ∼billion years following the Big Bang. This pro- Themaindifficultyinself-consistentlymodelingUVBfeedback r a cessisexpectedtobefairlyextendedandinhomogeneous.Asion- liesintheenormousdynamicalrangerequired.Ideally,wewould izingradiationspreadoutfromearlygalaxies,itheatedtheinter- needtofullyresolvetheinternalstructureofthedominantpopu- galacticmedium(IGM),affectingitscoolingproperties,andphoto- lationofatomically-cooledhalos(withvirialradii∼1properkpc; evaporatedgasfromshallowpotentialwells.Inthispicture,galax- Barkana&Loeb2001)incosmologicalsimulationswhichresolve iesforminginsideanalready-ionizedIGMwouldhaveadepleted ionizingstructureon>100comovingMpcscales(e.g.Furlanetto ∼ gasreservoir(andbyextension,fewerstars)comparedwiththose et al. 2004). Even state-of-the-art single galaxy simulations must forminginsidetheneutralIGM.Therefore,theionizingultraviolet employ some analytic prescriptions in estimating internal feed- background(UVB)duringreionizationresultsinanegativefeed- back (e.g. Hopkins et al. 2011); therefore compromises must be backmechanism,hinderingthefurthergrowthofionizedregions. made.Generallyoneoftwoapproachesarefollowed.Thefirstap- Thisnegativefeedbackcoulddelayreionization,aswellasresultin proach uses relatively small simulation boxes (∼ few cMpc on a amoreuniformreionizationmorphology.Thereforeunderstanding side),attemptingtomodelthesub-gridinterstellarmedium(ISM) physics,throughanalyticalprescriptions(e.g.Petkova&Springel 2011;Finlator etal. 2011;Wiseet al.2012;Johnson etal. 2012; Hasegawa&Semelin2012).Hereitisimportanttoexplorereason- (cid:63) email:[email protected] able extremes of all sub-grid recipes, and ensure resolution con- (cid:13)c 0000RAS 2 Sobacchi&Mesinger vergence.Evenso,itiscurrentlyimpossibletomodeltherelevant redshift-dependenthalomass(e.g.Barkana&Loeb2001): scalesofreionization.Thesecondapproachsimulatesreionization (cid:16) µ (cid:17)−3/2(cid:18)Ω ∆ (cid:19)−1/2 onlarge-scales,butdoesnotmodeltheinternalstructureofgalax- M =108h−1 m c × cool 0.6 Ωz 18π2 ies; instead, simple analytic (and relatively ad-hoc) prescriptions m areusedtoaccountforUVBfeedback(e.g.Ilievetal.2007;Mc- (cid:18) T (cid:19)3/2(cid:18)1+z(cid:19)−3/2 × vir M (cid:39) Quinnetal.2007). 1.98×104K 10 (cid:12) Inthispaperwefollowthelaterapproach.However,ratherthan (cid:18)1+z(cid:19)−3/2 adoptingad-hocprescriptions,webaseourtreatmentofUVBfeed- (cid:39)108 M (2) 10 (cid:12) backonresultsfromparameterstudiesof1Dcollapsesimulations (Sobacchi&Mesinger2013,hereafterPaperI).InPaperI,weob- where µ is the mean molecular weight, Ωz = m tained expressions for the baryon content of galaxies, residing in Ω (1+z)3/(cid:2)Ω (1+z)3+Ω (cid:3)and∆ =18π2+82d−39d2 m m Λ c regionswhichwerereionizedatredshiftzIN.Inthiswork,wein- withd=Ωmz −1. cludetheseexpressionsinsemi-numericalsimulationsofinhomo- Fittingtoabroadparameterspaceof1Dcollapsesimulations, geneous reionization. We present large-scale reionization simula- inPaperIwepresentedthefollowingexpressionforM (techni- crit tions which include a physically-motivated prescription for UVB callydefinedasthetotalhalomassatwhichthebaryonfractionis feedback.Withthesesimulations,westudytheimportanceofUVB 1/2oftheglobalvalue,Ω /Ω ): b m feedbackinregulatingreionization. (cid:18)1+z(cid:19)b(cid:20) (cid:18) 1+z (cid:19)c(cid:21)d Thispaperisorganizedasfollows.In§2wedescribeourUVB M =M J a 1− (3) feedbackprescription,andoursemi-numericalreionizationsimula- crit 0 21 10 1+zIN tions.In§3wepresentourresults,comparingdifferentinhomoge- withbest-fitparameters: neousreionizationmodels.In§4wediscussourresultsandpresent (M ,a,b,c,d)=(cid:0)2.8×109M ,0.17,−2.1,2.0,2.5(cid:1) (4) ourconclusions.ThroughoutweassumeaflatΛCDMcosmology 0 (cid:12) withparameters(Ωm,ΩΛ,Ωb,h,σ8,n)=(0.27,0.73,0.046,0.7, The critical mass depends on (i) redshift z; (ii) the redshift zIN 0.82,0.96),consistentwithWMAPresults(Komatsuetal.2011). whenthehaloisexposedtoaUVB;(iii)theUVBintensityJ :2 21 Unlessstatedotherwise,wequoteallquantitiesincomovingunits. J(ν)=J (ν/ν )−α×10−21ergs−1Hz−1cm−2sr−1 (5) 21 H whereν istheLymanlimitfrequencyandα = 5correspondsto H astellar-drivenUVspectrum(e.g.Thoul&Weinberg1996). 2 MODELINGREIONIZATIONWITHUVBFEEDBACK 2.2 Semi-numericalreionizationsimulations 2.1 Minimumhalomasstohostgalaxies Tomodelcosmologicalreionization,weuseaparallelizedversion InthesimplestUVB-regulatedscenario1,therearetwofundamen- ofthepubliclyavailablesemi-numericalsimulation,21CMFAST3. We generate the IGM density and source fields by: (i) creating a talhalomassscalesregulatingthegasreservoiravailableforstar 3DMonteCarlorealizationofthelineardensityfieldinaboxwith formation:(i)M ,thecharacteristicorcriticalmassbelowwhich crit sidesL = 300MpcandN = 16003 gridcells;(ii)evolvingthe baryons are photo-evaporated or cannot efficiently accrete onto densityfieldusingtheZel’dovichapproximation(Zeldovich1970), theirhosthalos;(ii)M ,thecoolingthresholdrequiredforgasto cool andsmoothingontoalower-resolutionN = 4003 grid;(iii)using efficientlycool,collapseandformstarsinsidethehalo.Therefore, excursion-set theory (Press & Schechter 1974; Bond et al. 1991; wecandefinetheminimummassofstar-forminghalosas: Lacey & Cole 1993; Sheth & Tormen 1999) on the evolved den- M =max[M ,M ] . (1) sityfieldtocomputethefractionofmattercollapsedinhalosbig- min cool crit gerthanM ,thuscontributingtoreionization(seeMesinger& min Here we mainly consider the advanced stages of reionization, Furlanetto2007;Mesingeretal.2011foramoredetaileddescrip- where cooling through molecular hydrogen is expected to be rel- tionofthecode). ativelyinefficientduetoadisassociatingbackground(e.g.Haiman The ionization field is computed by comparing the integrated et al. 1997). This corresponds to an atomic cooling threshold of number of ionizing photons to the number of baryons, in spheri- a constant virial temperature, T ∼ 104 K, or analogously a calregionsofdecreasingradiusR(i.e.followingtheexcursion-set vir approach of Furlanetto et al. 2004). Specifically, a cell located at spatialpositionandredshift,(x,z),isflaggedasionizedif: ξf (x,R,z,M )≥1 (6) coll min 1 Wecautionthatwedonotdirectlyincludeinternalfeedbackprocesses, wheref (x,R,z,M )isthefractionofcollapsedmatterin- coll min which,dependingontheISMtreatment,couldbeimportantindetermin- sideasphereofradiusRresidinginhaloslargerthanM ,and min ingthestarformationrate(SFR)ofdwarfgalaxiesathigh-redshifts(e.g. Pawlik & Schaye 2009; Finlator et al. 2011; Wyithe & Loeb 2012). Al- though winds can push gas to the outskirts of galaxies, where it can be 2 InPaperI,weignoredself-shieldingwhencomputingthecriticalmass. moreeasilyphoto-evaporatedbyaUVB,thisamplificationeffectismod- Theimportanceofself-shieldingonsuchdwarfgalaxiesathigh-redshiftsis estathigh-redshifts(atredshiftsnotfarbelowzIN;e.g.Pawlik&Schaye notwellknown,withsomeauthorssuggestingthatitdoesnothavealarge 2009;Finlatoretal.2011).Hence,duringmostofreionization,itisprobably impact on the relevant photo-evaporation time-scales (e.g. Shapiro et al. reasonabletomodelinternalfeedbackindependentlyfromUVBfeedback 2004; Iliev et al. 2005). Nevertheless, it should be noted that neglecting (e.g.bydecreasingtheionizingefficiencyparameter,ξ,below).Sincewe self-shieldingoverestimatestheimpactofUVBfeedbackonreionization, areprimarilyconcernedwiththerelativeimpactofUVBfeedback,wedo makingourmainconclusionsconservative. notexpectinternalfeedbacktoalterourmainconclusions. 3 http://homepage.sns.it/mesinger/Sim (cid:13)c 0000RAS,MNRAS000,000–000 TheimpactofUVBfeedbackonreionization 3 no feedback instantaneous feedback J=0.01 self-consistent J=1 Figure1.Slicesthroughourionizationboxes,withHIIregionsinblackandHIregionsinwhite.Fromtoptobottomweshowtheruns:NF,IF,J=0.01,SC, J=1. ξ isanionizingefficiency,definedbelow.StartingfromR = theIGM,N isthenumberofionizingphotonsperstellarbaryon, max γ R = 30 Mpc (roughly corresponding to the ionizing photon f isthefractionofgalacticgasinstars,andn¯ isthemeannum- mfp ∗ rec mean free path in the ionized IGM, R , at z ∼ 6 Songaila & berofrecombinationsperbaryonintheIGM.Ourfiducialchoice mfp Cowie2010;McQuinnetal.2011)thesmoothingscale,R,isde- of ξ = 30 results in an ionization history in agreement with the creased,andthecriterionineq.(6)isre-evaluated.Atthecellsize, WMAPobservedvalueofτ (Komatsuetal.2011);howeverwe e thepartialionizationsfromsub-gridsourcesareevaluated,includ- alsoexploreothervaluesbelow.Althoughourmodelsdependonly ing Poisson noise around the mean value of the collapse fraction on the product in eq. (7), we show on the RHS some reasonable (e.g. Mesinger et al. 2011). This algorithm results in ionization valuesforthecomponentterms.N ≈4000isexpectedforPopII γ fields which are in good agreement with cosmological radiative stars(e.g.Barkana&Loeb2005),andstudiesofthehigh-redshift transferalgorithms(Zahnetal.2011). Lymanalphaforestsuggestn¯ ∼0inthediffuseIGM(Miralda- rec Theionizingefficiencycanbewrittenoutas: Escude´2003;Bolton&Haehnelt2007;McQuinnetal.2011;note (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) that we instead incorporate photon sinks in the form of a mean N f f 1 ξ=30 γ esc ∗ . (7) free path through the ionized IGM, governed by the separation 4000 0.15 0.05 1+n¯ rec of Lyman limit systems, LLSs). On the other hand, the parame- wheref isthefractionofUVionizingphotonsthatescapeinto esc (cid:13)c 0000RAS,MNRAS000,000–000 4 Sobacchi&Mesinger ters f and f are extremely uncertain in high-redshift galaxies esc ∗ (e.g.Gnedinetal.2008;Wise&Cen2009;Ferrara&Loeb2012), 1 though our fiducial choices are in agreement with high-redshift galaxyluminosityfunctions(e.g.Robertsonetal.2013). Themainimprovementinthisworkisthatweusethespatially- SC dependentvalueofM ,computedaccordingtoeq.1(ratherthan min ahomogeneousvalueMmin = Mcool asiscommonlydone).We HI 0.5 IF x keeptrackoftheredshiftwheneachcellwasfirstionized,z (x), IN NF updatingthelocalvalueofM (z,z ,J )asreionizationpro- crit IN 21 J(cid:61)0.01 gresses (for details on how we compute the inhomogeneous J , 21 see the following section). Neutral cells are assigned the value J(cid:61)1 M (z).Wethenusetheaveragevalue,(cid:104)M (cid:105) intheioniza- cool min R 0 tion criterium of eq. (6). The drawback of this addition is that it 7 8 9 10 11 12 13 14 15 requires“running-down”thesimulationfromhighredshifts,rather z than being able to independently generate the reionization mor- phologyatagivenredshift. Figure2.Evolutionoftheglobalneutralfractionx¯HIwithdifferentmod- els of radiative feedback. Dot-Dashed: no feedback (NF). Short-dashed: J21 = 0.01 inside HII regions. Dotted: J21 = 1 inside HII regions. 2.2.1 Incorporatinganinhomogeneous,self-consistentUVB Dashed:instantaneousfeedback(IF).Long-dashed:self-consistentmodel (SC). WealsocomputetheaverageintensityinsideeachHIIregion,for use in eq. (1). The mean emissivity (number of ionizing photons neglectsUVBfeedback,asiscommonlydoneinreionizationliter- emitted into the IGM per second per comoving volume) can be ature. writtenas: • Instantaneous feedback (IF): in this extreme model, feed- (cid:15)≈f f N n¯ fcoll ≈ξn¯ fcoll , (8) back leads to an instantaneous transition in Mmin as soon as the ∗ esc γ b t b t halo is exposed to a UVB, thus ignoring the hydrodynamical re- ∗ ∗ sponse time-scale of the gas. This is the most common prescrip- wheren¯ isthemeanbaryonnumberdensityinsidetheHIIregion, b tion4 for UVB feedback (e.g. Wyithe & Loeb 2003; Onken & andt isthestar-formationtime-scale(whichwetaketobet = ∗ ∗ Miralda-Escude´ 2004; Iliev et al. 2007; Wyithe & Morales 2007; 0.3×t ).Theintensityisproportionaltothemeanfreepathinside H Wyithe&Cen2007;Kulkarni&Choudhury2011;Alvarezetal. theHIIregion(takentobe≈R)multipliedbytheemissivity.Ifthe 2012; Ahn et al. 2012), and we take M = M in HI re- emissivityisspectrallydistributedasν−α(eq.5),wecanwritethe min cool gions and M = 109M in HII regions, consistent with pre- averageUVBintensityinagivenHIIregionofcharacteristicsize min (cid:12) vious works. The IF and NF runs therefore bracket the expected R(inergs−1Hz−1sr−1propercm−2)as impactofUVBfeedback. (cid:104)J (cid:105) = (1+z)2Rhαn¯ ξfcoll . (9) • J=1: we calculate Mmin with eq. 1, using a constant UVB 21 HII 4π b t∗ intensityJ21 = 1inHIIregions.Thisintensityislargerthanesti- matesfromtheLymanalphaforestatz ∼ 6,J ∼ 0.1(Bolton Duetotheclusteringofdarkmatterhalos,therelevantintensity 21 &Haehnelt2007;Wyithe&Bolton2011;Calverleyetal.2011). atgalaxylocationswillbehigherthantheaverageUVBintensityin ThereforethismodelplacesanupperlimittotheimpactofUVB eq.(9).ThereforewhencalculatingM ,weuse(cid:104)J (cid:105) = min 21 halo,HII feedback (which is more physically relevant than the upper limit f ×(cid:104)J (cid:105) , with f = 2, consistent with results from Jbias 21 HII Jbias providedbytheIFmodel). Mesinger&Dijkstra(2008).Wealsonotethatthesimplificationof • J=0.01:likethepreviousmodelbutwithJ =0.01. auniformUVBinsideeachHIIregionseemstobereasonable(see 21 • Self-consistent(SC):wecalculateM usingeq.1,andwe Fig.7andtheassociateddiscussion). min useeq.9tocalculatetheinhomogeneousUVBinHIIregions. Furthermore, this formalism is not fully self-consistent, since our expression for M was computed for a time-independent crit UVB.Nevertheless,wefindthatthemeanUVBisroughlyconstant inHIIregions,somewhatvalidatingthisapproximation.Moreim- 3 RESULTS portantly,feedbackislargelyinsensitivetotheexactvalueofJ 21 3.1 ReionizationHistory sincethegasisalwaysheatedtoT ∼104K(specifically,inPaper IwefindM ∝J0.17). InFig.1,weshowslicesthroughtheionizationboxesofourfive crit fiducial models: NF, IF, J=0.01, SC, J=1 (top to bottom). The correspondingelectron-scatteringopticaldepthsare:τ = 0.088, e 2.3 Runs τ = 0.073,τ = 0.087,τ = 0.085,τ = 0.0845 consistentat e e e e 1σwithWMAPresults(Komatsuetal.2011). The efficient, semi-numerical approach outlined above allows us to explore several scenarios of UVB feedback during reioniza- tion. As already mentioned, our fiducial model assumes ξ = 30, 4 Insimulations,thisgenerallyamountstousingthesimulationtime-step Tcool = 104K and Rmfp = 30cMpc, though we explore other (generally≈10Myr)asthefeedbacktime-scale. valuesthroughout.Wehavefivemainprescriptionsforimplement- 5 UV-drivenreionizationis“inside-out”onlarge-scales,withoverdensities ingUVBfeedback: hostingthebiasedgalaxiesbeingthefirsttoionize.Mesingeretal.(2012) notedthatthiscorrelationbetweenthedensityandionizationfieldsresults • Nofeedback(NF):weassumeMmin = Mcool,correspond- ina≈4%higherτethanwhatwouldbeexpectedassumingthetwofields ingtoaconstantvirialtemperatureTcool.Thismodelcompletely areuncorrelated:(cid:104)xi×nb(cid:105)(cid:54)=(cid:104)xi(cid:105)×(cid:104)nb(cid:105).Forexampleourself-consistent (cid:13)c 0000RAS,MNRAS000,000–000 TheimpactofUVBfeedbackonreionization 5 As expected, UVB feedback delays reionization and results in (McQuinn et al. 2007). In other words, reionization morphology a more uniform distribution of HII regions (e.g. McQuinn et al. ismuchmoresensitivetox¯ thanitistoUVBfeedbackeffects. HI 2007;Ilievetal.2007).However,ourself-consistentmodelisnot Thisimpliesthatpreviouspredictionsforreionizationmorphology remarkablydifferentfromtheonewhichignoredUVBfeedbackal- (atfixedx¯ )arenotparticularlysensitivetothissourceofastro- HI together(NF).Moststrikingistheeffectofanunphysicalinstanta- physicaluncertainty. neoustransitioninM :theIFmodeldramaticallyover-predicts min theimportanceofUVBfeedbackevenwithrespecttotheextreme 3.3 EvolutionofM J=1 model. We can therefore immediately surmise that the delay min inthehydrodynamicresponseofthebaryonstotheUVBisfunda- Theresultsoftheprevioussectionscanbemorereadilyunderstood mentalinproperlymodelingUVBfeedback. bylookingattheredshiftevolutionoftheaveragevalueofthemin- This qualitative result is confirmed by the evolution of the imum halo mass hosting star-forming galaxies, M¯ , shown in min globalneutralfractionx¯HI,showninFig.2.Asexpected,theself- Fig. 5, using the same line styles as above. This quantity is also consistentmodelshowsintermediatefeaturesbetweentheJ=0.01 fundamentalinsemi-analyticalmodelsofgalaxyformation. andJ=1models.SincethetransitionofMminisnotinstantaneous, By construction, the M¯min curve in the NF model simply fol- onlythelatestagesofreionizationaredelayed.ComparingtheSC lows the T = 104 K isotherm. The curve corresponding to vir andNFcurves,weseethatUVBfeedbackdelaysthelaterstages the SC model is closer to the J=1 model than the J=0.01 one ofreionizationby∆z <∼0.5.Ontheotherhand,thisdelayissig- (seeFig.7andassociateddiscussion).Itbegins“pealingoff”the nificantlyoverestimatedbyamodelwithinstantaneousfeedback: T = 104 K isotherm at z ∼ 10, when reionization is already vir ∆z≈1.5. well underway (x¯ ∼ 0.6). In contrast, M¯ in the IF model HI min immediately starts increasing as reionization progresses, since in that model the average minimum halo mass is simply M¯ = min 3.2 ReionizationMorphology x¯ M +(1−x¯ )109M .Becauseitignoresthedelayasso- HI cool HI (cid:12) We now proceed to quantify the impact of UVB feedback on ciatedwithUVBfeedback,theIFmodelover-predictsM¯minbya the morphology of reionization. In Fig. 3 we show the ioniza- factorof∼2–3,withrespecttotheSCmodel. tion power spectrum (∆2xx ≡ k3/(2π2V) (cid:104)|δxx|2(cid:105)k, with δxx = ForcomparisonwealsoshowtheevolutionofM¯min assuming xHI/x¯HI−1),whileinFig.4weshowthesizedistributionsofthe a homogeneous reionization at zIN = 9.3 = zre, corresponding HIIregions6.Panelscorrespondtodifferentstagesofreionization: totheredshiftwhenx¯HI = 0.5intheself-consistentmodel(ma- x¯HI = 0.75,0.50,0.25, (left to right). We compare our fiducial gentasolidline).Thisformulaunder-predictsM¯minbyafactorof models of UVB feedback: no feedback (yellow dot-dashed line); ∼ 2 around the mid-point of reionization, highlighting that the J = 0.01 (magenta short-dashed line); J = 1 (blue dotted scatter in the reionization redshifts of galaxies can be important 21 21 line); instantaneous feedback (green dashed line); self-consistent inregulatingstarformation(e.g.Alvarezetal.2009).Thishomo- (bluelong-dashedline). geneousreionizationmodelfurtherhighlightsthedelayinthehy- As expected from Fig. 1, we see that ignoring feedback over- drodynamicresponseofthegastotheUVB:Mcritonlysurpasses predicts the large-scale ionization power by tens of percent. The Mcoolatz≈8,eventhoughtheionizingbackgroundiseffectively sametrendcanbeseenintheHIIsizedistributions,withthepeak turnedonatzre =9.3(seealsoOkamotoetal.2008). intheNFmodelbeingshiftedby≈ 50%withrespecttotheSC It is natural to approximate this delay with the sound-crossing model.TheIFmodelontheotherhandover-estimatesthesefeed- time-scale, tsc = 2Rvir/cs(104K) (which is comparable to the backeffectsbyacomparableamount.Wethereforeconfirmearlier photo-evaporation time-scale, e.g. Haiman et al. 2001; Shapiro predictions that UVB feedback results in smaller, more uniform etal.2004).ForahaloofmassM,thesound-crossingtime-scale ionizedregions(McQuinnetal.2007).Thisiseasytounderstand: canbeapproximatedas(c.f.Shapiroetal.2004): thelargestHIIregionscorrespondtothemostbiasedlocationsof (cid:18) M (cid:19)1/3(cid:18)1+z(cid:19)−1(cid:18)Ω h2(cid:19)−1/3 the density field, and are therefore ionized earliest. It is in these tsc ≈200Myr 108M 10 0m.15 . regionsthatUVBfeedbackhashadthemosttimetoquenchstar- (cid:12) (10) formation.Smaller,late-formingHIIregionsarelessaffected,and ItwouldthereforebereasonabletoexpectM¯ toevolvefrom min thereforemoreabundantatfixedx¯ . HI M athighredshiftstosomeM (T ≈const)atlowredshifts, cool 0 vir Nevertheless, the impact of UVB feedback is relatively minor, withthetransitionoccurringatz∼z −∆z [where∆z isthe re sc sc whencomparedatfixedx¯ :thepowerspectraofallmodelsagree HI redshift interval corresponding to eq. (10)], roughly over a time- to within a factor of < 2. This is due to the fact that the halo ∼ scale scaling with the duration of reionization, ∆z . Indeed, we re bias evolves only weakly over the mass scales relevant to UVB findthatourresultsforM¯ arewellfittedby: min feedback; hence morphology at a given x¯ is relatively robust HI (cid:18) M (cid:19)g M¯ (z)=M × 0 , (11) min cool M cool modelhasτe =0.085insteadofτe =0.083aswouldbeexpectedignor- withthetransitionfunction ingthiscorrelation. 6 WecalculatethesizedistributionsfollowingtheprescriptioninMesinger g(z)= (cid:104) 1 (cid:105) . (12) &Furlanetto(2007).Namely,werandomlychooseanionizedcellandthen 1+exp z−(zre−∆zsc) recordthecomovingdistancetotheedgeoftheHIIregioninarandom ∆zre direction.ThenwedefinethesizedistributionasRdp/dR,wherepisthe WetakeM (z)tocorrespondtoafixedvirialtemperatureT = 0 0 probabilitythatthisdistanceisbetweenRandR+dR.Technicallywe 5×104K,7anddefine∆z tocorrespondtotheredshiftinterval re define the edge of an HII region as the first cell with xHI ≥ 0.5. This betweenx¯HI =0.6andx¯HI =0.4. choiceofthresholdcanaffectthesizedistributionssomewhat;however,we areinterestedintherelativedifferencebetweenthemodels,whichismuch morerobusttothischoice(Friedrichetal.2011). 7 We caution that our simple 1D simulations from Paper I are not well (cid:13)c 0000RAS,MNRAS000,000–000 6 Sobacchi&Mesinger 1 1 1 x (cid:61)0.75 HI SC 0.1 0.1 0.1 2(cid:68)xx 2(cid:68)xx 2(cid:68)xx NIFF 10(cid:45)2 10(cid:45)2 10(cid:45)2 xHI (cid:61)0.50 x (cid:61)0.25 J(cid:61)0.01 HI J(cid:61)1 10(cid:45)3 10(cid:45)3 10(cid:45)3 0.1 1 0.1 1 0.1 1 k Mpc(cid:45)1 k Mpc(cid:45)1 k Mpc(cid:45)1 (cid:72) (cid:76) (cid:72) (cid:76) (cid:72) (cid:76) Figure3.Powerspectrum∆2xxoftheionizationfieldatx¯HI = 0.75(left),x¯HI = 0.50(middle)andx¯HI = 0.25(right)withdifferentmodelsofUVB feedback.Dot-Dashed:NF.Short-dashed:J=0.01.Dotted:J=1.Dashed:IF.Long-dashed:SC. 0.3 0.3 0.3 xHI (cid:61)0.75 xHI (cid:61)0.50 xHI (cid:61)0.25 R R R d 0.2 d 0.2 d 0.2 (cid:144) (cid:144) (cid:144) p p p d d d R R R 0.1 0.1 0.1 0 0 0 1 10 102 1 10 102 1 10 102 R Mpc R Mpc R Mpc (cid:72) (cid:76) (cid:72) (cid:76) (cid:72) (cid:76) Figure4.SizedistributionoftheHIIregionsatx¯HI =0.75(left),x¯HI =0.50(middle)andx¯HI =0.25(right)withdifferentmodelsofUVBfeedback. Dot-Dashed:NF.Short-dashed:J=0.01.Dotted:J=1.Dashed:IF.Long-dashed:SC. InFig.6wecomparethisanalyticapproximation(dottedlines) with the results from our simulation (dashed lines). We show the 109 self-consistent model with the standard choice of the parameters HR (inthiscasetheanalyticformulaandtheresultofsimulationare SC indistinguishable).Totesttherobustnessoftheaboveapproxima- IF (cid:159) tion, we also include two ”extreme” models: (i) with molecular M NF hydrogen cooled halos significantly contributing to reionization: n (cid:144) J(cid:61)0.01 Tcool =5×103K(magentacurves);(ii)withasignificantlyhigher Mmi J(cid:61)1 emissivityξ =100(greencurves).Theserunscorrespondtozre= 108 (9.3,9.9,12.0),∆z =(1.0,1.3,0.8)and∆z =(2.0,0.9,2.5),for re sc thefiducial,T =5×103K,andξ=100models,respectively. cool Even in the extreme cases, our formula from eq. (11) provides a good fit. This general, physically-motivated expression facilitates 7 8 9 10 11 12 13 14 15 implementingUVBfeedbackfromaninhomogeneousreionization z intomodelsofgalaxyformation. Figure5.AveragevalueofMmin versusredshift.Dot-dashed:nofeed- back(NF).Short-dashed:ourmodelwithJ21 =0.01.Dotted:ourmodel 3.4 UVBEvolution withJ21 = 1.Dashed:instantaneousfeedback(IF).Long-dashed self- InadditiontotheevolutionofHIIregions,UVBfeedbackaffects consistentmodel(SC).Solid:forcomparisonweshowMmin (eq.1)as- theUVBitself.Asstar-formationissuppressedinvulnerablehalos, sumingahomogeneousreionization(HR)atzIN =9.3(correspondingto themid-pointofreionizationintheSCmodel). theUVBdecreases(withrespecttothecasewithoutfeedback).Our formalismexplicitlycomputestheinhomogeneousUVBintensity, asdescribedin§2.2.1.Itthereforeprovidesausefulpredictionof alphaforestinhigh-redshiftquasarspectra.Theionizationrateper theevolutionofJ duringreionization. 21 baryon is found to be remarkably constant from z ≈ 2 → 5, TheUVBcanbedeterminedfrommeasurementsoftheLyman Γ ≈ 10−12 s−1 (Bolton & Haehnelt 2007; Faucher-Gigue`re bkg etal.2008).Thenfromz≈5→6,thereisevidenceofadropbya factoroffew,thoughtheuncertaintyinthemeasurementislargeat suited for low-redshift structure formation, where mergers and other 3D thesehigh-redshiftswhentheLyαforestbeginstosaturate(Bolton effects can be important. Hence, here we use a lower value of M0 than impliedbyextrapolatingeq.(3)toz = 0;ourchoiceisroughlyconsis- &Haehnelt2007;Wyithe&Bolton2011;Calverleyetal.2011). tentwithcosmologicalsimulationsofhomogeneousreionization(Okamoto Suchadropcouldbecausedbyeitheranincompletereionization etal.2008). (Mesinger2010;McGreeretal.2011),and/orbyarapidevolution (cid:13)c 0000RAS,MNRAS000,000–000 TheimpactofUVBfeedbackonreionization 7 isgenerallynotmadeinLymanforeststudies,whichtherebyim- plicitlyassumethatreionizationisover(thoughseeGalleranietal. 2006andMcGreeretal.2011),orthatitisdrivenbyX-rayswith 109 longmeanfreepaths(e.g.Oh2001).Tohighlightthispoint,inFig. Ξ(cid:61)100 7wealsoshowtheevolutionof(cid:104)J (cid:105) intheSCmodel(dashed 21 V (cid:159) M curve). min 108(cid:144) SC regFioronms iFnigth.e7,SwCemseoedethlaitstqhueiateveflraatg,ewUitVhBaivnatelunesitoyfw(cid:104)Jit(cid:105)hinH(cid:39)II M HII 0.2,consistentwithobservationalestimatesatz ∼6.9Comparing Tcool(cid:61)5(cid:180)103K the solid and dot-dashed curves, we see that feedback in our SC 107 modelsuppressestheUVBbyafactorof<∼2towardstheendof reionization. This factor is modest, compared to the uncertainties 7 8 9 10 11 12 13 14 15 inthemodelparametersandobservationalmeasurements. The shaded region in Fig. 7 corresponds to the 1σ scatter in z (cid:104)J (cid:105) . This spread is roughly a factor of ∼ 2 during most of 21 HII Figure6.AveragevalueofMmin versusredshift.Wecomparetheself- reionization,decreasingto<∼50%inthefinaloverlapstages.Such consistentmodelwiththestandardparameterchoice(SC),withTcool = aspreadintheHII-regionaveragedintensityisroughlycompara- 5×103Kandwithξ = 100.Dashed:resultsofthesimulation.Dotted: bletotheoverallspreadintheintensity,asestimatedbyMesinger analyticexpressionineq.11. &Dijkstra(2008)andMesinger&Furlanetto(2009)whosummed contributions from individual galaxies. This supports our formal- ism in §2.2.1, and the corresponding simplification of using a roughlyuniformionizingbackgroundinsideeachHIIregion. Calverley (cid:43) 2011 1 Bolton &Haenelt 2007 10(cid:45)12 (cid:76) 3.5 WasReionization“Self-Regulated”? (cid:72) (cid:76) (cid:45)1 J21 0.1 (cid:72) (cid:76) 10(cid:45)13 s (cid:72) UsingtheassumptionofaninstantaneouschangeinMmin inside g ionized regions (i.e. ourIF model), many works claim thatUVB k b (cid:71) feedbackhasadramaticimpactonreionizationhistoryandthecor- 10(cid:45)2 10(cid:45)14 respondingstar-formationrate(e.g.Wyithe&Loeb2003;Onken &Miralda-Escude´2004;Ilievetal.2007;Wyithe&Morales2007; Wyithe&Cen2007;Kulkarni&Choudhury2011;Alvarezetal. 6 7 8 9 10 11 12 13 14 15 2012; Ahn et al. 2012). Some works dub this effect to be “self- z regulation”,sincewhenHIIregionsform,theirsubsequentgrowth isimpaired.However,weshowabovethatundermorerealisticpre- Figure 7. Evolution of the UVB intensity J21 (left-hand scale) and of scriptionsofUVBfeedback,thiseffectisrelativelyminor(seealso thecorrespondingphotoionizationrateperbaryonΓbkg(right-handscale). Mesinger&Dijkstra2008).Thisqualitativeclaimiseasytounder- Solid:averageintensity(cid:104)J(cid:105)HII withinHIIregionsinourSCmodel;the stand:thetime-scalesassociatedwithUVBfeedbackarecompara- shadedregioncorrespondstothespreadamongHIIregions.Dashed:aver- bletothetime-scaleofreionization.Thusintheregimeswestudy, ageintensity(cid:104)J(cid:105)V intheentiresimulationbox.Dot-dashed:evolutionof there is not enough time for UVB feedback to efficiently delay (cid:104)J(cid:105)HIIwhenfeedbackisneglected(NF).ForcomparisonweshowΓbkg reionization. We now ask the question, “what are the physically- atz ≈ 6(offsetforclarity)asestimatedfromtheLyαforest(Bolton& motivatedregimesinwhichUVBfeedbackcaninfactself-regulate Haehnelt2007;Calverleyetal.2011). reionization?”NaivelyonemightexpectthatthestrengthofUVB feedback can be increased by (i) a higher UVB intensity; (ii) a intheabundanceofLLSs(Furlanetto&Oh2005;McQuinnetal. 2011).8 moreextendedreionization;(iii)alargercontributionofsmallha- los,moresusceptibletoUVBfeedback.Weexploreeachofthese InFig.7weshowtheredshiftevolutionoftheUVBinourSC inturn. (solidcurve)andNF(dot-dashedcurve)models(J /Γ onthe 21 bkg In Fig. 8 we show the reionization history in models with dif- left/right vertical scales), together with z ≈ 6 observational esti- ferent ionizing photon efficiencies: ξ =30, 50, 100 (left to right matesbyBolton&Haehnelt(2007)andCalverleyetal.(2011).It pairs of curves). We compare the evolution when UVB feedback is important to note that during UV-driven reionization, the UVB is neglected (NF; dot-dashed line) with our self-consistent ap- is expected to be bi-modal, with (cid:104)J (cid:105) inside HII regions and 21 HII proach (SC; long-dashed line). In fact, increasing the UVB in- J ∼ 0 inside neutral regions, such that the volume-averaged 21 tensity (J ∝ ξ), results in smaller feedback effects. This is UVB intensity is (cid:104)J (cid:105) ∼ (1−x¯ )(cid:104)J (cid:105) . This distinction 21 21 V HI 21 HII because the dependence of M on J is weak in our model min 21 (M ∝J0.17),whileforhighvaluesofξ,reionizationproceeds crit 21 8 Notethatalargedropintheionizingbackgroundmustinvolvethephoto- faster. Therefore as the ionizing emissivity is increased, the de- creaseinthedurationofreionizationismorerelevantthanthedelay evaporationofLLSs(McQuinnetal.2011),sincethesesystemsregulatethe progressofreionizationduringitsfinalstages(e.g.Furlanetto&Mesinger 2009;Crocianietal.2011;Alvarez&Abel2012).Wecautionthatourmod- elsdonotincorporateanevolvingmeanfreepathinionizedregions.There- 9 Choosingalower/highervalueoftheionizingefficiency,ξ,wouldde- fore,theylikelyunderestimatetheriseintheUVBinthelatestagesand lay/advancereionizationanddecrease/increasetheresultingphotoioniza- followingreionization.However,therelativeimpactoffeedbackismore tionrate.Theobservationaldatastillallowforarelativelybroadrangeof robusttothisuncertainty. ξ. (cid:13)c 0000RAS,MNRAS000,000–000 8 Sobacchi&Mesinger resultingfromtheincreaseinM ,andtheevolutionofreioniza- crit tionisdrivenbytheemissivity. 1 Wenextattempttoextendthedurationofreionization,inorder togivetheUVBtimetosignificantlysuppressthegascontentof galaxies.Themostefficientwayofsignificantlyextendingreion- Ξ(cid:61)50 ization10istodecreasetheionizingphotonmeanfreepaththrough theionizedIGM,Rmfp(e.g.Alvarez&Abel2012;Mesingeretal. HI 0.5 2012). Our fiducial model assumes R = 30 Mpc, consistent x Ξ(cid:61)30 mfp withobservationalandtheoreticalestimatesatz≈6(e.g.Songaila &Cowie2010;McQuinnetal.2011).InFig.9weshowthereion- Ξ(cid:61)100 izationhistoryofourfiducialmodel,butdecreasingR to5Mpc. mfp Although the reionization history is significantly extended, UVB 0 feedbackhasanegligibleeffect,resultinginadelayof∆z <∼0.1. 7 8 9 10 11 12 13 14 15 This is because the effective horizon imposed by R restricts mfp z feedbacktoaverylimitedvolumesurroundingeachgalaxy.Reion- izationproceedsinadisjointmanner:withtiny,isolatedHIIregions Figure8.Evolutionoftheglobalneutralfractionx¯HIwithdifferentioniz- emerging around newly-forming galaxies (Alvarez & Abel 2012; ingefficienciesξ =30,50,100.Dot-Dashed:nofeedback.Long-dashed: Mesingeretal.2012).Suchareionizationscenarioisnotaffected self-consistentmodel. byUVBfeedback. Finally,weturntoourpoint(iii):alargercontributionofsmall halos,moresusceptibletoUVBfeedback.Sofar,wehaveconsid- 1 ered halos down to T = 104K: this is conservatively small, R (cid:61)5cMpc cool mfp sincewindsandinternalfeedbackcansuppressstar-formationin- T (cid:61)5(cid:180)103K sidesuchhalos(e.g.Springel&Hernquist2003;Pawlik&Schaye cool 2009;Finlatoretal.2011).However,somemodelsargueforasig- nificantcontributionofgalaxieshostedbyevensmallerhalos(so- HI 0.5 x calledminihalos),inwhichgascollapsesthroughmolecularcool- ing channels. In Fig. 9, we show the reionization history of such a toy model which allows halos down to T = 5×103K to cool emit ionizing photons with the same fiducial efficiency ξ = 30. In this extreme case, UVB feedback has a dramatic impact on 0 reionization history: delaying the advanced stages of reionization 7 8 9 10 11 12 13 14 15 by ∆z ∼ 1.5–2, and resulting in a slow evolution of x¯ during HI z thefirsthalfofreionization.Thisresultisqualitativelyconsistent withtherecentresultsbyAhnetal.(2012)(whoassumedinstan- Figure 9. Evolution of the global neutral fraction x¯HI with Rmfp = taneousUVBfeedback,aswellasinstantaneousfeedbackfroman 5cMpc and with Tvir = 5×103K. Dot-Dashed: no feedback. Long- H -disassociative background; the later results in an even flatter, dashed:self-consistentmodel. 2 self-regulatedregimeduringtheearlystages).11 4 CONCLUSIONS Wethereforeconcludethatreionizationisself-regulatingonlyif star-formationisefficientinsidemolecularly-cooledgalaxies.We Cosmic reionization inhomogeneously heated the IGM, affecting caution however that our implementation of UVB feedback from itscoolingpropertiesandphoto-evaporatinggasfromtheoutskirts PaperIwascalibratedonlyforatomiccooledhalos.Furthermore, of galaxies. As a result, small dwarf galaxies inside the ionized our models assume that the star-formation rate is proportional to patcheswouldhaveareducedgasreservoirforstar-formation.This thetotalamountofgasinsidehalos.Wedonotmodeltheabilityof processinvolvesahugedynamicrange;thereforelarge-scalereion- gastocoolandformstars,whichcanbedramaticallysuppressed izationsimulationsgenerallyeitherignorethiseffectorincludeit inminihalosbyanH2-disassociativebackgroundbeforethebulkof withsimple,fairlyad-hocprescriptions. reionization (assuming modest values for their ionizing emissivi- In this work, we use a tiered approach to study the impact of ties;e.g.Haimanetal.1997). UVB feedback on reionization. Combining parameterized results fortheminimumhalomasscapableofhostingstar-forminggalax- ies(M ,seePaperI)withsemi-numericalsimulationsofreion- min 10 Notethatwealreadyincludestarformationinhalosdowntotheatomic- ization,wepresentlarge-scale(300Mpc)reionizationsimulations coolingthreshold.Thefractionalabundanceofthesehalosevolvesmore which include UVB feedback in a physically-motivated manner. slowly than that of more massive halos, expected to have more efficient In our models, the ionizing emissivity of galaxies is assumed to star-formation(e.g.Lidzetal.2007).Thereforeincreasingthedurationof be proportional to their baryonic content, and depends on the lo- reionizationbychangingthepopulationofhosthalosisonlypossibleifwe calvaluesofthereionizationredshiftandtheUVBintensity.These includemolecularly-cooledgalaxies(seebelow). additionswillbeincludedinanupcomingversionupdateof21CM- 11 Wecautionthatsuchsimplemodelsverylikelyoverestimatetheion- FAST. izingefficienciesofminihalos,byignoringthechemicalandmechanical UVBfeedbackdelaystheendstagesofreionizationby∆z < feedbackfromthefirststars(e.g.Tornatoreetal.2007;Whalenetal.2008), ∼ 0.5,suppressesthelarge-scaleionizationpowerbytensofpercent X-ray pre-heating of the IGM (e.g. Ricotti & Ostriker 2004), as well as thebaryon-DMvelocityoffset(e.g.Tseliakhovich&Hirata2010).Simu- (at fixed x¯HI), and decreases the mean photoionization rate by a lationspredictthatthesemechanismsareveryefficientinsuppressingstar- factor of <∼ 2 towards the end of reionization. These effects are formationinminihalos. quitemodest,whencomparedtocurrentastrophysicalandobser- (cid:13)c 0000RAS,MNRAS000,000–000 TheimpactofUVBfeedbackonreionization 9 vational uncertainties. By contrast, the popular assumption of an MesingerA.,DijkstraM.,2008,MNRAS,390,1071 instantaneouschangeinM resultsinamuchlargereffect,with MesingerA.,FerraraA.,SpiegelD.S.,2012,preprint(arXiv:1210.7319) min a∆z ≈1.5delayinreionization,andafactoroffewhigheraver- MesingerA.,FurlanettoS.,2009,MNRAS,400,1461 ageM . MesingerA.,FurlanettoS.R.,2007,ApJ,669,663 min MesingerA.,FurlanettoS.R.,CenR.,2011,MNRAS,411,955 AssumingthatUVBfeedbackactsonatime-scaleroughlycor- MesingerA.,McQuinnM.,SpergelD.N.,2012,MNRAS,422,1403 respondingtothehalosound-crossingtime,wepresentananalytic formulaforM¯ .Thisgeneralexpressionfitsoursimulationre- Miralda-Escude´J.,2003,ApJ,597,66 min OhS.P.,2001,ApJ,553,499 sults very well, and can be easily included in models of galaxy OkamotoT.,GaoL.,TheunsT.,2008,MNRAS,390,920 formation. OnkenC.A.,Miralda-Escude´J.,2004,ApJ,610,1 In our models, UVB feedback significantly delays reioniza- PawlikA.H.,SchayeJ.,2009,MNRAS,396,46 tion only if molecularly-cooled galaxies contribute significantly PetkovaM.,SpringelV.,2011,MNRAS,412,935 to reionization. Star-formation inside such galaxies is easily sup- PressW.H.,SchechterP.,1974,ApJ,187,425 pressedbymechanicalfeedback,X-raypre-heatingandthebaryon- RicottiM.,OstrikerJ.P.,2004,MNRAS,352,547 DMvelocityoffset.Hence,weconcludethatUVBfeedbackisun- RobertsonB.E.,etal.,2013,ArXive-prints ShapiroP.R.,IlievI.T.,RagaA.C.,2004,MNRAS,348,753 likelytoself-regulatereionization. ShethR.K.,TormenG.,1999,MNRAS,308,119 SobacchiE.,MesingerA.,2013,preprint(PaperI) WethankAndreaFerraraforcommentsonadraftversionofthis SongailaA.,CowieL.L.,2010,ApJ,721,1448 work. SpringelV.,HernquistL.,2003,MNRAS,339,312 ThoulA.A.,WeinbergD.H.,1996,ApJ,465,608 TornatoreL.,FerraraA.,SchneiderR.,2007,MNRAS,382,945 TseliakhovichD.,HirataC.,2010,PRD,82,083520 REFERENCES WhalenD.,vanVeelenB.,O’SheaB.W.,NormanM.L.,2008,ApJ,682, AhnK.,IlievI.T.,ShapiroP.R.,MellemaG.,KodaJ.,MaoY.,2012,ApJ, 49 756,L16 WiseJ.H.,CenR.,2009,ApJ,693,984 AhnK.,IlievI.T.,ShapiroP.R.,MellemaG.,KodaJ.,MaoY.,2012,ApJ, WiseJ.H.,TurkM.J.,NormanM.L.,AbelT.,2012,ApJ,745,50 756,L16 WyitheJ.S.B.,BoltonJ.S.,2011,MNRAS,412,1926 AlvarezA.,AbelT.,2012,ApJ,747,126 WyitheS.B.,CenR.,2007,ApJ,659,890 AlvarezM.A.,BushaM.T.,AbelT.,WechslerR.H.,2009,ApJ,703,L167 WyitheS.B.,LoebA.,2003,ApJ,588,L69 AlvarezM.A.,FinlatorK.,TrentiM.,2012,ApJ,759,L38 WyitheS.B.,LoebA.,2012,preprint(arXiv:1209.2215) BarkanaR.,LoebA.,2001,Phys.Rep.,349,125 WyitheS.B.,MoralesM.F.,2007,MNRAS,379,1647 BarkanaR.,LoebA.,2005,ApJ,626,1 ZahnO.,MesingerA.,McQuinnM.,TracH.,CenR.,HernquistL.E.,2011, BoltonJ.S.,HaehneltM.G.,2007,MNRAS,382,325 MNRAS,414,727 BondJ.R.,ColeS.,EfstathiouG.,KaiserN.,1991,ApJ,379,440 ZeldovichY.B.,1970,A&A,5,84 CalverleyA.P.,BeckerG.D.,HaehneltM.G.,BoltonJ.S.,2011,MNRAS, 412,2543 CrocianiD.,MesingerA.,MoscardiniL.,FurlanettoS.R.,2011,MNRAS, 411,289 Faucher-Gigue`reC.-A.,LidzA.,HernquistL.,ZaldarriagaM.,2008,ApJ, 682,L9 FerraraA.,LoebA.,2012,preprint(arXiv:1209.2123) FinlatorK.,Dave´R.,O¨zelF.,2011,ApJ,743,169 FriedrichM.M.,MellemaG.,AlvarezM.A.,ShapiroP.R.,IlievI.T.,2011, MNRAS,413,1353 FurlanettoS.R.,HernquistL.E.,ZaldarriagaM.,2004,ApJ,613,1 FurlanettoS.R.,MesingerA.,2009,MNRAS,394,1667 FurlanettoS.R.,OhS.P.,2005,MNRAS,363,1031 GalleraniS.,ChoudhuryT.R.,FerraraA.,2006,MNRAS,370,1401 GnedinN.Y.,KravtsovA.V.,ChenH.-W.,2008,ApJ,672,765 HaimanZ.,AbelT.,MadauP.,2001,ApJ,551,599 HaimanZ.,ReesM.J.,LoebA.,1997,ApJ,476,458 HasegawaK.,SemelinB.,2012,preprint(arXiv:1209.4143) HopkinsP.F.,QuataertE.,MurrayN.,2011,MNRAS,417,950 IlievI.T.,MellemaG.,ShapiroP.R.,PenU.-L.,2007,MNRAS,376,534 IlievI.T.,ShapiroP.R.,RagaA.C.,2005,MNRAS,361,405 Johnson J. L., Dalla Vecchia C., Khochfar S., 2012, preprint (arXiv:1206.5824) KomatsuE.,etal.,2011,ApJS,192,18 KulkarniG.,ChoudhuryT.R.,2011,MNRAS,412,2781 LaceyC.,ColeS.,1993,MNRAS,262,627 LidzA.,McQuinnM.,ZaldarriagaM.,HernquistL.,DuttaS.,2007,ApJ, 670,39 McQuinnM.,LidzA.,ZahnO.,DuttaS.,HernquistL.E.,ZaldarriagaM., 2007,MNRAS,377,1043 McQuinnM.,OhS.P.,Faucher-GiguereC.-A.,2011,ApJ,743,82 McGreerI.D.,MesingerA.,FanX.,2011,MNRAS,415,3237 MesingerA.,2010,MNRAS,407,1328 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.