ebook img

High Performance Optical Computed Tomography for Accurate Three-Dimensional Radiation PDF

256 Pages·2017·25.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High Performance Optical Computed Tomography for Accurate Three-Dimensional Radiation

WWeesstteerrnn UUnniivveerrssiittyy SScchhoollaarrsshhiipp@@WWeesstteerrnn Electronic Thesis and Dissertation Repository 3-28-2018 2:00 PM HHiigghh PPeerrffoorrmmaannccee OOppttiiccaall CCoommppuutteedd TToommooggrraapphhyy ffoorr AAccccuurraattee TThhrreeee--DDiimmeennssiioonnaall RRaaddiiaattiioonn DDoossiimmeettrryy Kurtis Hendrik Dekker, The University of Western Ontario Supervisor: Jordan, Kevin J., The University of Western Ontario Joint Supervisor: Battista, Jerry J., The University of Western Ontario A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree in Medical Biophysics © Kurtis Hendrik Dekker 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Medical Biophysics Commons RReeccoommmmeennddeedd CCiittaattiioonn Dekker, Kurtis Hendrik, "High Performance Optical Computed Tomography for Accurate Three- Dimensional Radiation Dosimetry" (2018). Electronic Thesis and Dissertation Repository. 5264. https://ir.lib.uwo.ca/etd/5264 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Optical computed tomography (CT) imaging of radiochromic gel dosimeters is a method for truly three-dimensional radiation dosimetry. Although optical CT dosimetry is not widely used currently due to previous concerns with speed and accuracy, the complexity of modern radiotherapy is increasing the need for a true 3D dosimeter. This thesis reports technicalimprovementsthatbringtheperformanceofopticalCTtoaclinicallyusefullevel. Newscannerdesignsandimprovedscanningandreconstructiontechniquesaredescribed. First,wedesignedandimplementedanewlightsourceforacone-beamopticalCTsystem whichreducedthescattertoprimarycontributioninCTprojectionimagesofgeldosimeters fromapproximately25%toapproximately4%. Thisdesign,whichhasbeencommercially implemented,enablesaccurateandfastdosimetry. Second, we designed and constructed a new, single-ray, single-detector parallel-beam op- tical CT scanner. This system was able to very accurately image both absorbing and scat- tering objects in large volumes (15 cm diameter), agreeing within ∼1% with independent measurements. IthasbecomeareferencestandardforevaluationofopticalCTgeometries anddosimeterformulations. Third, we implemented and characterized an iterative reconstruction algorithm for optical CT imaging of gel dosimeters. This improved image quality in optical CT by suppressing theeffectsofnoiseandartifactsbyafactorofupto5. Fourth, we applied a fiducial-based ray path measurement scheme, combined with an iter- ativereconstructionalgorithm,toenableopticalCTreconstructioninthecaseofrefractive index mismatch between different media in the scanner’s imaged volume. This improved thepracticalityofopticalCT,astime-consumingmixingofliquidscanbeavoided. Finally,weappliedthenewlaserscannertothedifficultdosimetrytaskofsmall-fieldmea- surement. We were able to obtain beam profiles and depth dose curves for 4 fields (≤ 3×3 ii cm2) using one 15 cm diameter dosimeter, within 2 hours. Our gel dosimetry depth-dose curvesagreedwithin∼1.5%withMonteCarlosimulations. In conclusion, the developments reported here have brought optical CT dosimetry to a clinicallyusefullevel. Ourtechniqueswillbeusedtoassistfutureresearchingeldosimetry andradiotherapytreatmenttechniques. Keywords: Cancer, Radiation Therapy, Radiation Dosimetry, Small-field Dosimetry, ComputedTomography,OpticalImaging,StrayLight,LaserScanning iii Co-Authorship Statement Chapter 2 is adapted from a manuscript published as “Stray light in cone beam optical computedtomography: II.Reductionusingaconvergentlightsource”byKurtisH.Dekker, Jerry J. Battista and Kevin J. Jordan, Physics in Medicine and Biology, 61, 2910-2925 (2016). KHD designed the study, performed experiments and analysis, and wrote and editedthemanuscript. KJJandJ2Bsupervised,providedinputonstudydesignandanalysis, andeditedthemanuscript. Chapter 3 is adapted from a manuscript published as “Scanning laser optical computed to- mographysystemforlargevolume3Ddosimetry”byKurtisH.Dekker,JerryJ.Battistaand Kevin J. Jordan, Physics in Medicine and Biology, 62, 2636-2657 (2017). KHD designed the study, performed experiments and analysis, and wrote and edited the manuscript. KJJ andJ2Bsupervised,providedinputonstudydesignandanalysis,andeditedthemanuscript. Chapter 4 is adapted from a manuscript published as “Technical Note: Evaluation of an iterativereconstructionalgorithmforopticalCTradiationdosimetry”byKurtisH.Dekker, Jerry J. Battista and Kevin J. Jordan, Medical Physics, 44, 6678-6689. KHD designed the study, performed experiments and analysis, and wrote and edited the manuscript. KJJ and J2Bsupervised,providedinputonstudydesignandanalysis,andeditedthemanuscript. Chapter 5 is adapted from a manuscript published as “Optical CT imaging of solid ra- diochromicdosimetersinmismatchedrefractiveindexsolutionsusingascanninglaserand large area detector” by Kurtis H. Dekker, Jerry J. Battista and Kevin J. Jordan, Medical Physics,43,4585-4597(2016). KHDdesignedthestudy,performedexperimentsandanal- ysis,andwroteandeditedthemanuscript. KJJandJ2Bsupervised,providedinputonstudy designandanalysis,andeditedthemanuscript. Chapter 6 describes gel dosimetry experiments performed at the London Regional Cancer Program. Experiments were performed by Kurtis H. Dekker, Sydney Bell, and Kevin J. iv Jordan. KHD performed optical CT imaging and analysis, assisted in irradiations, and authored the chapter. SB manufactured gel dosimeters and performed irradiations. KJJ supervised experiments, manufactured gel dosimeters, performed irradiations and edited thechapter. JerryJ.Battistaalsoeditedthechaptermanuscript. Appendix A is adapted from a technical note published as “Fixed, object-specific intensity compensation for cone beam optical CT radiation dosimetry” by Kurtis Hendrik Dekker, Rubin Hazarika, Matheus A. Silveira, and Kevin J. Jordan, Physics in Medicine and Biol- ogy,63, 06NT02(2018). KHDdesignedthestudy, supervisedandperformedexperiments, and wrote and edited the manuscript. RH and MAS performed experiments and edited the manuscript. KJJprovidedinputonstudydesign,supervised,andeditedthemanuscript. v Acknowledgements First, I would like to thank my supervisors, Drs. Kevin Jordan and Jerry Battista, whose guidance and passion for medical physics enabled and inspired my development as a re- searcher. I also wish to thank my advisory committee members, Drs. Tim Scholl and GeorgeHajdok,forvolunteeringtheirtimeandinsightsinmy(veryinfrequent)committee meetings. I am also grateful to the examiners for volunteering their time to review this dissertation. IwishtothankthestaffintheDepartmentofMedicalBiophysicsofficefortheirhelpwith various administrative details. I would also like to extend my gratitude to the Department of Physics and Engineering at the London Regional Cancer Program. In particular: Barb Barons, for administrative support; George De Waele, for machining various components; the engineering group, for help with the linear accelerators; and the physicists and physics associates,fortheirguidanceandknowledgeofclinicalradiotherapyphysics. Additionally, Ithanktheco-opstudentsIhaveworkedwithoverthepastfiveyears. I would also like to acknowledge the sources of funding that contributed to my disser- tation, including the London Regional Cancer Program and the Department of Medical Biophysics at the University of Western Ontario. In addition, funding for the project was providedbytheOntarioResearchChallengeFund(OCAIROproject)andagrantfromthe Plunkett foundation in London, Ontario. My graduate studies have also been supported by scholarships from the Ontario Ministry of Training, Colleges, and Universities and from theNaturalSciencesandEngineeringResearchCouncilofCanada(NSERC). I thank all of my friends, both in the department here and outside of it. Finally, I thank my brother,Lukas;myparents,RonandTeresa;andmyfiancée,Erin,fortheirsupport. vi Contents Abstract ii Co-AuthorshipStatement iv Acknowlegements vi TableofContents vii ListofFigures xiii ListofTables xx ListofAppendices xxii ListofAbbreviations xxiii ListofSymbols xxv 1 GeneralIntroduction 1 1.1 CancerBasics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 CancerinCanada . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 RadiationTherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Radiationtherapyprocess . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Advancesinexternalbeamradiotherapy . . . . . . . . . . . . . . . 6 1.3 RadiotherapyQualityAssurance . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 RadiationDosimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.1 Propertiesofdosimeters . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.2 Comparisonofcommondosimeters . . . . . . . . . . . . . . . . . 13 1.5 TheCasefor3DDosimeters . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 3DChemicalDosimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6.1 Geldosimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6.1.1 Geldosimeterbasics . . . . . . . . . . . . . . . . . . . . 17 1.6.1.2 Condensedhistoryofgeldosimetry . . . . . . . . . . . . 18 1.6.2 Non-gel3Dchemicaldosimeters . . . . . . . . . . . . . . . . . . . 19 1.6.3 3Dchemicaldosimeterreadout . . . . . . . . . . . . . . . . . . . . 20 1.7 OpticalComputedTomography . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7.1 Computedtomographybasics . . . . . . . . . . . . . . . . . . . . 21 vii 1.7.1.1 Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7.1.2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.7.1.3 TheFourierSliceTheoremandtomographicreconstruction 24 1.7.1.4 Backprojection-basedreconstructiontechniques . . . . . 26 1.7.1.5 Algebraic/Iterativereconstructionalgorithms . . . . . . 27 1.7.2 OpticalCTscanners . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.8 MotivationofResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.8.1 Straylighteffects . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.8.1.1 Straylightinattenuationmeasurements . . . . . . . . . . 31 1.8.1.2 StraylightinopticalCT . . . . . . . . . . . . . . . . . . 32 1.8.1.3 StraylightreductioninopticalCT . . . . . . . . . . . . . 35 1.8.2 Largevolumedosimetry . . . . . . . . . . . . . . . . . . . . . . . 35 1.8.3 Opticalartifactsandimagereconstruction . . . . . . . . . . . . . . 36 1.9 ResearchHypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.10 SpecificObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 StrayLightReductioninCone-beamOpticalCT 46 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2 MaterialsandMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.1 FresnelmodifiedopticalCTscanner . . . . . . . . . . . . . . . . . 48 2.2.2 Verticalslotarray . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.3 Testsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.4 Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2.4.1 UniformsolutioninVista10vessel . . . . . . . . . . . . 53 2.2.4.2 FEPfingerphantom . . . . . . . . . . . . . . . . . . . . 56 2.2.5 Experimentalsetups . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.5.1 Fanbeamvs. narrowbeamgeometry . . . . . . . . . . . 57 2.2.5.2 Fanbeamvs. conebeam-uniformphantom . . . . . . . 58 2.2.5.3 Fanbeamvs. conebeam-fingerphantom . . . . . . . . . 58 2.2.5.4 Gelatinfingerphantomimaging . . . . . . . . . . . . . . 58 2.2.5.5 Sourcespotsizeoptimization . . . . . . . . . . . . . . . 59 2.3 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.1 Straylight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.1.1 Fanbeamvs. narrowbeamgeometry . . . . . . . . . . . 60 2.3.1.2 Uniformphantom . . . . . . . . . . . . . . . . . . . . . 61 2.3.1.3 Fanbeamvs. conebeam-fingerphantom . . . . . . . . . 62 2.3.1.4 Gelatinfingerphantom . . . . . . . . . . . . . . . . . . . 63 2.3.2 Imageartifactsandsourcespotsizeoptimization . . . . . . . . . . 65 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3 Large-volumeScanningLaserOpticalCT 72 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.1.1 OpticalCTdosimetry . . . . . . . . . . . . . . . . . . . . . . . . . 72 viii 3.1.2 Large-volume3Ddosimetry . . . . . . . . . . . . . . . . . . . . . 73 3.1.3 OpticalCTscanners . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.1.4 StraylighteffectsinopticalCT . . . . . . . . . . . . . . . . . . . . 74 3.1.5 Studyobjectivesandoutline . . . . . . . . . . . . . . . . . . . . . 75 3.2 ScannerDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 Choiceofscannergeometry . . . . . . . . . . . . . . . . . . . . . 78 3.2.2 OpticalCTaquarium . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2.2.1 Lens-shapedacylindricalaquarium . . . . . . . . . . . . 79 3.2.2.2 Importanceofasymmetricdesign . . . . . . . . . . . . . 80 3.2.3 Detectorcollimationandflood-fielduniformity . . . . . . . . . . . 80 3.2.4 CTsamplingandreconstruction . . . . . . . . . . . . . . . . . . . 81 3.3 InitialCharacterizationTests . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.1 Detectorlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.2 Noiseandstability . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.3 Parallelbeamgeometryverification . . . . . . . . . . . . . . . . . 85 3.3.4 Spatialresolutioninprojectionimages . . . . . . . . . . . . . . . . 86 3.3.5 Summaryofspecifications . . . . . . . . . . . . . . . . . . . . . . 87 3.4 OpticalCTscanningexperiments . . . . . . . . . . . . . . . . . . . . . . . 88 3.4.1 Phantoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.4.2 OpticalCTscanparameters . . . . . . . . . . . . . . . . . . . . . . 88 3.4.3 Large-volumeuniformabsorbingphantom . . . . . . . . . . . . . . 89 3.4.4 Large-volumeuniformscatteringphantom . . . . . . . . . . . . . . 90 3.4.5 Smallabsorbingfingerphantomingel-likescatteringmedium . . . 90 3.4.6 Small absorbing finger phantom in highly scattering medium - op- posingsinogramreconstructions . . . . . . . . . . . . . . . . . . . 91 3.5 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.5.1 Large-volumeuniformabsorbingphantom . . . . . . . . . . . . . . 93 3.5.2 Large-volumescatteringphantom . . . . . . . . . . . . . . . . . . 95 3.5.3 Absorbingfingerphantomingel-likescatteringmedium . . . . . . 97 3.5.4 Small absorber in highly scattering medium - opposing sinogram reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.5.5 Summaryofresultsandcurrentlimitations . . . . . . . . . . . . . . 101 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.7 Appendix: RayTracingforAquariumDesign . . . . . . . . . . . . . . . . 103 3.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4 IterativeReconstructioninOpticalCT:NoiseandArtifactReduction 108 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.1.1 OpticalCTdosimetry . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.1.2 Effectsofimagenoiseandartifactsondosimetricanalysis . . . . . 109 4.1.3 IterativeCTreconstruction . . . . . . . . . . . . . . . . . . . . . . 111 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2.1 OpticalCTscanner . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2.2 OpticalCTdatasets . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2.2.1 Phantomdatasets . . . . . . . . . . . . . . . . . . . . . . 113 ix 4.2.2.2 Geldataset . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.2.3 Imagereconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.2.3.1 Filteredbackprojection(FBP) . . . . . . . . . . . . . . . 114 4.2.3.2 Ordered subsets convex algorithm with total variation minimization(OSC-TV) . . . . . . . . . . . . . . . . . . 115 4.2.4 Imagereconstructiondetails . . . . . . . . . . . . . . . . . . . . . 117 4.2.4.1 OSC-TViterationstoppingconditions . . . . . . . . . . . 118 4.2.5 Imageanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2.5.1 Meanandstandarddeviation . . . . . . . . . . . . . . . . 119 4.2.5.2 Contrasttoartifact+noiseratio(CANR) . . . . . . . . . 119 4.2.5.3 GradientPreservation . . . . . . . . . . . . . . . . . . . 119 4.3 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3.1 Uniformsolutionphantom(PhantomA) . . . . . . . . . . . . . . . 120 4.3.2 FingerPhantom(PhantomB) . . . . . . . . . . . . . . . . . . . . . 123 4.3.2.1 Contrasttoartifact+noiseratio . . . . . . . . . . . . . . 123 4.3.2.2 Gradientsharpness . . . . . . . . . . . . . . . . . . . . . 123 4.3.3 Geldosimeterwithsmallfields(PhantomC) . . . . . . . . . . . . . 125 4.3.3.1 Contrasttoartifact+noiseratio . . . . . . . . . . . . . . 125 4.3.3.2 Gradientsharpness . . . . . . . . . . . . . . . . . . . . . 126 4.3.3.3 Fieldcentralattenuationcoefficientvalue . . . . . . . . . 128 4.3.4 Investigationofmeancentralvaluedrop-off . . . . . . . . . . . . . 129 4.4 DiscussionandConclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.5 Appendix: CalculationofTotalVariationGradient . . . . . . . . . . . . . . 132 4.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5 IterativeReconstructioninOpticalCT:MismatchedRefractiveIndexScan- ning 137 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.1.1 Opticalcomputedtomography(CT)forthree-dimensional(3D)ra- diationdosimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.1.2 PRESAGE(cid:13)R soliddosimeters . . . . . . . . . . . . . . . . . . . . . 138 5.1.3 Intentionallymismatchedrefractiveindex . . . . . . . . . . . . . . 140 5.1.4 Studyoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.2.1 ScanninglaseropticalCTsystem . . . . . . . . . . . . . . . . . . . 142 5.2.1.1 Scanningwavelengths . . . . . . . . . . . . . . . . . . . 144 5.2.2 Raypathmeasurement . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2.2.1 Mathematicaldescription . . . . . . . . . . . . . . . . . 144 5.2.2.2 Implementation in optical CT iterative reconstruction process . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2.3 Aquariumliquidselection . . . . . . . . . . . . . . . . . . . . . . 147 5.2.4 CTscanningandreconstruction . . . . . . . . . . . . . . . . . . . 148 5.2.5 Validationoftechniquewithauniformsolutionphantom . . . . . . 149 5.2.6 PRESAGE(cid:13)R experiments . . . . . . . . . . . . . . . . . . . . . . . 150 5.2.6.1 Irradiationsetup . . . . . . . . . . . . . . . . . . . . . . 150 x

Description:
Dekker, Kurtis Hendrik, "High Performance Optical Computed Tomography for Accurate Three-Dimensional Radiation Dosimetry". (2018). Abstract. Optical computed tomography (CT) imaging of radiochromic gel dosimeters is a method tialing for the head and neck phantom in 2001. Over the past
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.