Astronomy&Astrophysicsmanuscriptno.1072 c ESO2009 (cid:13) January21,2009 H.E.S.S. observations of γ-ray bursts in 2003–2007 F.Aharonian1,13,A.G.Akhperjanian2,U.BarresdeAlmeida8 ⋆,A.R.Bazer-Bachi3,B.Behera14,W.Benbow1, K.Bernlo¨hr1,5,C.Boisson6,A.Bochow1,V.Borrel3,I.Braun1,E.Brion7,J.Brucker16,P.Brun7,R.Bu¨hler1, T.Bulik24,I.Bu¨sching9,T.Boutelier17,S.Carrigan1,P.M.Chadwick8,A.Charbonnier19,R.C.G.Chaves1, 9 A.Cheesebrough8,L.-M.Chounet10,A.C.Clapson1,G.Coignet11,M.Dalton5,B.Degrange10,C.Deil1, 0 H.J.Dickinson8,A.Djannati-Ata¨ı12,W.Domainko1,L.O’C.Drury13,F.Dubois11,G.Dubus17,J.Dyks24,M.Dyrda28, 0 K.Egberts1,D.Emmanoulopoulos14,P.Espigat12,C.Farnier15,F.Feinstein15,A.Fiasson15,A.Fo¨rster1,G.Fontaine10, 2 M.Fu¨ßling5,S.Gabici13,Y.A.Gallant15,L.Ge´rard12,B.Giebels10,J.F.Glicenstein7,B.Glu¨ck16,P.Goret7, n C.Hadjichristidis8,D.Hauser14,M.Hauser14,S.Heinz16,G.Heinzelmann4,G.Henri17,G.Hermann1,J.A.Hinton25, a J A.Hoffmann18,W.Hofmann1,M.Holleran9,S.Hoppe1,D.Horns4,A.Jacholkowska19,O.C.deJager9,I.Jung16, 5 K.Katarzyn´ski27,S.Kaufmann14,E.Kendziorra18,M.Kerschhaggl5,D.Khangulyan1,B.Khe´lifi10,D.Keogh8, 1 Nu.Komin7,K.Kosack1,G.Lamanna11,J.-P.Lenain6,T.Lohse5,V.Marandon12,J.M.Martin6, O.Martineau-Huynh19,A.Marcowith15,D.Maurin19,T.J.L.McComb8,M.C.Medina6,R.Moderski24,E.Moulin7, ] E M.Naumann-Godo10,M.deNaurois19,D.Nedbal20,D.Nekrassov1,J.Niemiec28,S.J.Nolan8,S.Ohm1,J-F.Olive3, H E.deOn˜aWilhelmi12,29,K.J.Orford8,J.L.Osborne8,M.Ostrowski23,M.Panter1,G.Pedaletti14,G.Pelletier17, P.-O.Petrucci17,S.Pita12,G.Pu¨hlhofer14,M.Punch12,A.Quirrenbach14,B.C.Raubenheimer9,M.Raue1,29, . h S.M.Rayner8,M.Renaud1,F.Rieger1,29,J.Ripken4,L.Rob20,S.Rosier-Lees11,G.Rowell26,B.Rudak24, p C.B.Rulten8,J.Ruppel21,V.Sahakian2,A.Santangelo18,R.Schlickeiser21,F.M.Scho¨ck16,R.Schro¨der21, - o U.Schwanke5,S.Schwarzburg18,S.Schwemmer14,A.Shalchi21,J.L.Skilton25,H.Sol6,D.Spangler8,Ł.Stawarz23, tr R.Steenkamp22,C.Stegmann16,G.Superina10,P.H.Tam14,J.-P.Tavernet19,R.Terrier12,O.Tibolla14,C.vanEldik1, s G.Vasileiadis15,C.Venter9,L.Venter6,J.P.Vialle11,P.Vincent19,M.Vivier7,H.J.Vo¨lk1,F.Volpe10,29,S.J.Wagner14, a [ M.Ward8,A.A.Zdziarski24,andA.Zech6 1 (Affiliationscanbefoundafterthereferences) v 7 Preprintonlineversion:January21,2009 8 1 2 ABSTRACT . 1 Aims.Very-high-energy(VHE;>100GeV)γ-raysareexpectedfromγ-raybursts(GRBs)insomescenarios.Exploringthisphotonenergyregime 0 isnecessaryforunderstandingth∼eenergeticsandpropertiesofGRBs. 9 Methods.GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov 0 Telescopes(IACTs)todetectVHEγ-rays.Dedicatedobservationsof32GRBpositionsweremadeintheyears2003–2007andasearchforVHE : v γ-raycounterpartsoftheseGRBswasmade.Dependingonthevisibilityandobservingconditions,theobservationsmostlystartminutestohours i aftertheburstandtypicallylasttwohours. X Results.Resultsfromobservations of22GRBpositionsarepresentedandevidenceofaVHEsignalwasfoundneitherinobservationsofany r individualGRBs,norfromstackingdatafromsubsetsofGRBswithhigherexpectedVHEfluxaccordingtoamodel-independentrankingscheme. a UpperlimitsfortheVHEγ-rayfluxfromtheGRBpositionswerederived.ForthoseGRBswithmeasuredredshifts,differentialupperlimitsat theenergythresholdaftercorrectingforabsorptionduetoextra-galacticbackgroundlightarealsopresented. Keywords.gammarays:bursts–gammarays:observations 1. Introduction ofGRBs,andprovidevaluableinformationabouttheirphysicalprop- erties.TheseMWLafterglowobservations aregenerallyexplainedby Gamma-ray bursts (GRBs) are the most energetic events in the γ-ray synchrotronemissionfromshockedelectronsintherelativisticfireball regime.Depending ontheirduration (e.g.T90),GRBsarecategorized model(Piran,1999;Zhang&Me´sza´ros,2004).Aplateauphaseisre- into long GRBs (T90 > 2 s) and short GRBs (T90 < 2 s). First de- vealed in many of the Swift/XRT light curves, the origin of which is tectedinlate1960s(Klebesadeletal.,1973),GRBsremainedmysteri- still not clear (Zhangetal., 2006). Observations of GRBs at energies ousforthreedecades.BreakthroughsinunderstandingGRBscameonly >10GeV may testsome of the ideasthat havebeen suggested toex- after the discovery of longer-wavelength afterglows with the launch plaintheX-rayobservations(Fanetal.,2008). of BeppoSAX in 1997 (vanParadijsetal., 2000). Multi-wavelength Intheframeworkoftherelativisticfireballmodel,photonswithen- (MWL) observations have proved to be crucial in our understanding ergiesupto 10TeVorhigherareexpectedfromtheGRBafterglow ∼ phase(Zhang&Me´sza´ros,2004;Fan&Piran,2008).Possibleleptonic Send offprint requests to: P.H. Tam, e-mail: radiationmechanismsincludeforward-shockedelectronsup-scattering [email protected] self-emittedsynchrotronphotons(SSCprocesses;Dermeretal.,2000; ⋆ supportedbyCAPESFoundation,MinistryofEducationofBrazil Zhang&Me´sza´ros, 2001; Fanetal., 2008) or photons from other 2 F.Aharonianetal.:H.E.S.S.observationsofγ-rayburstsin2003–2007 shocked regions(Wangetal.,2001). Physicalparameters, such asthe collectionareaincreasesfrom 103m2at100GeVtomorethan105m2 ∼ ambientdensityofthesurroundingmaterial(n),magneticfieldequipar- at1TeVforobservations atazenithangle(Z.A.)of 20 .Thesystem ◦ titionfraction(ǫ ),andbulkLorentzfactor(Γ )oftheoutflow,may hasapointsourcesensitivityabove100GeVof 1.4 10 11ergcm 2s 1 B bulk ∼ × − − − be constrained by observations at these energies (Wangetal., 2001; (3.5%ofthefluxfromtheCrabnebula)fora5σdetectionina2hob- Pe’er&Waxman,2005). servation.EachH.E.S.S.cameraconsistsof960photomultipliertubes Apossibleadditional contributiontoVHEemissionrelatestothe (PMTs),whichintotalprovideafieldofview(FoV)of 5◦.Thisrela- ∼ X-rayflarephenomenon. X-rayflaresarefoundinmorethan 50%of tivelylargeFoVallowsforthesimultaneousdeterminationoftheback- the Swift GRBs during the afterglow phase (Chincarinietal., 2007). groundeventsfromoff-sourcepositions,sothatnodedicatedoffrunis The energy fluence of some of them (e.g. GRB 050502B) is com- needed (Aharonianetal., 2006c). Theslew rateof the array is 100◦ ∼ parable to that of the prompt emission. Most of them are clustered perminute,enablingittopointtoanyskypositionwithin 2minutes. ∼ at 102–103s after the GRB (see Figure 2 in Chincarinietal., 2007), The H.E.S.S. array is currently the only IACT array in the Southern wh∼ilelateX-rayflares(>104s) arealsoobserved; when these happen HemisphereusedforanactiveGRBobservingprogramme2. they can cause an increase in the X-ray flux of an order of magni- ThetriggersystemoftheH.E.S.S.arrayisdescribedinFunketal. tudeormoreoverthepower-lawtemporaldecay(Curranetal.,2008). (2004).Thestereoscopictechniqueisused,i.e.acoincidenceofatleast The cause of X-ray flaresis still a subject of debate, but correspond- twotelescopes triggering withinawindow of (normally) 80 nanosec- ing VHE γ-ray flares from inverse-Compton (IC) processes are pre- ondsisrequired.Thislargelyrejectsbackgroundeventscausedbylocal dicted (Wangetal., 2006; Galli&Piro, 2007; Fanetal., 2008). The muonsthattriggeronlyasingletelescope. accompanying external-Compton flare may be weak if the flare orig- The observations reported here were obtained over the period inated behind the external shock, e.g. from prolonged central engine March2003toOctober2007. TheobservationsoftwoGRBsin2003 activity (Fanetal., 2008). However, in the external shock model, the weremadeusingtwotelescopeswhilethesystemwasunderconstruc- expected SSC flare is very strong at GeV energies and can be read- tion.Before2003July,eachofthetwotelescopestookdataseparately. ilydetectedusingaVHEinstrumentwithanenergythresholdof 100 Stereo analysis was then performed on the data, which requires co- GeV(Galli&Piro,2008),suchastheH.E.S.S.array,foratypical∼GRB incidence of events to be determined offline using GPS time stamps. atz 1.Therefore,VHEγ-raydatatakenduringanX-rayflaremayhelp After the installation of the central trigger system in 2003 July, the for∼distinguishingtheinternal/externalshockoriginoftheX-rayflares, stereo multiplicity requirement was determined on-line. All observa- andmaybeusedasadiagnostictoolforthelatecentralengineactivity. tionssince2004havemadeuseofthecompletedfour-telescopearray Waxman&Bahcall (2000) and Muraseetal. (2008) suggest that andthestereotechnique(Aharonianetal.,2006c). GRBsmaybesourcesofultra-high-energycosmicrays(UHECRs).In Mostofthedataweretakenin28minuterunsusingwobblemode, thiscase,π-decaysfromproton-γinteractionmaygenerateVHEemis- i.e.theGRBpositionisplacedatanoffset,θoffset,of±0◦.5or0◦.7(inR.A. sion.TheVHEγ-rayemissionproducedfromsuchahadroniccompo- andDecl.)relativetothecentreofthecameraFoVduringobservations. nentisgenerallyexpectedtodecaymoreslowlythantheleptonicsub- Onboard GRB triggers distributed by the Swift satellite, as well MeV radiation(Bo¨ttcher&Dermer, 1998).Dermer (2007)suggests a astriggersfromINTEGRALandHETE-II confirmedbyground-based combined leptonic/hadronic scenario to explain the rapidly-decaying analysis, are followed by H.E.S.S. observations. Upon the reception phase and plateau phase seen in many of the Swift/XRT light curves. of a GCN3 notice from one of these satellites (with appropriate indi- ThismodelcanbetestedwithVHEobservationstakenminutestohours cations4 that the source is a genuine GRB), the burst position is ob- aftertheburst. servedifZ.A.<45◦ (toensureareasonablylow-energythreshold)dur- MostsearchesforVHEγ-raysfromGRBshaveobtainednegative ing H.E.S.S.d∼ark time5. An automated program isrunning on siteto results (Connaughtonetal., 1997; Atkinsetal., 2005). There may be keep the shift crew alerted of any new detected GRBs in real time. indicationsofexcessphotoneventsfromsomeobservations,butthese Dependingontheobservationalconstraintsandthemeasuredredshifts resultsarenotconclusive(Amenomorietal.,1996;Padillaetal.,1998; oftheGRBsreportedthroughGCNcirculars6,observationsoftheburst Atkinsetal., 2000; Poirieretal., 2003). Currently, the most sensitive positionsarestartedupto 24hoursafterthebursttime,typicallywith ∼ detectorsintheVHEγ-rayregimeareIACTs.Horanetal.(2007)pre- an exposure time of 120 minutes in wobble mode. The remarkably ≈ sentedupperlimitsfrom7GRBsobservedwiththeWhippleTelescope nearby, bright GRB 030329 was an exceptional case. It was not ob- during the pre-Swift era. Upper limitsfor 9 GRBs with redshifts that served until 11.5 days after the burst because of poor weather, which were either unknown or >3.5 were also reported by the MAGIC col- prohibitedobservationanyearlier. laboration (Albertetal., 2007). In general, these limitsdo not violate a power-law extrapolation of the keV spectra obtained with satellite- basedinstruments.However,mostGRBsarenowbelievedtooriginate 3. TheGRBobservations at cosmological distances, thereforeabsorption of VHEγ-raysbythe Thirty-twoGRBswereobservedwithH.E.S.S.duringtheperiodfrom EBL(Nikishov,1962)mustbeconsideredwheninterpretingtheselim- March2003toOctober2007.Afterapplyingasetofdata-qualitycri- its. teriathatrejectsobservationrunswithnon-optimalweatherconditions Inthispaper, observations of 22γ-rayburstsmade withH.E.S.S. and hardware status, 22 GRB observations were selected for analysis during the years 2003–2007 are reported. They represent the largest andaredescribedinthissection. sample of GRB afterglow observations made by an IACT array and result in the most stringent upper limits obtained in the VHE band. ThepromptphaseofGRB060602Bwasobservedserendipitouslywith 3.1.PropertiesoftheGRBs H.E.S.S.Theresultsofobservationsbefore,during,andafterthisburst arepresentedinAharonianetal.(2009). Foreachburst,theobservationalpropertiesasobtainedfromthetrigger- ingsatelliteareshowninTable1.Theseincludetriggernumber,energy band, fluenceinthatenergyband, andthedurationof theburst(T ). 90 2. TheH.E.S.S.experimentandGRBobservation Whenever there were follow-up observations in the X-ray, optical, or strategy 2 http://www.lsw.uni-heidelberg.de/projects/hess/HESS/grbs.phtml The H.E.S.S. array1 is a system of four 13m-diameter IACTs lo- 3 The Gamma ray bursts Coordinates Network, catedat1800mabovesealevelintheKhomasHighlandofNamibia http://gcn.gsfc.nasa.gov/ (23 1618 S,16 3000 E).Eachofthefourtelescopesislocatedata 4 which include, e.g., burst position incompatible with known ◦ ′ ′′ ◦ ′ ′′ cornerofasquarewithasidelengthof120m.Thisconfigurationwas sources,andahighsignal-to-noiseratiooftheburst optimizedformaximumsensitivityto 100GeVphotons.Theeffective 5 H.E.S.S.observationsaretakenindarknessandwhenthemoonis ∼ belowthehorizon.ThefractionofH.E.S.S.darktimeisabout0.2 1 http://www.mpi-hd.mpg.de/hfm/HESS/HESS.html 6 http://gcn.gsfc.nasa.gov/gcn3 archive.html F.Aharonianetal.:H.E.S.S.observationsofγ-rayburstsin2003–2007 3 Table1.PropertiesofGRBsobservedwithH.E.S.S.fromMarch2003toOctober2007. GRB Satellite Trigger R.A.a Decl.a Errora Energyband Fluenceb Tb XcOcRc z Rankd 90 number ( ) (keV) (10 8ergcm 2) (s) ′′ − − 071003 Swift 292934 20h07m24s.25 +10 5648.8 5.7 15–150 830 150 √ √ √ 1.604e 5 ◦ ′ ′′ 070808 Swift 287260 00h27m03s.36 +01 1034.8 1.9 15–150 120 ∼ 32 √ √ . 9 ◦ ′ ′′ 070724A Swift 285948 01h51m13s.96 -18 3540.1 2.2 15–150 3 ∼0.4 √ 0··.4·57f 21 ◦ ′ ′′ 070721B Swift 285654 02h12m32s.95 -02 1140.6 0.9 15–150 360 ∼340 √ √× × 3.626g 10 ◦ ′ ′′ 070721A Swift 285653 00h12m39s.24 -28 2200.6 2.3 15–150 7.1 3∼.868 √ √ ×. 20 ◦ ′ ′′ 070621 Swift 282808 21h35m10s.14 -24 4903.1 2 15–150 430 33 √ . ··· 1 ◦ ′ ′′ 070612B Swift 282073 17h26m54s.4 -08 4508.7 4.7 15–150 168 13.5 √ × . ··· 15 ◦ ′ ′′ 070429A Swift 277571 19h50m48s.8 -32 2417.9 2.4 15–150 91 163.3 √ √× . ··· 3 ◦ ′ ′′ 070419B Swift 276212 21h02m49s.57 -31 1549.7 3.5 15–150 736 236.4 √ √ . ··· 7 ◦ ′ ′′ 070209 Swift 259803 03h04m50s -47 2230 168 15–150 2.2 0.09 . 0··.3·14?h 22 ◦ ′ ′′ 061110A Swift 238108 22h25m09s.9 -02 1530.7 3.7 15–150 106 40.7 √× √× . 0.758i 11 ◦ ′ ′′ 060526 Swift 211957 15h31m18s.4 +00 1711.0 6.8 15–150 126 298.2 √ √ . 3.21j 8 ◦ ′ ′′ 060505 Swift 208654 22h07m04s.50 -27 4957.8 4.7 15–150 94.4 4 √ √ . 0.0889k 18 ◦ ′ ′′ 060403 Swift 203755 18h49m21s.80 +08 1945.3 5.5 15–150 135 30∼.1 √ . 16 ◦ ′ ′′ 050801 Swift 148522 13h36m35s -21 5541 1 15–150 31 19.4 √ √× 1··.5·6l 2 ◦ ′ ′′ 050726 Swift 147788 13h20m12s.30 -32 0350.8 6 15–150 194 49.9 √ √ ×. 13 ◦ ′ ′′ 050509C HETE-II H3751 12h52m53s.94 -44 5004.1 1 2–30 60 25 √ √ √ ··· 19 ◦ ′ ′′ 050209 HETE-II U11568 08h26m +19 41 420 30–400 200 46 . . ··· 14 ◦ ′ 041211Bm HETE-II H3622 06h43m12s +20 2342 80 30–400 1000 >100 . × . ··· 4 ◦ ′ ′′ 041006 HETE-II H3570 00h54m50s.23 +01 1404.9 0.1 30–400 713 20 √ √× √ 0··.7·16n 6 ◦ ′ ′′ 030821 HETE-II H2814 21h42m -44 52 o 30–400 280 ∼23 . . . 17 ◦ 030329 HETE-II H2652 10h44m49s.96 +21 3117.44 10 3 30–400 10760 33 √ √ √ 0··.1·687p 12 ◦ ′ ′′ − a R.A.,Decl.,andthepositionalerrors(90%containment)weretakenfromGCNReports(http://gcn.gsfc.nasa.gov/report archive.html)for GRB061110A–GRB071003andGCNCircularsotherwise. b Fluence and T data for GRB 050726 – GRB 070612B were taken from Sakamotoetal. (2008) except that T of GRB 060505 was 90 90 takenfromPalmeretal.(2006).FluenceandT dataofGRB030329andGRB030821weretakenfromSakamotoetal.(2005),andthoseof 90 GRB041006fromShirasakietal.(2008).OtherdataweretakenfromGCNCircularsandHETEpages(http://space.mit.edu/HETE/Bursts). c X:X-ray,O:optical,R:radio;“√”indicatesthedetectionofacounterpart,“ ”anulldetection,and“.”thatnomeasurementwasreported inthecorrespondingenergyrange,fromhttp://grad40.as.utexas.edu/grblog.php × d TherelativeexpectedVHEfluxforeachGRBisrankedaccordingtotheempiricalschemedescribedinSect.3.3 e Perleyetal.(2008) f Cucchiaraetal.(2007) g Malesanietal.(2007) h RedshiftofacandidatehostgalaxyBerger&Fox(2007). i Fynboetal. (2007) j Berger&Gladders(2006) k Ofeketal.(2006) l RedshiftaccordingtodePasqualeetal.(2007),basedonafterglowmodelling m AlthoughthisburstwasreferredtoasGRB041211invariousGCNCirculars,thepropernameGRB041211B(e.g.,inPe´langeonetal., 2006)shouldbeusedtodistinguishitfromanotherburst,GRB041211A(=H3621)whichoccurredearlieronthesameday(Pe´langeon,A., privatecommunication). n Soderbergetal.(2006) o Thepositionerrorofthisburstislarge,seeFig.3 p Staneketal.(2003) radiobands,whetheradetectionhasoccurred(denotedbyatick√)or 3.2.H.E.S.S.observations not(denotedbyacross )isalsoshown.Ifnoobservationatagiven wavelengthwasreported×,adot(.)isshown.Thereportedredshifts(z) Foreachburst,thestarttime,Tstart,oftheH.E.S.S.observationsafterthe of10GRBsarealsopresented,ofwhich6arelowerthanone.Twoob- burstisshowninTable2.Sinceanobservingstrategytostartobserving servedbursts,GRB070209andGRB070724A,areshortGRBswhile the burst position up to 24 hours after the burst timeis applied, the ∼ the rest are long GRBs. The population of short GRBshas a redshift meanTstartisoftheorderof10hours.The(good-quality)exposuretime distribution(Bergeretal.,2007)significantlylessthanthatofthelong oftheobservationsusingNteltelescopesforeachburstisincluded.The GRBs(Jakobssonetal.,2006).Therefore,onaveragetheyarelikelyto meanZ.A.oftheobservationsisalsopresented. sufferfromalowerlevelofEBLabsorption. 3.3.Therankingscheme X-rayflaresweredetectedfromthreeoftheGRBsintheH.E.S.S. Asmentionedintheintroduction,thereisnolackofmodelspredicting sample. They occurred at 273s after the burst for GRB 050726, 284s VHEemissionfromGRBs.However,theevolutionofthepossibleVHE for GRB 050801, and 2.6 105s for GRB 070429A (Curranetal., γ-ray emission with time is model-dependent. To give an empirical, × 2008).Unfortunately,theflaresoccurredoutsidethetimewindowsof model-independentestimateoftherelativeexpectedVHEfluxofeach theH.E.S.S.observations. GRB(whichalsodependsonT ),itisassumedthat:(1)therelative start 4 F.Aharonianetal.:H.E.S.S.observationsofγ-rayburstsin2003–2007 VHEsignalscalesastheenergyreleasedinthepromptemission,taken than the corresponding error circles. Therefore, point-source analyses asatypicalenergymeasureofaGRB.HenceF F where were performed for all GRBs except GRB 030821, the error box of F isthefluenceintheSwift/BATband.FVHoErb∝urs1ts5−n1o50tkterViggered whichismuchbiggerthantheH.E.S.S.PSF(seeSect.5.4foritstreat- 15 150keV byB−AT,themeasuredfluenceisextrapolatedintothisenergyband;(2) ment). thepossibleVHEsignal fadesastimegoeson, asobserved inlonger wavelength (e.g. X-ray) data. In particular, the VHE flux follows the averagedecayoftheX-rayfluxandthereforeF F t 1.3 4.2.Energythreshold where t denotes the time after the burst and 1.V3HEis∝the1a5−v1e5r0akgeVe×X-−ray Theenergythreshold, E ,isconventionallydefinedasthepeakinthe afterglowlate-timepower-lawdecayindex(Nouseketal.,2006).Since th differential γ-ray rate versus energy curve of a fictitious source with in most cases the exposure time of the observations is much shorter photon index Γ (Konopelkoetal., 1999). This curve is a convolution thanT (thestarttimeofthecorrespondingH.E.S.S.observationsaf- start of theeffective area withthe expected energy spectrum of thesource terthetrigger),theexpectedfluxatT canbeusedasameasureof start asseenonEarth.Suchenergythresholds,obtainedbythestandard-cut thestrengthoftheVHEsignal,andthereforeoftherelativepossibility analysisandthesoft-cutanalysisforeachGRBobservation,areshown ofdetectingaVHEsignalfromthatGRB.BysettingttoT ,wehave start inTable2,assumingΓ=2.6.TheenergythresholddependsontheZ.A. FVHE ∝F15−150keV×Ts−ta1r.t3 (1) oisftthheeeonbesregryvatthiorensshaonldd.tMheoarneaolvyesri,ssuosfet-dc.uTthaenalalyrgseisrtghiveeZs.Aa.l,otwheerhvigahlueer The rank of each GRB according to equation 1 is shown in the last of E thanthatofstandard-cutanalysis.Notethatγ-rayphotonswith columninTable1.Notethatredshiftinformation(availableforonlya th energiesbelowE canbedetectedbythetelescopes. few GRBs), and thus the corresponding EBL absorption, isnot taken th intoaccountintherankingscheme. 4.3.Opticalefficiencyoftheinstrument 4. DataAnalysis Thedatapresentedwerealsocorrectedforthelong-termchangesinthe opticalefficiencyoftheinstrument.Theopticalefficiencyhasdecreased Calibration of data, event reconstruction and rejection of the cosmic- overaperiodofafewyears.Thishaschangedtheeffectiveareaanden- raybackground (i.e.γ-rayevent selectioncriteria)wereperformedas ergythresholdoftheinstrument.Specifically,theenergythresholdhas described in Aharonianetal. (2006c), which employs the techniques increasedwithtime.UsingimagesoflocalmuonsintheFoV,thiseffect describedbyHillas(1996). inthecalculationoffluxupperlimitsiscorrected(c.f.Aharonianetal., Gamma-like events were then taken from a circular region (on- 2006c). source)ofradiusθ centredattheburstpositiongiveninTable1.The cut backgroundwasestimatedusingthereflected-regionbackgroundmodel asdescribedinBergeetal.(2007),inwhichthenumberofbackground 5. Results eventsintheon-sourceregion(N )isestimatedfromn off-source off region regions located at the same θ as the on-source region during the offset Noevidence of asignificantexcess ofVHEγ-rayeventsfromanyof sameobservation.Thenumberofγ-likeeventsisgivenbyN αN on− off the GRB positions given inTable 1 during the period covered by the whereN isthetotalnumberofeventsdetectedintheon-sourceregion on H.E.S.S.observationswasfound. Thenumber ofon-source (N )and andα=1/nregionthenormalizationfactor. off-source events (N ), normalization factor (α), excess, andonstatis- IndependentanalysesofvariousGRBsusingdifferentmethodsand tical significance9 ofoffthe excess in standard deviations (σ) are given backgroundestimates(Bergeetal.,2007)yieldedconsistentresults. for eachof the21 GRBsinTable2. TheresultsforGRB 030821 are given inSect. 5.4. Figure1 shows the distribution of thesignificance obtained fromthe soft-cut analysis of the observations of each of the 4.1.Analysistechnique 21GRBs.AGaussiandistributionwithmeanzeroandstandarddevi- TwosetsofanalysiscutswereappliedtosearchforaVHEγ-raysignal ationone, whichisexpectedinthecaseof nodetection, isshownfor fromobservationaldatatakenwiththreeorfourtelescopes.Theseare comparison.Thedistributionofthestatisticalsignificanceisconsistent ‘standard’cuts(Aharonianetal.,2006c)and‘soft’cuts7(thelatterhave with this Gaussian distribution. Thus no significant signal was found lowerenergy thresholds, asdescribed inAharonianetal.,2006a).For from any of the individual GRBs. A search for serendipitous source standard (soft) cuts, θ = 0.11 (θ = 0.14 ). While standard cuts discoveriesintheH.E.S.S.FoVduringobservationsoftheGRBsalso cut ◦ cut ◦ areoptimizedforasourcewithapower-lawspectrumofphotonindex resulted in no significant detection. The 99.9% confidence level (c.l.) Γ=2.6,softcutsareoptimizedforasourcewithasteepspectrum(Γ= fluxupperlimits(aboveEth)havebeencalculatedusingthemethodof 5.0),andhavebettersensitivityatlowerenergies.SinceEBLabsorption Feldman&Cousins(1998)forbothstandardcuts(assumingΓ = 2.6) islesssevereforlower energyphotons, thesoft-cutanalysis isuseful andsoftcuts(assumingΓ=5),andareincludedinTable2.Thelimits in searching for VHE γ-rays from GRBs which are at cosmological areasobservedonEarth,i.e.theEBLabsorptionfactorwasnottaken distances. Forexample, thephoton indices of twoblazars PKS2005- intoaccount.ThesystematicerroronaH.E.S.S.integralfluxmeasure- 489(Aharonianetal.,2005)andPG1553+113(Aharonianetal.,2008) mentisestimatedtobe 20%,anditwasnotincludedinthecalculation weremeasuredtobeΓ>4. oftheupperlimits. ∼ Anexceptiontothis∼analysisschemeisGRB030329.Asthecentral ForthoseGRBswithreported redshifts, theeffect of theEBLon triggersystemhadyettobeinstalledwhenthisobservationwasmade, theH.E.S.S.limitscanbeestimated.UsingtheEBLmodelP0.45de- aslightlydifferentanalysistechniquewasused.Thedescriptionofthe scribedinAharonianetal.(2006b),differentialupperlimits(againas- image and analysis cuts used for the data from GRB 030329 can be sumingΓ=5)attheenergythresholdwerecalculatedfromtheintegral foundinAharonianetal.(2005).ForGRB030821,onlythestandard- upperlimitsobtainedusingsoft-cutanalysis.Theseupperlimits,aswell cutanalysis(fortwo-telescopedata)wasperformed(seeSect.5.4). asthosecalculatedwithouttakingtheEBLintoaccount,areshownin The positional error circle of most GRBs, with the exceptions of Table3. GRB 030821, GRB 050209, and GRB 070209, is small compared to theH.E.S.S.pointspreadfunction(PSF).The68%γ-raycontainment radius,θ ,oftheH.E.S.S.PSFcanbeassmallas 3,depending on 68 ∼ ′ theZ.A.andθ oftheobservations,andtheanalysiscutsapplied.The offset 68%containment radius,θ ,oftheobservations ofGRB050209and 68 GRB 070209 is about 9 using standard-cut analysis8, slightly larger ′ 7 ‘Soft’cutswerecalled‘spectrum’cutsinAharonianetal.(2006a). 8 θ islargerusingsoft-cutanalysis 9 calculatedbyeq.(17)inLi&Ma(1983) 68 Table2.H.E.S.S.observationsofGRBsfromMarch2003toOctober2007. Standard-cutanalysis Soft-cutanalysis Temporalanalysis GRBa T Exposure N Z.A. N N α ExcessSigni- E FluxULs N N α ExcessSigni- E FluxULs χ2/d.o.f. P(χ2) start tel ON OFF th ON OFF th (min) (min) ( ) ficance(GeV) (cm 2s 1) ficance(GeV) (cm 2s 1) ◦ − − − − 070621 6.5 234.6 4 16 204 2273 0.091 -2.6 -0.18 250 2.8 10 12 731 5903 0.13 -6.9 -0.24 190 5.6 10 12 19.2/28 0.89 − − 050801 15.0 28.2 4 43 13 173 0.091 -2.7 -0.68 400 3.2×10 12 46 442 0.13 -9.3 -1.2 310 1.6×10 11 0.168/3 0.98 − − 070429A 64 28.2 4 23 4 78 0.091 -3.1 -1.2 290 2.4×10 12 20 203 0.13 -5.4 -1.0 220 1.0×10 11 6.39/3 0.094 − − 567.1 14.2 3 64 9 87 0.11 -0.67 -0.21 1850 6.8×10 12 27 236 0.17 -12 -1.9 1360 2.6×10 11 041211Ba (cid:26) 742.3 112.3 4 44 76 1247 0.063 -1.9 -0.21 380 3.7×10−12 317 4353 0.083 -46 -2.4 280 1.8×10−11(cid:27) 14.6/14 0.40 − − 623.3 56.2 4 35 16 272 0.10 -11 -2.2 390 1.0×10 12 97 785 0.14 -15 -1.4 280 1.4×10 11 071003b (cid:26) 691.1 56.2 3 41 25 204 0.10 4.6 0.93 480 5.6×10−12 79 547 0.14 0.86 0.091 340 1.5×10−11(cid:27) 32.3/12 0.0012 − − 041006 626.1 81.9 4 27 80 770 0.10 3 0.32 200 1.1×10 11 302 1974 0.14 20 1.1 150 6.8×10 11 8.89/9 0.45 − − 000767000458120968B 23809460..722 11115226...884 444 234547 294839 1360956198 000...00199011 --1-713.1.58 ---111...433 372108000 322...249×××111000−−−111222 142290129 131077613913 000...111343 ---713.386 ---011...4069 252622000 779...525×××111000−−−111222 111951...889///11622 000...00267042 F.Aharo 007601712110BA 490275.6.78 110132..88 44 4205 5796 988348 00..006933 --21..59 --00..3211 424800 14..43××1100−1122 233174 22667761 00..01833 -1240 0-1.8.09 322000 88..84××1100−1122 145.6.56//1111 00..1965 nian 030329c 16493.5 28.0 2 60 4 26 0.14 0.27 0.13 1360 2.6×10−−12 × − 5.93/3 0.12 eta 000557000726201692B 1792700218...775 111116228...886 444 414088 111000744 111001399160 000...01081931 --2411.82 --021...3169 423842000 447...411×××111000−−−111222 354321385 243622103943 000...111143 -417213 0-2·2.5.·.38·1 213684000 311...455××111000−−−111111 13446.8..737///111282 000...20960665 l.:H.E.S 060403 820.4 52.8 4 39 33 252 0.091 10 1.9 440 4.8×10 12 128 875 0.13 19 1.6 320 1.3×10 11 10.4/6 0.11 .S 060505 1163 111 4 42 99 837 0.091 23 2.4 520 5.6×10−−12 339 2740 0.13 -3.5 -0.18 400 3.9×10−−12 22.1/12 0.036 .ob 050509C 1289 28.2 4 22 31 344 0.083 2.3 0.41 200 1.7×10 11 112 965 0.11 4.8 0.43 150 1.5×10 10 0.301/3 0.96 se 007700772241AA 982973..55 18142..68 44 2330 9703 1742306 00..009519 75..55 00..8588 236200 76..53××1100−−1122 228406 32803472 00..01737 --91.53 --00..8565 226000 11..30××1100−−1111 61.748.3//192 00..8171 rvatio 070209 926.7 56.4 4 41 37 444 0.091 -3.4 -0.51 480 2.3×10−12 185 1442 0.13 4.8 0.33 370 1.1×10−11 5.35/6 0.50 ns × − × − of γ a TheGRBsarelistedintheorderoftherankingschemedescribedinSect.3.3.GRB030821isnotlisted,theresultsofwhicharegiveninSect.5.4. -r a b Three-andfour-telescopedataarepresented. y b c Aslightlydifferentanalysistechniquewasused,seeSect.4.1.Soft-cutanalysisisnotavailableforthisobservation. ur s ts in 2 0 0 3 – 2 0 0 7 5 6 F.Aharonianetal.:H.E.S.S.observationsofγ-rayburstsin2003–2007 Secondly,combiningthesignificanceoftheresultsfromthreeselected s 10 subsetsextractedfromthewholesamplewasperformed.Theapriori ntrie 9 sVeHleEctiflounxcorirtearilaowweerreletvoelcohfooEsBeLthaobsseoGrpRtiBons.wTihtehfaolhloigwhienrgerxepqeucitreed- e of 8 mentswereusedtoselectthreesubsets: er mb 7 SampleA: thefirst10intherankingdescribedinSect.3.3; u N 6 SampleB: allGRBswithameasuredredshiftz<1; SampleC: all GRBs with a soft-cut energy threshold lower than 5 300 GeV and with either a measured redshift z < 1 or with an 4 unknownredshift. 3 TheresultisshowninTable4.Ascanbeseen,thereisnosignificant 2 evidenceofemissioninanyofthesesubsets. 1 0 5.2.Temporalanalysis -4 -3 -2 -1 0 1 2 3 4 Significance of individual GRBs AspossibleVHEradiationfromGRBsisexpectedtovarywithtime, atemporalanalysistosearchfordeviationfromzeroexcessintheob- Fig.1.Distributionofthestatisticalsignificance(histogram)as serveddatawasperformed.Soft-cutanalysiswasusedforallGRBs(ex- derived from the observationsof 20 GRBs using soft-cutanal- ceptGRB030329)sincethisanalysishasalowerenergythresholdand ysis. The mean is 0.4 and the standard deviation is 1.4. Each abetteracceptance of γ-raysand cosmicraysandtherefore increases − entrycorrespondstooneGRB.ThesolidlineisaGaussianfunc- thestatistics.Theγ-likeexcesseventswerebinnedin10-minutetime tionwithmeanzeroandstandarddeviationunity. intervalsforeachGRBdatasetandwerecomparedtotheassumption ofnoexcessthroughouttheobservedperiod.Theχ2/d.o.f.valueandthe correspondingprobabilityareshowninTable2foreachGRB.Within 5.1.Stackinganalysis thewholesample,thelowestprobabilitythatthehypothesisthattheex- cesswaszerothroughouttheobservationperiodiscorrectis1.2 10 3 − AlthoughnosignificantexcesswasfoundfromanyindividualGRB,co- (for GRB 071003) and no significant deviation from zero with×in any addingtheexcesseventsfromtheobservations ofanumber of GRBs oftheGRBtemporaldatawasfound. Standard-cutanalysisproduced mayrevealasignalthatistooweaktobeseeninthedatafromoneGRB, consistentresults. providedthatthePSFsoftheH.E.S.S.observationsarebiggerthanthe errorboxoftheGRBpositions(whichisthecase,seeSect.4.1).Firstly, stackingofallGRBs(exceptGRB030821,whichhasahighpositional 5.3.GRB070621:ObservationsofaGRBwiththefastest uncertainty)inthesamplewasperformed.Thisyieldedatotalof 157 reactionandthelongestexposuretime − excesseventsandastatisticalsignificanceof 1.98usingthesoft-cut analysis.Useofstandardcutsproduced asim−ilarresult(seeTable4). GRB070621isthehighest-rankedGRBinthesample(Sect.3.3),i.e. it has the highest relative expected VHE flux at the start time of the observations. The duration of the Swift burst was T 33s, thus 90 ∼ Table 3. Differential flux upper limits at the energy thresholds clearly classifying the burst as a long GRB. The fluence in the 15– 150 keV band was 4.3 10 6 erg cm 2. The XRTlight curve isrep- fromtheH.E.S.S.observationsofGRBswithreportedredshifts. ∼ × − − resentedbyaninitialrapidly-decayingphaseandashallowphase,with thetransitionhappeningaroundt +380swheret denotesthetrigger GRB Redshift E (GeV) F a F a 0 0 th UL corrected time(Sbarufattietal.,2007).Despiteextensiveopticalmonitoring,no 060505 0.0889 400 3.9 10−14 5.8 10−14 fadingopticalcounterpartwasfound.TheH.E.S.S.observationsstarted 003700322099 00..1361847 1336700 71..62××1100−−1153 98..77××1100−−1143 sahtat0llo+w42p0hsasaen.dTlhaessteedofbosrer∼v5atihoonusrsw,elarergbeolythcothinecmidoesnttpwroitmhpthteanXd-rthaye 070724A 0.457 200 2.1×10−13 1.0×10−12 longestamongthosepresented.Figure2showsthe99.9%H.E.S.S.en- 041006 0.716 150 1.8×10−12 2.7×10−11 ergyfluxupperlimitsabove200GeV(usingsoft-cutanalysis),together 061110A 0.758 200 1.7×10−13 1.7×10−11 withtheXRTresults(Evansetal.,2007).Asseen,thelimitsforthispe- 050801 1.56 310 2.1×10−13 ×b riodareatlevelscomparabletotheX-rayenergyfluxduringthesame 071003c 1.604 280 2.0×10 13 b period.Unfortunatelythelackofredshiftinformationforthisburstpre- − 060526 3.21 220 1.7×10 13 b ventsfurtherinterpretationofthelimits. − 070721B 3.626 320 1.1×10 13 b − × a Limitsaregiveninunitsofcm 2s 1GeV 1. 5.4.GRB030821:ObservationsofaGRBwithahigh − − − b ThelimitscorrectedforEBLabsorptionare>10ordersofmagni- positionaluncertainty tudelargerthanthatobserved. SomeGRBs,suchasGRB030821,haveahighuncertaintyinposition; c Only4-telescopedatawereused. witha relativelylarge camera FoV ( 5 ), the H.E.S.S.telescopes are ◦ ∼ abletocoverthewholepositionalerrorboxofsuchGRBs. Table 4. Combinedsignificance of 3 subsets of GRBs selected Observationsof GRB030821 started18hours aftertheburstand basedontherequirementslistedinSect.5.1 lasted for a live-time of 55.5 minutes, with a mean Z.A. of 28◦. The observations were taken when the array was under construction and only two telescopes were operating, resulting in an energy threshold Number Soft-cut Standard-cut of 260 GeV. The GRB has a relatively high uncertainty in position ofGRBs analysis analysis as determined from IPN (thethird Interplanetary Network) triangula- SampleA 10 -2.13 -1.81 tion (Hurleyetal., 2003), and its error box is bigger than the PSF of SampleB 6 -0.20 1.45 H.E.S.S.However, because of therelativelylargeFoV ofthecamera, SampleC 11 -0.53 0.48 thewholeerrorbox,andthusthepossibleGRBposition,iswithinthe allGRBs 21 -1.98 -0.18 H.E.S.S.FoV.Theskyexcessmapoverlaidwiththeerrorboxisshown F.Aharonianetal.:H.E.S.S.observationsofγ-rayburstsin2003–2007 7 6. Discussion Theupper limitspresentedinthispaper areamongthemoststringent -1-2) scm 10-9 10-9-1-2) sm fletevuregxrl)odwaerreipveaertdioledfvr.oeImlns cfVaocHmt,Eptahγrea-br9aley9.9too%bstehcreovnaXfiti-dorenanysceoenfleeGrvgReylBlflsimudxiutsarisn(igonbteshneerevragefyd- 0 GeV (erg 10-10 10-10 0 keV (erg c boseyfvteShrweeliGyft/RaXbBRssoTrabdreeudrlibonycgatthtehedeEasBtamLhieg(thhpiersreipdoosdhssi(fisbtesielia,tnyed.igst.hdFuissicgut.hs2es)ier.dUVbnHellEeoswsfl)u,mxoonsiest ux >20 n 0.3-1 elexvpeelcstcsodmepteacrtaibolneotof tthhoesperiendiXct-erdayVsHinEsocmomepscoenneanrtiowsi(thDeernmeregryetflaulx., E.S.S. Fl10-11 10-11 RT Flux i 22000005O;;nFWatanhneegtoeatthl.ea,rl2.,0h02a8n0)d0.,1;thZehuanngkn&owMne´srezda´rsohsif,ts20o0f1m; Pane’yero&f tWheaxGmRaBns, H. X in the sample (including GRB 070621, the highest-ranking, which is 10-12102 103 104 10-12 dbiesccauussseedEiBnLSaebcts.o3r.p3t)iocnomatpVlicHaEteetnheerpghieyssiicsasleivnetererpfroertaatiGonRoBfwthiethdazta>, t - t (s) 0 1.Themeanandmedianredshiftofthe10GRBswithreportedredshifts Fig.2.The99.9%confidencelevelenergyfluxupperlimits(in is1.3 and 0.7, respectively. If the12 GRBswithout redshift have the red) at energies>200 GeV derivedfromH.E.S.S. observations sameredshiftdistribution,onewouldexpect 40%ofthem( 5GRBs) ∼ ∼ atthepositionofGRB070621.Theendsofthehorizontallines tohavez< 0.5.Inthiscase,theEBLabsorptionmaynotprecludethe detectionof thepredicted VHEγ-raysfor theGRBsamplepresented indicatethestartandendtimesoftheobservationsfromwhich here11. theupperlimitswerederived.TheXRTenergyfluxinthe0.3–10 ThereisnoreportedX-rayflareduringtheH.E.S.S.observational keVbandisshowninblackforcomparison(Evansetal.,2007). timewindows,thereforenoconclusiononwhetherornotX-rayflares areaccompanied byVHEflares,aswellastheoriginof X-rayflares, can be drawn. If UHECRs are generated in nearby GRB sources, as suggested by some authors, a detectable VHE flux is expected from nearbyGRBs.Therefore,althoughtheunknown redshiftsofasignifi- cantfractionofGRBsinoursample(12outof22)andtheuncertainty inthemodeledVHEtemporalevolutionaresurelyinplay,theresults presented here do not indicate (but also not exclude) that GRBs are dominantsourcesofUHECRs. 7. Outlook The data from our sample of 22 GRBs do not provide any evidence for a strong VHE γ-ray component from GRBs during the afterglow phase.EBLabsorptioncanexplainthelackofdetectioninoursample. However, this does not exclude a population of GRBs that exhibit a strongVHEcomponent. WhiletheEGRETexperiment didnotdetect MeV–GeV photons frommost BATSEGRBsinitsFoV, some strong bursts(e.g.GRB940217)haveprovedtoemitdelayedemission, 1.5 Fig.3.Theγ-likeexcesseventsintheregionoftheGRB030821. hours after the burst, at energies as high as 20 GeV (Hurleye∼tal., The errorboxshowsthe positionof the burst localizedby IPN 1994).WithFermi’sobservationsofGRBshav∼ingstartedinmid-2008, triangulation(Hurleyetal.,2003).Thecolour(grey)scaleisset itislikelythatourknowledgeofthehigh-energyemissionofGRBswill suchthattheblue/red(black/grey)transitionoccursatthe 1.5σ beimprovedinthenearfuture. significance level. The sky map was derived using two∼obser- ThefutureprospectsfordetectionatVHEenergiesrelyonthelike- vationspointingattwodifferentpositions(markedbycrosses), lihoodofobservingaGRBwithlowredshift(e.g.z<0.5)earlyenough. Inthecaseswherethereisnodetection,sensitiveandearlyupperlimits resultinginanon-uniformdistributionofeventsinthemap. on the intrinsic VHE luminosity of these nearby GRBs will still im- proveourunderstandingoftheradiationmechanismsofGRBs.Theex- istenceofadistinctpopulationoflow-luminosity(LL)GRBswassug- gestedbasedonthehighdetectionrateoflow-redshiftLLGRBssuch as GRB 980425 and GRB 060218 (e.g. Soderbergetal., 2004). Due inFig.3.Ascanbeseen,thereisnosignificantexcessatanyposition totheir proximity, they are good targetsfor VHE observations. Since withinthe error box. The skyregion withthelargest number of peak theyaresub-energeticcomparedtootherGRBs,theymaybeaccompa- excesseventsislocatedinthesouth-easternpartoftheerrorbox.Using niedbyalowerVHEluminosity.Ontheotherhand,ifmostradiation apoint-source analysis centredat thispeak, afluxupper limit(above areemittedathighenergies,thedetectionprobabilitywouldbemuch 260 GeV) of 1.7 10 11 cm 2 s 1 was derived. Since an upper limit higher. − − − derived for an∼y loc×ation in the error box with fewer excess events is Franceschinietal. (2008) claimed a very small γ-rayopacity due lowerthanthisvalue10,itmayberegardedasaconservativeupperlimit toEBLabsorption.Theopticaldepthisaboutafactorofthreelessthan oftheVHEfluxassociatedwithGRB030821duringtheperiodofthe theoneweused,dependingontheenergies(Aharonianetal.,2006b). H.E.S.S.observations. Therefore,on-goingGRBobservationswithH.E.S.S.,aswellasother ground-basedVHEdetectors,arecrucialtotestthismodel. 10 Alargerexcessimpliesahighervalueoftheupperlimit,sincethe 11 TheopticaldepthofEBLabsorptionfora 100GeVphotonis 3 integratedexposure,thatdependsonZ.A.andθ oftheobservations, atz=1,accordingtotheP0.45modeldemonstr∼atedinAharonianet∼al. offset islargelythesameoverthewholeerrorbox. (2006b). 8 F.Aharonianetal.:H.E.S.S.observationsofγ-rayburstsin2003–2007 8. Conclusions During5yearsofoperation(2003–2007),32GRBswereobserveddur- ingtheafterglowphaseusingtheH.E.S.S.experiment.Those22GRBs withhigh-quality datawereanalysed and theresultspresented inthis paper. Depending on the visibilityand observing conditions, the start timeoftheobservationsvariedfromminutestohoursaftertheburst. There isno evidence of VHE emissionfromany individual GRB duringtheperiodcoveredbytheH.E.S.S.observations,norfromstack- ing analysisusing the whole sampleand a priori selected sub-sets of GRBs. Fine-binned temporal data revealed no short-term variability fromanyobservationandnoindicationofVHEsignalfromanyofthese timebinswasfound.UpperlimitsofVHEγ-rayfluxduringtheobser- vations from the GRBs were derived. These 99.9% confidence level energyfluxupper limitsareatlevelscomparabletothecontemporary X-rayenergyflux.ForthoseGRBswithreportedredshifts,differential upperlimitsattheenergythresholdaftercorrectingforEBLabsorption arepresented. H.E.S.S.phaseIIwillhaveanenergythresholdof about 30GeV. WithmuchlessabsorptionbytheEBLatsuchlowenergies,itishoped that the H.E.S.S. experiment will enable the detection of VHE γ-ray counterpartsofGRBs. Acknowledgements. The support of the Namibian authorities and of the UniversityofNamibiainfacilitatingtheconstructionandoperationofH.E.S.S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the French MinistryforResearch,theCNRS-IN2P3andtheAstroparticleInterdisciplinary ProgrammeoftheCNRS,theU.K.ScienceandTechnologyFacilitiesCouncil (STFC),theIPNPoftheCharlesUniversity,thePolishMinistryofScienceand HigherEducation,theSouthAfricanDepartmentofScienceandTechnologyand NationalResearchFoundation,andbytheUniversityofNamibia.Weappreciate theexcellent workofthetechnical supportstaffinBerlin,Durham,Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and in Namibia in the construction and operationoftheequipment.P.H.TamacknowledgessupportfromIMPRS-HD. ThisworkhasmadeuseoftheGCNNoticesandCircularsprovidedbyNASA’s GoddardSpaceFlightCenter,aswellasdatasuppliedbytheUKSwiftScience DataCentreattheUniversityofLeicester. F.Aharonianetal.:H.E.S.S.observationsofγ-rayburstsin2003–2007 9 References Waxman,E.,&Bahcall,J.N.2000,ApJ,541,707 Zhang,B.&Me´sza´ros,P.2001,ApJ,559,110 Aharonian,F.A.,Akhperjanian,A.G.,Aye,K.-M.,etal.(HESScollaboration) Zhang,B.&Me´sza´ros,P.2004,Int.J.Mod.Phys.A.,19,2385 2005,A&A,436,L17 Zhang,B.,Fan,Y.-Z.,Dyks,J.,etal.2006,ApJ,642,354 Aharonian,F.A.,Akhperjanian,A.G.,Bazer-Bachi,A.R.,etal.(HESScollab- oration)2006a,A&A,448,L19 1 Max-Planck-Institut fu¨rKernphysik, P.O.Box103980, D69029 Aharonian,F.A.,Akhperjanian,A.G.,Bazer-Bachi,A.R.,etal.(HESScollab- Heidelberg,Germany oration)2006b,Nature,440,1018 Aharonian,F.A.,Akhperjanian,A.G.,Bazer-Bachi,A.R.,etal.(HESScollab- 2 Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 oration)2006c,A&A,457,899 Yerevan,Armenia Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (HESS 3 Centred’EtudeSpatialedesRayonnements,CNRS/UPS,9av.du collaboration)2008,A&A,477,481 ColonelRoche,BP4346,F-31029ToulouseCedex4,France Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (HESS 4 Universita¨t Hamburg, Institut fu¨r Experimentalphysik, Luruper collaboration)2009,ApJ,690,1068 Chaussee149,D22761Hamburg,Germany Albert,J.,Aliu,E.,Anderhub,H.,etal.(MAGICcollaboration)2007,ApJ,667, 5 Institut fu¨r Physik, Humboldt-Universita¨t zu Berlin, Newtonstr. 358 15,D12489Berlin,Germany Atkins,R.,Benbow,W.,Berley,D.,etal.2000,ApJ,533,L119 6 LUTH, Observatoire de Paris, CNRS, Universite´ Paris Diderot, Atkins,R.,Benbow,W.,Berley,D.,etal.2005,ApJ,630,996 Amenomori,M.,Cao,Z.,Dai,B.Z.,etal.1996,A&A,311,919 5 Place Jules Janssen, 92190 Meudon, France Obserwatorium Baring,M.G.2006,ApJ,650,1004 Astronomiczne,UniwersytetJa Berge,D.,Funk,S.,&Hinton,J.A.2007,A&A,466,1219 7 IRFU/DSM/CEA, CE Saclay, F-91191 Gif-sur-Yvette, Cedex, Berger,E.,&Fox,D.2007,GCNCircular6101 France Berger,E.,&Gladders,M.2006,GCNCircular5170 8 University of Durham, Department of Physics, South Road, Berger,E.,Fox,D.B.,Price,P.A.,etal.2007,ApJ,664,1000 DurhamDH13LE,U.K. Bo¨ttcher,M.,&Dermer,C.D.1998,ApJ,499,L131 9 Unit for Space Physics, North-West University, Potchefstroom Butler,N.R.,Kocevski,D.,Bloom,J.S.,etal.2007,ApJ,671,656 2520,SouthAfrica Chincarini,G.,Moretti,A.,Romano,P.,etal.2007,ApJ,671,1903 10 Laboratoire Leprince-Ringuet, Ecole Polytechnique, Connaughton,V.,Akerlof,C.W.,Barthelmy,S.,etal.1997,ApJ,479,859 Cucchiara,A.,Fox,D.B.,&Cenko,S.B.,etal.2007,GCNCircular6665 CNRS/IN2P3,F-91128Palaiseau,France Curran,P.A.,Starling,R.L.C.,O’Brien,P.T.,etal.2008,A&A,487,533 11 Laboratoire d’Annecy-le-Vieux de Physique des Particules, Dermer,C.D.,Chiang,J.,&Mitman,K.E.2000,ApJ,537,785 CNRS/IN2P3, 9 Chemin de Bellevue - BP 110 F-74941 Annecy- Dermer,C.D.2007,ApJ,664,384 le-VieuxCedex,France Evans,P.A.,Beardmore,A.P.,&Page,K.L.,etal.2007,A&A,469,379 12 Astroparticule et Cosmologie (APC), CNRS, Universite Paris 7 Fan,Y.-Z.,&Piran,T.2008,FrontiersofPhysicsinChina,3,306 DenisDiderot,10,rueAliceDomonetLeonieDuquet,F-75205Paris Fan,Y.-Z.,Piran,T.,Narayan,R.,&Wei,D.-M.2008,MNRAS,384,1483 Cedex 13, France UMR 7164 (CNRS, Universite´ Paris VII, CEA, Feldman,G.J.,&Cousins,R.D.1998,Phys.Rev.D.,57,3873 ObservatoiredeParis) Franceschini,A.,Rodighiero,G.,&Vaccari,M.2008,A&A,487,837 13 DublinInstituteforAdvancedStudies,5MerrionSquare,Dublin Funk,S.,Hermann,G.,Hinton,J.A.etal.2004,Astropart.Phys.,22,285 Fynbo,J.P.U,Thoene,C.C.&Malesani,D.,etal.2007,GCNCircular6759 2,Ireland Galli,A.,&Piro,L.2007,A&A,475,421 14 Landessternwarte, Universita¨t Heidelberg, Ko¨nigstuhl, D 69117 Galli,A.,&Piro,L.2008,A&A,489,1073 Heidelberg,Germany Hillas,A.M.1996,SpaceSci.Rev.,75,17 15 Laboratoire de Physique The´orique et Astroparticules, Horan,D.,Atkins,R.W.,Badran,H.M.,etal.2007,ApJ,655,396 CNRS/IN2P3, Universite´ Montpellier II, CC 70, Place Euge`ne Hurley,K.,Dingus,B.L.,Mukherjee,R.,etal.1994,Nature,372,652 Bataillon,F-34095MontpellierCedex5,France Hurley,K.,Cline,T.,&Mazets,E.,etal.2003,GCNCircular2359 16 Universita¨t Erlangen-Nu¨rnberg, Physikalisches Institut, Erwin- Jakobsson,P.,Levan,A.,Fynbo,J.P.U.,etal.2006,A&A,447,897 Rommel-Str.1,D91058Erlangen,Germany Klebesadel,R.W.,Strong,I.B.,&Olson,R.A.1973,ApJ,182,L85 17 Laboratoire d’Astrophysique de Grenoble, INSU/CNRS, Konopelko, A., Hemberger, M., Aharonian, F. et al. (HEGRA Collaboration) 1999,Astropart.Phys.,10,275 Universite´ Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, Li,T.-P.,&Ma,Y.-Q.1983,ApJ,272,317 France Malesani,D.,Jakobsson,P.,Fynbo,J.P.U.,Hjorth,J.,&Vreeswijk,P.M.2007, 18 Institut fu¨r Astronomie und Astrophysik, Universita¨t Tu¨bingen, GCNCircular6651 Sand1,D72076Tu¨bingen,Germany Murase, K.,Ioka, K.,Nagataki, S.,& Nakamura, T. 2008, Phys. Rev. D,78, 19 LPNHE, Universite´ Pierre et Marie Curie Paris 6, Universite´ 023005 DenisDiderotParis7,CNRS/IN2P3,4PlaceJussieu,F-75252,Paris Nikishov,A.I.1962,Sov.Phys.JETP,14,393 Cedex5,France Nousek,J.A.,Kouveliotou,C.,Grupe,D.,etal.2006,ApJ,642,389 20 Institute of Particle and Nuclear Physics, Charles University, V Ofek,E.O.,Cenko,S.B.,Gal-Yam,A.,etal.2007,ApJ,662,1129 Holesovickach2,18000Prague8,CzechRepublic Padilla,L.,Funk,B.,Krawczynski,H.,etal.1998,A&A,337,43 Palmer,D.,Cummings,J.,Stamatikos,M.,Markwardt,C.,&Sakamoto,T.2006, 21 Institut fu¨r Theoretische Physik, Lehrstuhl IV: Weltraum und GCNCircular5076 Astrophysik,Ruhr-Universita¨tBochum,D44780Bochum,Germany vanParadijs,J.,Kouveliotou,C.,&Wijers,R.A.M.J.,2000,ARA&A,38,379 22 UniversityofNamibia,PrivateBag13301,Windhoek,Namibia dePasquale,M.,Oates,S.R.,Page,M.J.,etal.2007,MNRAS,377,1638 23 Obserwatorium Astronomiczne, Uniwersytet Jagiellon´ski, ul. Pe’er,A.&Waxman,E.2005,ApJ,633,1018 Orla171,30-244Krako´w,Poland Pe´langeon,A.,Atteia,J.-L.,Lamb,D.Q.,&Ricker,G.R.2006,AIPC,836,149 24 Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00- Perley,D.A.,Li,W.,Chornock,R.,etal.2008,ApJ,688,470 716Warsaw,Poland Piran,T.1999,Phys.Rep.,314,575 25 SchoolofPhysics&Astronomy,UniversityofLeeds,LeedsLS2 Poirier,J.,D’Andrea,C.,Fragile,P.C.,etal.2003,Phys.Rev.D,67,042001 9JT,UK Razzaque,S.,Me´sza´ros,P.,&Zhang,B.2004,ApJ,613,1072 Sakamoto,T.,Lamb,D.Q.,Kawai,N.,etal.2005,ApJ,629,311 26 SchoolofChemistry&Physics,UniversityofAdelaide,Adelaide Sakamoto,T.,Barthelmy,S.D.,Barbier,L.,etal.2008,ApJS,175,179 5005,Australia Sbarufatti,B.,Barthelmy,S.D.,Holland,S.T.,etal.2007,GCNReport67.2 27 Torun´ CentreforAstronomy,NicolausCopernicusUniversity,ul. Shirasaki,Y.,Yoshida,A.,Kawai,N.,etal.2008,PASJ,60,919 Gagarina11,87-100Torun´,Poland Soderberg,A.M.,Kulkarni,S.R.,Berger,E.,etal.2004,Nature,430,648 28 Instytut Fizyki Ja¸drowej PAN, ul. Radzikowskiego 152, 31-342 Soderberg,A.M.,Kulkarni,S.R.,Price,P.A.,etal.2006,ApJ,636,391 Krako´w,Poland Stamatikos,M.,Barbier,L.,Barthelmy,S.D.,etal.2007,GCNCircular6711 29 European Associated Laboratory for Gamma-Ray Astronomy, Stanek,K.Z.,Matheson,T.,Garnavich,P.M.etal.2003,ApJ,591,L17 jointlysupportedbyCNRSandMPG Wang,X.Y.,Dai,Z.G.,&Lu,T.2001,ApJ,556,1010 Wang,X.Y.,Li,Z.,&Me´sza´ros,P.2006,ApJ,641,L89