Heft 231 Sergey Oladyshkin Efficient Modeling of Environmental Systems in the Face of Complexity and Uncertainty Efficient Modeling of Environmental Systems in the Face of Complexity and Uncertainty Habilitationsschrift, Fakultät Bau- und Umweltingenieurwissenschaften und Stuttgart Research Centre for Simulation Technology der Universität Stuttgart vorgelegt von Sergey Oladyshkin aus Nizhniy Novgorod in Russland Hauptberichter: Prof. Dr.-Ing. Rainer Helmig Tag der mündlichen Prüfung: 28.02.2014 Institut für Wasser- und Umweltsystemmodellierung der Universität Stuttgart 2014 Heft 231 Efficient Modeling of Environmental Systems in the Face of Complexity and Uncertainty von Dr.-Ing. habil. Sergey Oladyshkin Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart D93 Efficient Modeling of Environmental Systems in the Face of Complexity and Uncertainty Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://www.d-nb.de abrufbar Oladyshkin, Sergey: Efficient Modeling of Environmental Systems in the Face of Complexity and Uncertainty, Universität Stuttgart. - Stuttgart: Institut für Wasser- und Umweltsystemmodellierung, 2014 (Mitteilungen Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart: H. 231) Zugl.: Stuttgart, Univ., Diss., 2014 ISBN 978-3-942036-35-1 NE: Institut für Wasser- und Umweltsystemmodellierung <Stuttgart>: Mitteilungen Gegen Vervielfältigung und Übersetzung bestehen keine Einwände, es wird lediglich um Quellenangabe gebeten. Herausgegeben 2014 vom Eigenverlag des Instituts für Wasser- und Umweltsystem- modellierung Druck: Document Center S. Kästl, Ostfildern Acknowledgements The presented scientific work forms a fundamental part of my academic development. Dur- ing this period of time I enjoyed fruitful discussions and beneficial collaborations with in- spiringpeople. First of all, I would like to express my sincerest and greatest appreciation to Rainer Helmig for his valuable guidance and enthusiastic encouragement of this research work. Further- more, I would like to give my very special thanks to Wolfgang Nowak with whom I had a very close productive and friendly collaboration and from whom I learned a lot. Also, I would like to acknowledge my former Ph.D. adviser Mikhail Panfilov with whom I had an interestingcollaborationinthebeginningofmypostdoctoralperiod. Moreover, I would like to address my special and deep gratitude to all my co-authors with whom I had the chance to perform very exiting research projects. My grateful thanks go to Jean-Jacques Royer for his collaboration on streamline modeling in heterogeneous reser- voirs, to Holger Class for his valuable input into the modeling of carbon dioxide storage and to Felipe de Barros who awakened my interest in groundwater modeling. My grateful thanks are also extended to Lena Walter with whom I had a very beneficial cooperation, to Meisam Ashraf with whom I had a lively knowledge exchange and to Marcel Hlawatsch for hismotivatingteamworkonthecreationoftheInteractiveDemonstrator. I would further like to express my appreciation to Melanie Darcis, Bernd Flemisch, Philipp Leube, Andreas Geiges, Julian Mehne, Jonas Koch and Michael Sinsbeck from the Depart- ment of Hydromechanics and Modeling of Hydrosystems of the University of Stuttgart and tomyco-researchersIrinaPanfilova,OlgaBorozdina,EkaterinaEliseevaandEmmanuelFe- tel from the Nancy School of Geology. In addition, I would like to express my thanks to the academicstaffoftheDepartmentofHydromechanicsandModelingofHydrosystemsofthe UniversityofStuttgartthatcreatedaveryproductiveandfriendlyworkingatmosphere. Additionally, I would like to acknowledge to the GOCAD consortium, the MoMaS research group,theSchlumbergerCompanyandtheGermanResearchFoundationwithintheCluster of Excellence in Simulation Technology at the University of Stuttgart for their support of thisresearch. Finally, I wish to thank my wife Anastasia for her support and encouragement throughout myacademiccareer. Stuttgart,February2014 SergeyOladyshkin Contents List of Figures V List of Tables XIII Abbriviations XV Notation XVII Zusammenfassung XXIII I. Introduction 1 1. The challenge of modeling environmental systems 3 2. Complexity of environmental systems and models 6 2.1. Onpossiblesourcesofmodelingerrors . . . . . . . . . . . . . . . . . . . . 6 2.2. Thermodynamicpropertiesofmultiphasecompositionalflow . . . . . . . . 8 2.3. Efficientmodelingofmultiphaseflowusingstreamlinetechnique . . . . . . 10 2.4. Transportinporousmediaaroundsubsurfaceradioactivewastestoragesites 12 3. Uncertainty in environmental modeling 14 3.1. Uncertaintyquantificationviathepolynomialchaosexpansion . . . . . . . 15 3.2. Assessingtheimpactofmodelparametersviaglobalsensitivityanalysis . . 17 3.3. ModelcalibrationviaBayesianupdating . . . . . . . . . . . . . . . . . . . 19 4. Feasibility of applied environmental tasks 23 4.1. Robustdesignofanenvironmentalprojectunderuncertainty . . . . . . . . 23 4.2. Data-drivenuncertaintyquantificationinenvironmentalsystems . . . . . . 25 4.3. Onriskestimationincludingvariouslevelsofuncertainty . . . . . . . . . . 27 II Contents 4.4. Large-scaleglobalsensitivityanalysisingeologicalstorage . . . . . . . . . 28 II. From complexity to feasibility for environmental modeling 31 5. On the impact of modeling error sources: application to CO storage 33 2 5.1. Introductiontomodelingcarbondioxidestorage . . . . . . . . . . . . . . . 33 5.2. Physicalproblemformulation . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3. Impactoferrorsources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6. Thermodynamic modeling of multicomponent two-phase flow 41 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2. Mathematicalmodeloftwo-phaseflowinporousmedia . . . . . . . . . . . 44 6.3. Flowmodelpropertiesforanopencontrasttwo-phasesystem . . . . . . . . 46 6.4. Openthermodynamicmodel . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7. Effective streamline-based modeling of compositional flow 61 7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.2. Compositionalflowmodel . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.3. Compositionalflowproblemsolvedalongstreamlines . . . . . . . . . . . . 68 7.4. Streamlinesimulationofacompositionalflow . . . . . . . . . . . . . . . . 74 7.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8. Hydrogen penetration in water through porous medium 83 8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.2. Hydrogen-watercompositionalmodeloftwo-phaseflowinaporousmedium 84 8.3. Hydrogen-waterthermodynamicbehavior . . . . . . . . . . . . . . . . . . 87 8.4. Hydrogen-waterhydrodynamicbehavior . . . . . . . . . . . . . . . . . . . 97 8.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 III. Efficient model reduction methodology for uncertainty
Description: