ebook img

Handbook of Teichmuller Theory, Volume III PDF

874 Pages·2012·7.633 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Handbook of Teichmuller Theory, Volume III

IRMA Lectures in Mathematics and Theoretical Physics 17 Edited by Christian Kassel and Vladimir G. Turaev Institut de Recherche Mathématique Avancée CNRS et Université de Strasbourg 7 rue René Descartes 67084 Strasbourg Cedex France IRMA Lectures in Mathematics and Theoretical Physics Edited by Christian Kassel and Vladimir G. Turaev This series is devoted to the publication of research monographs, lecture notes, and other material arising from programs of the Institut de Recherche Mathématique Avancée (Strasbourg, France). The goal is to promote recent advances in mathematics and theoretical physics and to make them accessible to wide circles of mathematicians, physicists, and students of these disciplines. Previously published in this series: 1 Deformation Quantization, Gilles Halbout(Ed.) 2 Locally Compact Quantum Groups and Groupoids, Leonid Vainerman(Ed.) 3 From Combinatorics to Dynamical Systems, Frédéric Fauvet and Claude Mitschi(Eds.) 4 Three courses on Partial Differential Equations, Eric Sonnendrücker(Ed.) 5 Infinite Dimensional Groups and Manifolds, Tilman Wurzbacher(Ed.) 6 Athanase Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature 7 Numerical Methods for Hyperbolic and Kinetic Problems, Stéphane Cordier, Thierry Goudon, Michaël Gutnic and Eric Sonnendrücker (Eds.) 8 AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries, Oliver Biquard(Ed.) 9 Differential Equations and Quantum Groups, D. Bertrand, B. Enriquez, C. Mitschi, C. Sabbah and R. Schäfke(Eds.) 10 Physics and Number Theory, Louise Nyssen(Ed.) 11 Handbook of Teichmüller Theory, Volume I, Athanase Papadopoulos(Ed.) 12 Quantum Groups, Benjamin Enriquez(Ed.) 13 Handbook of Teichmüller Theory, Volume II, Athanase Papadopoulos(Ed.) 14 Michel Weber, Dynamical Systems and Processes 15 Renormalization and Galois Theories, Alain Connes, Frédéric Fauvet and Jean-Pierre Ramis (Eds.) 16 Handbook of Pseudo-Riemannian Geometry and Supersymmetry, Vicente Cortés(Ed.) 18 Strasbourg Master Class on Geometry, Athanase Papadopoulos(Ed.) Volumes 1–5 are available from Walter de Gruyter (www.degruyter.de) Handbook of Teichmüller Theory Volume III Athanase Papadopoulos Editor Editor: Athanase Papadopoulos Institut de Recherche Mathématique Avancée CNRS et Université de Strasbourg 7 Rue René Descartes 67084 Strasbourg Cedex France 2010 Mathematics Subject Classification: Primary 30-00, 32-00, 57-00, 32G13, 32G15, 30F60; secondary 11F06, 11F75, 14D20, 14H15, 14H60, 14H55, 14J60, 20F14, 20F28, 20F38, 20F65, 20F67, 20H10, 30C62, 30F20, 30F25, 30F10, 30F15, 30F30, 30F35, 30F40, 30F45, 53A35, 53B35, 53C35, 53C50, 53C80, 53D55, 53Z05, 57M07, 57M20, 57M27, 57M50, 57M60, 57N16. ISBN 978-3-03719-103-3 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. ©2012 European Mathematical Society Contact address: European Mathematical Society Publishing House ETH-Zentrum SEW A27 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the authors’ TEX files: I. Zimmermann, Freiburg Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞Printed on acid free paper 9 8 7 6 5 4 3 2 1 Foreword This Handbook is growing in size, reflecting the fact that Teichmüller theory has multiplefacetsandisbeingdevelopedinseveraldirections. Inthisnewvolume,asintheprecedingvolumes,therearechaptersthatconcernthe fundamentaltheoryandothersthatdealwithmorespecializeddevelopments. Some chapterstreatinmoredetailsubjectsthatwereonlybrieflyoutlinedinthepreceding volumes, and others present general theories that were not treated there. The study ofTeichmüllerspacescannotbedissociatedfromthatofmappingclassgroups, and likeinthepreviousvolumes,asubstantialpartofthepresentvolumedealswiththese groups. Thevolumeisdividedintothefollowingfourparts: • Themetricandtheanalytictheory,3. • Thegrouptheory,3. • Thealgebraictopologyofmappingclassgroupsandmodulispaces. • Teichmüllertheoryandmathematicalphysics. The numbers that follow the titles in the first two parts indicate that there were partsintheprecedingvolumesthatcarrythesametitles. This Handbook is also a place where several fields of mathematics interact. For thepresentvolume,onecanmentionthefollowing: partialdifferentialequations,one andseveralcomplexvariables,algebraicgeometry,algebraictopology,combinatorial topology,3-manifolds,theoreticalphysics,andthereareseveralothers. Thisconflu- enceofideastowardsauniquesubjectisamanifestationoftheunityandharmonyof mathematics InadditiontothefactofprovidingsurveysonTeichmüllertheory,severalchapters in this volume contain expositions of theories and techniques that do not strictly speaking belong to Teichmüller theory, but that have been used in an essential way in the development of this theory. Such sections contribute in making this volume and the whole set of volumes of the Handbook quite self-contained. The reader who wants to learn the theory is thus spared some of the effort of searching into several books and papers in order to find the material that he needs. For instance, Chapter4containsanintroductiontoarithmeticgroupsandtheiractionsonsymmetric spaces, with a view towards comparisons and analogies between this theory and the theory of mapping class groups and their action on Teichmüller spaces. Chapter 5 contains an introduction to abstract simplicial complexes and their automorphisms. Chapter 9 contains a concise survey of group homology and cohomology, and an expositionoftheFoxcalculus,havinginmindapplicationstothetheoryoftheMagnus representation of the mapping class group. Chapter 10 contains an exposition of the theory of Thompson’s groups in relation with Teichmüller spaces and mapping classgroups. ThesamechaptercontainsareviewofPenner’stheoryoftheuniversal vi Foreword decorated Teichmüller space and of cluster algebras. Chapter 10 and Chapter 14 contain an exposition of the dilogarithm, having in mind its use in the quantization theoryofTeichmüllerspaceandintherepresentationtheoryofmappingclassgroups. Chapter 11 contains a section on the intersection theory of complex varieties, as wellasanintroductiontothetheoryofcharacteristicclassesofvectorbundles,with applicationstotheintersectiontheoryofthemodulispaceofcurvesandofitsstable curvecompactification. Chapter13containsanexpositionofLp-cohomology,ofthe intersection cohomology theory for projective algebraic varieties and of the Hodge decompositiontheoryforcompactKählermanifolds,withastressonapplicationsto Teichmüllerandmodulispaces. Finally,letusmentionthatseveralchaptersinthisvolumecontainopenproblems directedtowardsfutureresearch;inparticularChapter4byJi,Chapter5byMcCarthy andmyself,Chapter7byKorkmaz,Chapter8byHabiroandMassuyeau,Chapter9 bySakasai,Chapter10byFunar,KapoudjianandSergiescu,andChapter13byJiand Zucker. Uptonow,sixtydifferentauthors(someofthemwithmorethanonecontribution) haveparticipatedtothisproject, andthereareotherauthors, workingonvolumesin preparation. Iwouldliketothankthemallforthisfruitfulcooperationwhichweall hopewillservegenerationsofmathematicians. I would like to thank once more Manfred Karbe and Vladimir Turaev for their interestandtheircare,andIreneZimmermannfortheseriousnessofherwork. Strasbourg,April2012 AthanasePapadopoulos Contents Foreword...................................................................v IntroductiontoTeichmüllertheory,oldandnew,III byAthanasePapadopoulos...................................................1 PartA.Themetricandtheanalytictheory,3 Chapter1. QuasiconformalandBMO-quasiconformalhomeomorphisms byJean-PierreOtal........................................................37 Chapter2. Earthquakesonthehyperbolicplane byJunHu ................................................................ 71 Chapter3. Kerckhoff’slinesofminimainTeichmüllerspace byCarolineSeries........................................................123 PartB.Thegrouptheory,3 Chapter4. Ataleoftwogroups: arithmeticgroupsandmappingclassgroups byLizhenJi..............................................................157 Chapter5. Simplicialactionsofmappingclassgroups JohnD.McCarthyandAthanasePapadopoulos..............................297 Chapter6. Onthecoarsegeometryofthecomplexofdomains byValentinaDisarlo......................................................425 Chapter7. Minimalgeneratingsetsforthemappingclassgroupofasurface byMustafaKorkmaz......................................................441 Chapter8. Frommappingclassgroupstomonoidsofhomologycobordisms: asurvey KazuoHabiroandGwénaëlMassuyeau.....................................465 viii Contents Chapter9. AsurveyofMagnusrepresentationsformappingclassgroups andhomologycobordismsofsurfaces byTakuyaSakasai........................................................531 Chapter10. AsymptoticallyrigidmappingclassgroupsandThompson’s groups LouisFunar,ChristopheKapoudjianandVladSergiescu ..................... 595 PartC.Thealgebraictopologyofmappingclassgroupsandtheir intersectiontheory Chapter11. Anintroductiontomodulispacesofcurves andtheirintersectiontheory byDimitriZvonkine.......................................................667 Chapter12. Homologyoftheopenmodulispaceofcurves byIbMadsen.............................................................717 Chapter13. OntheLp-cohomologyandthegeometryofmetrics onmodulispacesofcurves byLizhenJiandStevenZucker.............................................747 PartD.Teichmüllertheoryandmathematicalphysics Chapter14. TheWeil–Peterssonmetricandtherenormalizedvolume ofhyperbolic3-manifolds byKirillKrasnovandJean-MarcSchlenker.................................779 Chapter15. DiscreteLiouvilleequationandTeichmüllertheory byRinatM.Kashaev......................................................821 Corrigenda..............................................................853 ListofContributors ...................................................... 855 Index....................................................................857 Introduction to Teichmüller theory, old and new, III Athanase Papadopoulos Contents 1 PartA.Themetricandtheanalytictheory,3. . . . . . . . . . . . . . . . . 2 1.1 TheBeltramiequation . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 EarthquakesinTeichmüllerspace . . . . . . . . . . . . . . . . . . . 4 1.3 LinesofminimainTeichmüllerspace . . . . . . . . . . . . . . . . . 9 2 PartB.Thegrouptheory,3 . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Mappingclassgroupsversusarithmeticgroups . . . . . . . . . . . . 11 2.2 Simplicialactionsofmappingclassgroups . . . . . . . . . . . . . . 15 2.3 Minimalgeneratingsetsformappingclassgroups . . . . . . . . . . . 17 2.4 Mappingclassgroupsand3-manifoldtopology . . . . . . . . . . . . 18 2.5 Thompson’sgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 PartC.Thealgebraictopologyofmappingclassgroupsandmodulispaces 27 3.1 Theintersectiontheoryofmodulispace . . . . . . . . . . . . . . . . 27 3.2 ThegeneralizedMumfordconjecture. . . . . . . . . . . . . . . . . . 28 3.3 TheLp-cohomologyofmodulispace . . . . . . . . . . . . . . . . . 30 4 PartD.Teichmüllertheoryandmathematicalphysics . . . . . . . . . . . . 32 4.1 TheLiouvilleequationandnormalizedvolume . . . . . . . . . . . . 33 4.2 ThediscreteLiouvilleequationandthequantizationtheoryof Teichmüllerspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Surveying a vast theory like Teichmüller theory is like surveying a land, and the various chapters in this Handbook are like a collection of maps forming an atlas: some of them give a very general overview of the field, others give a detailed view ofsomecrowdedarea,andothersaremorefocussedoninterestingdetails. Thereare intersections between the chapters, and these intersections are necessary. They are alsovaluable,becausetheyarewrittenbydifferentpersons,havingdifferentideason whatisessential,and(toreturntotheimageofageographicalatlas)usingtheirproper colorpencilset. The various chapters differ in length. Some of them contain proofs, when the results presented are new, and other chapters contain only references to proofs, as it isusualinsurveys. Iaskedtheauthorstomaketheirtextsaccessibletoalargenumberofreaders. Of course,thereisnoabsolutemeasureofaccessibility,andtheresponsedependsonthe soundsenseoftheauthorandalsoonthebackgroundofthereader. Butinprinciple 2 AthanasePapadopoulos alloftheauthorsmadeaneffortinthissense,andweallhopethattheresultisuseful tothemathematicscommunity. Thisintroductionservesadoublepurpose. Firstofall,itpresentsthecontentofthe presentvolume.Atthesametime,readingthisintroductionisawayofquicklyreview- ingsomeaspectsofTeichmüllertheory. Inthissense,theintroductioncomplements theintroductionsIwroteforVolumesIandIIofthisHandbook. 1 PartA.The metric and the analytic theory, 3 1.1 TheBeltramiequation Chapter 1 by Jean-Pierre Otal concerns the theory of the Beltrami equation. This is thepartialdifferentialequation @N(cid:2) D(cid:3)@(cid:2); (1.1) where (cid:2)W U ! V is an orientation preserving homeomorphism between two do- mains U of V of the complex plane and where @ and @N denote the complex partial derivativations (cid:2) (cid:3) (cid:2) (cid:3) 1 @(cid:2) @(cid:2) 1 @(cid:2) @(cid:2) @(cid:2) D (cid:2)i and @N(cid:2) D Ci : 2 @x @y 2 @x @y If (cid:2) is a solution of the Beltrami equation (1.1), then (cid:3) D @N(cid:2)=@(cid:2) is called the complexdilatationof(cid:2). Without entering into technicalities, let us say that the partial derivatives @(cid:2) and @N(cid:2) of(cid:2) areallowedtobedistributionalderivativesandarerequiredtobeinL2 .U/. loc Thefunction(cid:3)thatdeterminestheBeltramiequationisinL1.U/,andiscalledthe Beltramicoefficient oftheequation. TheBeltramiequationanditssolutionconstituteanimportanttheoreticaltoolin the analytical theory of Teichmüller spaces. For instance, the Teichmüller space of a surface of negative Euler characteristic can be defined as some quotient space of a space of Beltrami coefficients on the upper-half plane. As a matter of fact, this definition is the one commonly used to endow Teichmüller space with its complex structure. TheclassicalgeneralresultaboutthesolutionoftheBeltramiequation(1.1)says thatforanyBeltramicoefficient(cid:3)satisfyingk(cid:3)k <1,thereexistsaquasiconformal 1 homeomorphism(cid:2) Df(cid:2)W U !V whichsatisfiesa.e.thisequation,andthatf(cid:2) is uniqueuptopost-compositionbyaholomorphicmap. Thereareseveralversionsand proofsofthisexistenceanduniquenessresult. Thefirstversionissometimesattributed to Morrey (1938), and there are versions due to Teichmüller (1943), to Lavrentieff (1948) and to Bojarski (1955). In the final form that is used in Teichmüller theory, theresultisattributedtoAhlforsandBers,whopublisheditintheirpaperRiemann’s

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.