ebook img

Hall field-induced resistance oscillations in tilted magnetic fields PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hall field-induced resistance oscillations in tilted magnetic fields

Hallfield-induced resistanceoscillationsintiltedmagneticfields A.T. Hatke,1 M.A. Zudov,1,∗ L.N. Pfeiffer,2 and K.W. West2 1School ofPhysicsandAstronomy, UniversityofMinnesota, Minneapolis, Minnesota 55455, USA 2Princeton University, Department of Electrical Engineering, Princeton, NJ08544, USA (ReceivedNovember10,2010) Wehavestudiedtheeffectofanin-planemagneticfieldonHallfield-inducedresistanceoscillationsinhigh mobilitytwo-dimensionalelectronsystems. Wehavefoundthattheoscillationfrequencydependsonlyonthe 1 perpendicular component ofthemagneticfieldbuttheoscillationamplitudedecaysexponentiallywithanin- 1 planecomponent. Whilethesefindingscannotbeaccountedforbyexistingtheoriesofnonlineartransport,our 0 analysis suggests that the decay can be explained by an in-plane magnetic field-induced modification of the 2 quantumscatteringrate. n PACSnumbers:73.43.Qt,73.63.Hs,73.21.-b,73.40.-c a J 6 High mobility two-dimensionalelectron systems (2DESs) HIROsaredescribedby:8,10 2 exhibit an array of fascinating transport phenomena occur- ] ringinveryhighLandaulevelswheretheShubnikov-deHaas δr ≃ 16τtrλ2cos2πǫdc, (2) l oscillations (SdHOs) are not yet resolved. Among these ρ0 π τπ l a are several classes of magnetoresistance oscillations, such h as microwave-induced resistance oscillations (MIROs),1–5 whereτtristhetransportlifetimeandτπ isthetimedescribing s- phonon induced resistance oscillations (PIROs),6 and Hall electronbackscatteringoffofimpurities.8,10 e field-induced resistance oscillations (HIROs),7,8, as well as Theeffectofanin-planemagneticfield,Bk,onMIROshas m theircombinations.9,10Inaveryclean2DES,MIROsandHI- beenrecentlyinvestigatedintwoindependentexperiments.2,3 . ROscanleadtoexoticzero-resistance11andzero-differential In Ref.2 the magneticfield B was tilted away fromthe nor- t a resistance states,12 respectively, which can be explained in maltothe2DESbyanangleθ andinRef.3B wasapplied k m termsofinstabilitiesandformationofcurrentdomains.13 independentlyofB⊥. Whilebothexperimentsagreedthatthe d- MIROs are observedin linear-responsemagnetoresistivity MareIRsOtrofrnegqluyesnucpypirsegsosevderunneddebryBB⊥,≃Re0f..53fTouwnhditlheaitnMRIRefO.2s n whena2DESisirradiatedbymicrowavesandcanbeunder- k o stoodintermsofmicrowave-inducedtransitionsbetweenthe MIROswereessentiallyunchangeduptoθ ≃80◦ (Bk <∼1.2 T).Thiscontroversyandtheveryfactthatthesuppressionof c Landaulevelswhichleadtooscillatoryphotoresistivity:5 [ MIROsobservedinRef.3wasleftunexplainedindicatesthat theroleofB isnotunderstood.Itisthereforeinterestingand 2 k v δρω ≃−ηπǫacPωλ2sin2πǫac. (1) timelytoexaminehowotherclassesofresistanceoscillations, 1 ρ0 e.g.HIROs,respondtoBk. 7 InthisRapidCommunicationwereportontheeffectofan 8 in-plane magnetic field on Hall field-induced resistance os- 2 Here, ρ0 is the resistivity at B = 0, ǫac = ω/ωc, ω = 2πf cillations in a high mobility 2DES. We employ a tilted-field 1. is the microwavefrequency,ωc = eB⊥/m∗ is the cyclotron setup and observe that, similar to MIROs,2,3 the HIRO fre- frequency,B isthemagneticfieldnormaltothe2DES,m∗is 0 ⊥ quencydependsonlyon the perpendicularcomponentof the 1 theeffectivemass,λ=exp(−π/ωcτq)istheDinglefactor,τq magnetic field, B . We further find that with increasing tilt ⊥ 1 is the quantum lifetime, Pω is the dimensionlessmicrowave angle θ, HIROs are strongly suppressed by modest B ∼ 1 : power, and η is the scattering parameter which depends on k v T. The observed suppression is nonuniform and depends on temperatureandtypeofdisorderinthe2DES.5 i theoscillationorder;thelowerorderoscillationsdecayfaster X HIROs are observed in differential resistivity r ≡ dV/dI thanthehigherorderoscillationswithincreasingθ. Whilethe r a when a direct current I is passed through a 2DES and the suppressionof the HIRO amplitudeby Bk cannotbe readily perpendicular magnetic field, B , is varied. HIROs origi- explainedbyexistingtheories,wediscussourfindingsinthe ⊥ natefromshort-rangeimpurity-mediatedtransitionsbetween context of Eq.(2) and show that the suppression can be un- Landaulevelstilted bytheHallelectricfield, Edc = ρHI/w derstoodin termsof a Bk-inducedreductionof the quantum (ρH is the Hallresistivity, w is the sample width).8,10 Inthis lifetime.However,identifyingtheoriginofsuchmodification scenario,acharacteristicscatteringeventinvolvesanelectron remainsthesubjectoffuturestudies. which is backscattered off of an impurity. The guidingcen- Whilesimilarresultshavebeenobtainedfromavarietyof ter of such an electron is displaced by the cyclotron diame- samples,thedatapresentedherewereobtainedfromaHallbar ter, 2Rc, and when 2Rc matches an integral multiple of the (w = 100µm)cleavedfromaGaAs/Al0.24Ga0.76As300A˚- real-spaceLandaulevelseparation,~ωc/eEdc,theprobability widequantumwellgrownbymolecularbeamepitaxy. After of such events is enhanced. This enhancement gives rise to abrieflowtemperatureilluminationwitharedlightemitting a maximuminthedifferentialresistivityoccurringwhenever diode,thissamplehadelectrondensityne ≃3.6×1011cm−2 ǫdc ≡ eEdc(2Rc)/~ωc isequaltoaninteger. At2πǫdc ≫ 1, and mobility µ ≃ 1.0×107 cm2/Vs. The experiment was 2 isno longera monotonicfunctionofB andthuscannotbe (cid:72) =1 ⊥ z dc describedbyanexponentialdependenceofEq.(2). B 2.5 (cid:84) Since Eq.(2) dictates that the HIRO amplitude A ≡ I = 100 (cid:80)A (16/π)·(τtr/τπ)·exp(−2π/ωcτq), onehasto examinepos- T = 1.0 K y sible effects of B on the variousscattering parameters, i.e., k x onτtr,τπ,andτq. Inour2DESatweakB⊥,ρ ≃ ρ0 ∝ 1/τtr, andone can estimate the effectof B on1/τ by investigat- k tr 2 ing the evolution of the background part of r with increas- 2.0 ing θ. This is done in Fig.2(a) showing r/ρ0 as a function (cid:84) = 0o 4 3 of B⊥ for different θ (as marked) without a vertical offset. Plotted in such a way, the data clearly show thatr oscillates o about a smooth, slowly varying background which does not 0 62.4 (cid:85) change with θ. This conclusion is further supported by the /r existence of common crossing points (cf.↓,↑) which occur o 1.5 75.0 at ǫdc ≃ n ± 1/4(n = 1,2,3,...) and where δρ ≃ 0, as prescribed by Eq.(2). We thus conclude that 1/τ does not tr 79.5o changesignificantlyinour2DESunderBk <∼1T. The backscattering rate 1/τπ appearing in Eq.(2) is es- sentially a scattering rate from the sharp disorder potential, o 81.9 e.g., residual background impurities and/or interface rough- ness. Scattering off of backgroundimpurities can hardly be 1.0 83.3o affected by Bk because of their 3D character. It is also un- likely that B can reduce interfaceroughnessscattering. Fi- k nally,asignificantdecreasein1/τπshouldleadtoanoticeable decreasein1/τ whichisnotobserved.Wethusconcludethat tr -2 -1 0 1 2 thedecayoriginatesfromanincreaseofthequantumscatter- B [kG] ingrate1/τ underappliedB . (cid:65) q k ToexaminetheeffectofB onthequantumscatteringrate k FIG. 1: [Color online] Normalized differential resistivity r/ρ0 vs 1/τq, we first extract the oscillatory part δr/ρ0 by subtract- B⊥ for tilt angles θ ≃ 0◦,62.4◦,75.0◦,79.5◦,81.9◦,83.3◦. The ingtheBk-independentbackgroundfromthedatainFig.2(a). data arevertically offset for clarityin step of 0.2 startingfrom the TheresultispresentedinFig.2(b)asafunctionofǫdcshow- highest θ. HIRO maxima are marked by ǫdc = 1,2,3,4. Inset: ingtheexpectedperiodandphasewiththemaximaoccurring directionofBwithrespecttothe2DES. nearintegerǫdcforallθ. Inaddition,Fig.2(b)allowseasyex- tractionoftheoscillationamplitudeAandshows,again,that the rate at which the oscillations disappearstrongly depends performedin a 3He cryostatatT ≃ 1.0 K andI = 100µA onǫdc,withthehigher-orderHIROspersistingtohigherθ. usingastandardlow-frequencylock-indetectionscheme. Weproceedwiththeanalysisbyadoptinganempiricalre- In Fig.1 we present the normalized differential resistivity lation, 1/τq = 1/τq0 +∆, where 1/τq0 is the scattering rate r/ρ0vsB⊥fordifferentθ,asmarked.Thedataarevertically at Bk = 0 and ∆ is the Bk-induced correction. Then it offsetforclarityinstepof0.2startingfromthehighestθ. At follows that to account for a faster decay at higher B⊥, ∆ thetopcurve(θ =0)thefirstfourHIROmaximaaremarked should increase faster than Bk. Indeed, if ∆ ∝ Bk, then the argument of the Dingle factor would acquire a correc- by ǫdc = 1,2,3,4. Examinationof the data revealsthat, re- gardless of θ, the positions of the same-order maxima and tion −π∆/ωc ∝ −Bk/B⊥ = −tanθ. As a result, oscil- minima roughly coincide with each other. This finding pro- lations of all orders would decay with θ at the same rate, vides firm experimental evidence that, similar to MIROs,2,3 in contradiction with our findings. If, however, ∆ ∝ Bk2, the frequency of HIROs is controlled by B⊥. At the same then −π∆/ωc ∝ −Bk2/B⊥ ∝ −tan2θ/ǫdc. This correc- time,itisevidentthattheoscillationamplitudedecreaseswith tionincreaseswithθ (foragivenǫdc)anddecreaseswithǫdc increasingθ. (foragivenθ),consistentwithourexperimentalobservations. ThetoptraceinFig.1obtainedatB =0showsthattheos- Thisresultimpliesthattheamplitudeshoulddecaywithθ as cillationamplitudegrowsmonotonicakllywithincreasingB A = A0exp(−αtan2θ/ǫdc), where A0 is the amplitude at ⊥ duetotheincreaseoftheDinglefactorλenteringEq.(2).Ex- θ =0andαisaBk-independentconstant. aminationoftheotherdatainFig.1revealsthatHIROsgrad- InFig.3(a)wepresentnormalizedHIROamplitudeA/A0 ually decay with increasing θ and that the decay is nonuni- vs 1/ǫdc on a semi-log scale for three different θ (as form;thestrongest,fundamentalHIROpeak(cf.“ǫdc =1”)is marked). We observe that the data are described by A = muchmoresensitivetoθ thanthehigherorderpeaksappear- A0exp(−β/ǫdc) reasonably well and that β increases with ingatlowerB . Indeed,itvirtuallydisappearsatθ ≃ 81.9◦ θ. In Fig.3(b) we show that β scales roughly linearly with ⊥ (B ≃ 1.1 T) while the higher-order peaks are still clearly tan2θ, the dependence which follows from ∆ ∝ B2. We k k observed. Thisfindingindicatesthatatfiniteθ theamplitude thus conclude that the observed decay of HIROs can be ex- 3 a a 1.6 2 o (cid:84) = 62.4 1 1.4 6 4 1.2 75.0o (cid:84) = 79.5o (cid:85)0 A0 2 /r 1.0 79.5o /A0.1 o (cid:70) (cid:70) 81.9o 6 81.9 0.8 4 (cid:67) o 2 83.3 0.6 0.01 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 B [kG] 1/(cid:72) (cid:65) dc b b 0.4 8 o 0.2 81.9 o 6 79.5 0 o (cid:85) 75.0 /r(cid:71) 62.4o (cid:69) 4 0.0 2 -0.2 0 1 2 3 4 0 20 40 60 80 100 120 (cid:72)dc tan2(cid:84) FIG. 2: [Color online] (a) Normalized differential resistivity r/ρ0 FIG. 3: [Color online] (a) Normalized HIRO amplitude A/A0 vs vs B⊥ for θ = 62.4◦,75.0◦,79.5◦, and 81.9◦. The data are not 1/ǫdc for θ = 79.5◦,81.9◦, and 83.3◦ (cirles) and fits to a · verticallyoffset. (b) Normalized oscillatory part of thedifferential exp(−β/ǫdc) (lines). (b) Extractedvalues ofβ vstan2θ (circles) resistivityδr/ρ0vsǫdcforthesametiltangles. andafit,β≃0.064·tan2θ(line). plainedbyaBk-inducedcorrectiontothequantumscattering which indicates the same increase in the quantum scattering ratewhichscalesroughlyasB2. rate 1/τ′ which enters the SdHO amplitude. Such a modest k q It is interesting to examine the possibility that the B - increaseofquantumscatteringrate,indeed,isnotsufficientto k induced suppression of MIROs observed in Ref.3 can also explaincompletequenchingofMIROs. However,1/τq′ isof- beexplainedwithinthesamepicture.First,wenoticethatthe tenconsiderablylargerthan1/τq enteringEqs.(1),(2),which DinglefactorentersequallyinthedescriptionofbothMIROs is also the case for the 2DESused in Ref.3 since the MIRO [Eq.(1)] and HIROs [Eq.(2)] and that both MIROs and HI- onset is much smaller than the SdHO onset. The overesti- ROsaredestroyedbysimilarBk ∼1T.Second,ifBkisused mated1/τq′ isusuallyattributedtothefactthattheamplitude asaparameter(insteadofθ),thecorrectiontotheargumentof of the SdHOs (∝ λ1) is very sensitive to macroscopic den- theDinglefactorcanbewrittenas−π∆/ωc ∝−ǫac·∆. This sityinhomogeneitieswhich,however,donotsignificantlyaf- correctionscales with ǫac (and notwith 1/ǫac if θ = const) fect the amplitude of “induced” oscillations (∝ λ2). Since and therefore higher order oscillations should be more sen- inhomogeneitiescan hardly be affected by B , a modest in- k sitive to B . Indeed, direct examination of Fig.1 in Ref.3 creasein1/τ′ observedinRef.3likelysignalsamuchlarger k q reveals that (i) the number of oscillations quickly decreases increasein1/τ which,inturn,isresponsibleforthedecayof q with increasing B , (ii) this decrease occurs at the expense MIROsobservedinRef.3. k ofhigherorders,(iii)thelowerorderoscillationspersisttoa Insummary,wehavestudiedtheeffectofanin-planemag- muchhigherBk thanthehigherorders, and(iv)the onsetof netic field on Hall field-induced resistance oscillations in a theoscillationsincreaseswithB . Alltheseobservationsim- highmobility2DES.Wehavefoundthatwhiletheoscillation k ply that 1/τq increases with Bk. We believe that a standard frequencyremainsunchanged,the amplitude quicklydecays Dingle plot analysis (which is not feasible on our data ob- as the magnetic field is tilted away from the normal to the tained at fixed θ) would readily revealthe exactdependence 2DES.Thedecayisverysensitivetotheoscillationorderand of1/τqonBk. cannotbe readilyexplainedbyexistingtheoriesof nonlinear Finally, we mention that Ref.3 observed that the onset of transport. Our analysis shows that the decay can be under- the SdHOs increased by ≃ 50% under applied B ≃ 1 T, stoodintermsoftheB -inducedincreaseofasingleparticle k k 4 scatteringrate. However,theexactmechanismofsuchanin- Laboratory, which is supported by NFS Cooperative Agree- creaseremainsasubjectoffuturetheoreticalandexperimental ment No. DMR-0654118, by the State of Florida, and the studies. DOE.TheworkatMinnesotawassupportedbytheNSFGrant We thank I. Dmitriev, A. Kamenev, M. Khodas, I. No. DMR-0548014 and by the DOE Grant de-sc0002567. Kukushkin,andB. I. Shklovskiifordiscussionsand S. Han- A.T.H. acknowledges support by the Thesis Research Grant nas, G.Jones, J. Krzystek,T.Murphy,E.Palm, J.Park, and, andtheDoctoralDissertationFellowshipoftheUniversityof especially,D.Smirnovfortechnicalassistance. A portionof Minnesota. thisworkwasperformedattheNationalHighMagneticField ∗ Correspondingauthor:[email protected] (2008); O. E. Raichev, ibid. 80, 075318 (2009); C. L. Yang et 1 M. A. Zudov, R. R. Du, J. A. Simmons, and J. L. Reno, Phys. al.,PhysicaE12443, (2002); A.A.Bykov, A.K.Kalagin, and Rev.B64,201311(R)(2001);R.G.Manietal.,ibid.69161306 A.K.Bakarov,JETPLett.81,523(2005);A.A.BykovandA.V. (2004); S.I.Dorozhkinetal.,ibid.71,201306(R) (2005); S.A. Goran,ibid.90,578(2009). Studenikinetal.,ibid.71,245313(2005);76,165321(2007);Z. 7 C.L.Yangetal.,Phys.Rev.Lett.89,076801(2002);A.A.Bykov Q.Yuanetal.,ibid.74,075313(2006);K.Stoneetal.,ibid.76, etal.,Phys.Rev.B72,245307 (2005); J.Zhangetal.,ibid.75, 153306(2007);A.Wirthmannetal.,ibid.76,195315(2007);S. 081305 (2007); W.Zhangetal.,ibid.75, 041304(R) (2007); A. Wiedmannetal.,ibid.78,121301(R)(2008);80,035317(2009); AuerbachandG.V.Pai,ibid.76,205318(2007); A.T.Hatkeet O.M.Fedorychetal.,ibid.81,201302(2010);A.T.Hatkeetal., al., ibid.79, 161308(R) (2009); X.L.Lei, Appl.Phys.Lett.90, Phys.Rev.Lett.102,066804(2009);P.D.Yeetal.,Appl.Phys. 132119(2007); PhysicaE4263(2009); A.T.Hatkeetal.,ibid. Lett.79,2193(2001);S.I.Dorozhkin,JETPLett.77,577(2003); 42,1081(2010). ibid.85,576(2007);ibid.86,543(2007);A.A.Bykovetal.,ibid. 8 M.G.Vavilov,I.L.Aleiner,andL.I.Glazman,Phys.Rev.B76, 81, 284(2005); ibid.86, 608(2007); ibid.86, 779(2007); ibid. 115331(2007). 87, 233(2008); ibid.87, 551 (2008); ibid. 89, 575 (2008); I.V. 9 W.Zhang,M.A.Zudov,L.N.Pfeiffer,andK.W.West,PhysicaE Andreevetal.,ibid.88,616(2009);L.-C.Tungetal.,SolidState 40,982(2008);Phys.Rev.Lett.98,106804(2007);100,036805 Commun.149,1531(2009). (2008);M.Khodasetal.,ibid.104,206801(2010);A.T.Hatkeet 2 R.G.Mani,Phys.Rev.B72,075327(2005). al.,ibid.101,246811(2008);Phys.Rev.B77,201304(R)(2008); 3 C.L.Yang,R.R.Du,L.N.Pfeiffer,andK.W.West,Phys.Rev. X.L.Lei,ibid.79, 115308(2009); Appl.Phys.Lett.91112104 B74,045315(2006). (2007); X. L. Lei and S. Y. Liu, ibid. 93, 082101 (2008); I. A. 4 V.I.Ryzhii,Sov.Phys.SolidState11,2078(1970);V.I.Ryzhii, Dmitrievetal.,ibid.82,201311(2010);M.A.Zudovetal.,Int. R. A. Suris, and B. S. Shchamkhalova, Sov. Phys. 20, 1299 J.ofMod.Phys.B23,2684(2009). (1986); A. C. Durst et al., Phys. Rev. Lett. 91, 086803 (2003); 10 M.KhodasandM.G.Vavilov,Phys.Rev.B78,245319(2008). J. Shi and X. C. Xie, ibid. 91, 086801 (2003); I. A. Dmitriev 11 R. G. Mani et al., Nature420, 646 (2002); M. A. Zudov, R. R. et al., ibid. 91, 226802 (2003); ibid. 99, 206805 (2007); X. L. Du, L.N.Pfeifferand K.W.West, Phys. Rev. Lett.90, 046807 LeiandS.Y.Liu,ibid.91, 226805 (2003); A.A.Koulakovand (2003); ibid. 96, 236804 (2006); C. L. Yang et al., ibid. 91, M.E.Raikh, Phys.Rev. B68, 115324 (2003); V.Ryzhii andV. 096803(2003); R.G.Manietal.,ibid.92146801(2004); R.L. Vyurkov, ibid. 68, 165406 (2003); V. Ryzhii, ibid. 68, 193402 Willett,L.N.PfeifferandK.W.West, ibid.93, 026804 (2004); (2003);M.G.VavilovandI.L.Aleiner,ibid.69,035303(2004); J.H.Smetetal.,ibid.95,116804(2005)R.R.Duetal.,Physica I. A. Dmitriev et al., ibid. 70, 165305 (2004); ibid. 71, 115316 E 22, 7 (2004); Int. J. of Mod. Phys. B 18 3465 (2004); M. A. (2005); ibid.75, 245320(2007); C.Joasetal.,ibid.70, 235302 Zudov, Phys.Rev.B69, 041304(R) (2004); M.A.Zudov, R.R. (2004);ibid.72,165323(2005);J.Dieteletal.,ibid.71,045329 Du, L.N.Pfeiffer,andK.W.West,ibid.73, 041303(R) (2006); (2005); M. Torres and A. Kunold, ibid. 71, 115313 (2005); J. A. A.Bykov, A. K.Bakarov, D.R. Islamov, and A.I. Toropov, Alicea et al., ibid. 71, 235322 (2005); X. L. Lei and S. Y. Liu, JETPLett.84,391(2006). ibid.72,075345(2005);J.Dietel,ibid.73,125350(2006);X.L. 12 A.A.Bykovetal.,PhysRev.Lett.99,116801(2007);N.Romero Lei,ibid.73,235322(2006); 79,115308(2009); O.E.Raichev, etal.,Phys.Rev.B78,153311(2008);A.T.Hatkeetal.,ibid.82, ibid. 81, 165319 (2010); V. Ryzhii, A. Chaplik, and R. Suris, 041304(R)(2010). JETPLett.80, 363(2004); I.V.Pechenezhskii, S.I.Dorozhkin, 13 A. V. Andreev, I. L. Aleiner and A. J. Millis, Phys. Rev. Lett. and I. A. Dmitriev, ibid. 85, 86 (2007); V. A. Volkov and E. E. 91, 056803 (2003); A. Auerbach, I. Finkler, B. I. Halperin and Takhtamirov,JETP104602(2007). A. Yacoby, ibid. 94, 196801 (2005); P. W. Anderson and W. 5 I.A.Dmitrievetal.,Phys.Rev.B80,165327(2009). F. Brinkman, arXiv:cond-mat/0302129; I. G. Finkler and B. I. 6 M.A.Zudovetal.,Phys.Rev.Lett.86,3614(2001);A.T.Hatke Halperin,Phys.Rev.B79,085315(2009). etal.,ibid.102,086808(2009);I.V.PonomarevandA.L.Efros, Phys. Rev. B 63, 165305 (2001); X. L. Lei, ibid. 77, 205309

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.