Hallfield-induced resistanceoscillationsintiltedmagneticfields A.T. Hatke,1 M.A. Zudov,1,∗ L.N. Pfeiffer,2 and K.W. West2 1School ofPhysicsandAstronomy, UniversityofMinnesota, Minneapolis, Minnesota 55455, USA 2Princeton University, Department of Electrical Engineering, Princeton, NJ08544, USA (ReceivedNovember10,2010) Wehavestudiedtheeffectofanin-planemagneticfieldonHallfield-inducedresistanceoscillationsinhigh mobilitytwo-dimensionalelectronsystems. Wehavefoundthattheoscillationfrequencydependsonlyonthe 1 perpendicular component ofthemagneticfieldbuttheoscillationamplitudedecaysexponentiallywithanin- 1 planecomponent. Whilethesefindingscannotbeaccountedforbyexistingtheoriesofnonlineartransport,our 0 analysis suggests that the decay can be explained by an in-plane magnetic field-induced modification of the 2 quantumscatteringrate. n PACSnumbers:73.43.Qt,73.63.Hs,73.21.-b,73.40.-c a J 6 High mobility two-dimensionalelectron systems (2DESs) HIROsaredescribedby:8,10 2 exhibit an array of fascinating transport phenomena occur- ] ringinveryhighLandaulevelswheretheShubnikov-deHaas δr ≃ 16τtrλ2cos2πǫdc, (2) l oscillations (SdHOs) are not yet resolved. Among these ρ0 π τπ l a are several classes of magnetoresistance oscillations, such h as microwave-induced resistance oscillations (MIROs),1–5 whereτtristhetransportlifetimeandτπ isthetimedescribing s- phonon induced resistance oscillations (PIROs),6 and Hall electronbackscatteringoffofimpurities.8,10 e field-induced resistance oscillations (HIROs),7,8, as well as Theeffectofanin-planemagneticfield,Bk,onMIROshas m theircombinations.9,10Inaveryclean2DES,MIROsandHI- beenrecentlyinvestigatedintwoindependentexperiments.2,3 . ROscanleadtoexoticzero-resistance11andzero-differential In Ref.2 the magneticfield B was tilted away fromthe nor- t a resistance states,12 respectively, which can be explained in maltothe2DESbyanangleθ andinRef.3B wasapplied k m termsofinstabilitiesandformationofcurrentdomains.13 independentlyofB⊥. Whilebothexperimentsagreedthatthe d- MIROs are observedin linear-responsemagnetoresistivity MareIRsOtrofrnegqluyesnucpypirsegsosevderunneddebryBB⊥,≃Re0f..53fTouwnhditlheaitnMRIRefO.2s n whena2DESisirradiatedbymicrowavesandcanbeunder- k o stoodintermsofmicrowave-inducedtransitionsbetweenthe MIROswereessentiallyunchangeduptoθ ≃80◦ (Bk <∼1.2 T).Thiscontroversyandtheveryfactthatthesuppressionof c Landaulevelswhichleadtooscillatoryphotoresistivity:5 [ MIROsobservedinRef.3wasleftunexplainedindicatesthat theroleofB isnotunderstood.Itisthereforeinterestingand 2 k v δρω ≃−ηπǫacPωλ2sin2πǫac. (1) timelytoexaminehowotherclassesofresistanceoscillations, 1 ρ0 e.g.HIROs,respondtoBk. 7 InthisRapidCommunicationwereportontheeffectofan 8 in-plane magnetic field on Hall field-induced resistance os- 2 Here, ρ0 is the resistivity at B = 0, ǫac = ω/ωc, ω = 2πf cillations in a high mobility 2DES. We employ a tilted-field 1. is the microwavefrequency,ωc = eB⊥/m∗ is the cyclotron setup and observe that, similar to MIROs,2,3 the HIRO fre- frequency,B isthemagneticfieldnormaltothe2DES,m∗is 0 ⊥ quencydependsonlyon the perpendicularcomponentof the 1 theeffectivemass,λ=exp(−π/ωcτq)istheDinglefactor,τq magnetic field, B . We further find that with increasing tilt ⊥ 1 is the quantum lifetime, Pω is the dimensionlessmicrowave angle θ, HIROs are strongly suppressed by modest B ∼ 1 : power, and η is the scattering parameter which depends on k v T. The observed suppression is nonuniform and depends on temperatureandtypeofdisorderinthe2DES.5 i theoscillationorder;thelowerorderoscillationsdecayfaster X HIROs are observed in differential resistivity r ≡ dV/dI thanthehigherorderoscillationswithincreasingθ. Whilethe r a when a direct current I is passed through a 2DES and the suppressionof the HIRO amplitudeby Bk cannotbe readily perpendicular magnetic field, B , is varied. HIROs origi- explainedbyexistingtheories,wediscussourfindingsinthe ⊥ natefromshort-rangeimpurity-mediatedtransitionsbetween context of Eq.(2) and show that the suppression can be un- Landaulevelstilted bytheHallelectricfield, Edc = ρHI/w derstoodin termsof a Bk-inducedreductionof the quantum (ρH is the Hallresistivity, w is the sample width).8,10 Inthis lifetime.However,identifyingtheoriginofsuchmodification scenario,acharacteristicscatteringeventinvolvesanelectron remainsthesubjectoffuturestudies. which is backscattered off of an impurity. The guidingcen- Whilesimilarresultshavebeenobtainedfromavarietyof ter of such an electron is displaced by the cyclotron diame- samples,thedatapresentedherewereobtainedfromaHallbar ter, 2Rc, and when 2Rc matches an integral multiple of the (w = 100µm)cleavedfromaGaAs/Al0.24Ga0.76As300A˚- real-spaceLandaulevelseparation,~ωc/eEdc,theprobability widequantumwellgrownbymolecularbeamepitaxy. After of such events is enhanced. This enhancement gives rise to abrieflowtemperatureilluminationwitharedlightemitting a maximuminthedifferentialresistivityoccurringwhenever diode,thissamplehadelectrondensityne ≃3.6×1011cm−2 ǫdc ≡ eEdc(2Rc)/~ωc isequaltoaninteger. At2πǫdc ≫ 1, and mobility µ ≃ 1.0×107 cm2/Vs. The experiment was 2 isno longera monotonicfunctionofB andthuscannotbe (cid:72) =1 ⊥ z dc describedbyanexponentialdependenceofEq.(2). B 2.5 (cid:84) Since Eq.(2) dictates that the HIRO amplitude A ≡ I = 100 (cid:80)A (16/π)·(τtr/τπ)·exp(−2π/ωcτq), onehasto examinepos- T = 1.0 K y sible effects of B on the variousscattering parameters, i.e., k x onτtr,τπ,andτq. Inour2DESatweakB⊥,ρ ≃ ρ0 ∝ 1/τtr, andone can estimate the effectof B on1/τ by investigat- k tr 2 ing the evolution of the background part of r with increas- 2.0 ing θ. This is done in Fig.2(a) showing r/ρ0 as a function (cid:84) = 0o 4 3 of B⊥ for different θ (as marked) without a vertical offset. Plotted in such a way, the data clearly show thatr oscillates o about a smooth, slowly varying background which does not 0 62.4 (cid:85) change with θ. This conclusion is further supported by the /r existence of common crossing points (cf.↓,↑) which occur o 1.5 75.0 at ǫdc ≃ n ± 1/4(n = 1,2,3,...) and where δρ ≃ 0, as prescribed by Eq.(2). We thus conclude that 1/τ does not tr 79.5o changesignificantlyinour2DESunderBk <∼1T. The backscattering rate 1/τπ appearing in Eq.(2) is es- sentially a scattering rate from the sharp disorder potential, o 81.9 e.g., residual background impurities and/or interface rough- ness. Scattering off of backgroundimpurities can hardly be 1.0 83.3o affected by Bk because of their 3D character. It is also un- likely that B can reduce interfaceroughnessscattering. Fi- k nally,asignificantdecreasein1/τπshouldleadtoanoticeable decreasein1/τ whichisnotobserved.Wethusconcludethat tr -2 -1 0 1 2 thedecayoriginatesfromanincreaseofthequantumscatter- B [kG] ingrate1/τ underappliedB . (cid:65) q k ToexaminetheeffectofB onthequantumscatteringrate k FIG. 1: [Color online] Normalized differential resistivity r/ρ0 vs 1/τq, we first extract the oscillatory part δr/ρ0 by subtract- B⊥ for tilt angles θ ≃ 0◦,62.4◦,75.0◦,79.5◦,81.9◦,83.3◦. The ingtheBk-independentbackgroundfromthedatainFig.2(a). data arevertically offset for clarityin step of 0.2 startingfrom the TheresultispresentedinFig.2(b)asafunctionofǫdcshow- highest θ. HIRO maxima are marked by ǫdc = 1,2,3,4. Inset: ingtheexpectedperiodandphasewiththemaximaoccurring directionofBwithrespecttothe2DES. nearintegerǫdcforallθ. Inaddition,Fig.2(b)allowseasyex- tractionoftheoscillationamplitudeAandshows,again,that the rate at which the oscillations disappearstrongly depends performedin a 3He cryostatatT ≃ 1.0 K andI = 100µA onǫdc,withthehigher-orderHIROspersistingtohigherθ. usingastandardlow-frequencylock-indetectionscheme. Weproceedwiththeanalysisbyadoptinganempiricalre- In Fig.1 we present the normalized differential resistivity lation, 1/τq = 1/τq0 +∆, where 1/τq0 is the scattering rate r/ρ0vsB⊥fordifferentθ,asmarked.Thedataarevertically at Bk = 0 and ∆ is the Bk-induced correction. Then it offsetforclarityinstepof0.2startingfromthehighestθ. At follows that to account for a faster decay at higher B⊥, ∆ thetopcurve(θ =0)thefirstfourHIROmaximaaremarked should increase faster than Bk. Indeed, if ∆ ∝ Bk, then the argument of the Dingle factor would acquire a correc- by ǫdc = 1,2,3,4. Examinationof the data revealsthat, re- gardless of θ, the positions of the same-order maxima and tion −π∆/ωc ∝ −Bk/B⊥ = −tanθ. As a result, oscil- minima roughly coincide with each other. This finding pro- lations of all orders would decay with θ at the same rate, vides firm experimental evidence that, similar to MIROs,2,3 in contradiction with our findings. If, however, ∆ ∝ Bk2, the frequency of HIROs is controlled by B⊥. At the same then −π∆/ωc ∝ −Bk2/B⊥ ∝ −tan2θ/ǫdc. This correc- time,itisevidentthattheoscillationamplitudedecreaseswith tionincreaseswithθ (foragivenǫdc)anddecreaseswithǫdc increasingθ. (foragivenθ),consistentwithourexperimentalobservations. ThetoptraceinFig.1obtainedatB =0showsthattheos- Thisresultimpliesthattheamplitudeshoulddecaywithθ as cillationamplitudegrowsmonotonicakllywithincreasingB A = A0exp(−αtan2θ/ǫdc), where A0 is the amplitude at ⊥ duetotheincreaseoftheDinglefactorλenteringEq.(2).Ex- θ =0andαisaBk-independentconstant. aminationoftheotherdatainFig.1revealsthatHIROsgrad- InFig.3(a)wepresentnormalizedHIROamplitudeA/A0 ually decay with increasing θ and that the decay is nonuni- vs 1/ǫdc on a semi-log scale for three different θ (as form;thestrongest,fundamentalHIROpeak(cf.“ǫdc =1”)is marked). We observe that the data are described by A = muchmoresensitivetoθ thanthehigherorderpeaksappear- A0exp(−β/ǫdc) reasonably well and that β increases with ingatlowerB . Indeed,itvirtuallydisappearsatθ ≃ 81.9◦ θ. In Fig.3(b) we show that β scales roughly linearly with ⊥ (B ≃ 1.1 T) while the higher-order peaks are still clearly tan2θ, the dependence which follows from ∆ ∝ B2. We k k observed. Thisfindingindicatesthatatfiniteθ theamplitude thus conclude that the observed decay of HIROs can be ex- 3 a a 1.6 2 o (cid:84) = 62.4 1 1.4 6 4 1.2 75.0o (cid:84) = 79.5o (cid:85)0 A0 2 /r 1.0 79.5o /A0.1 o (cid:70) (cid:70) 81.9o 6 81.9 0.8 4 (cid:67) o 2 83.3 0.6 0.01 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 B [kG] 1/(cid:72) (cid:65) dc b b 0.4 8 o 0.2 81.9 o 6 79.5 0 o (cid:85) 75.0 /r(cid:71) 62.4o (cid:69) 4 0.0 2 -0.2 0 1 2 3 4 0 20 40 60 80 100 120 (cid:72)dc tan2(cid:84) FIG. 2: [Color online] (a) Normalized differential resistivity r/ρ0 FIG. 3: [Color online] (a) Normalized HIRO amplitude A/A0 vs vs B⊥ for θ = 62.4◦,75.0◦,79.5◦, and 81.9◦. The data are not 1/ǫdc for θ = 79.5◦,81.9◦, and 83.3◦ (cirles) and fits to a · verticallyoffset. (b) Normalized oscillatory part of thedifferential exp(−β/ǫdc) (lines). (b) Extractedvalues ofβ vstan2θ (circles) resistivityδr/ρ0vsǫdcforthesametiltangles. andafit,β≃0.064·tan2θ(line). plainedbyaBk-inducedcorrectiontothequantumscattering which indicates the same increase in the quantum scattering ratewhichscalesroughlyasB2. rate 1/τ′ which enters the SdHO amplitude. Such a modest k q It is interesting to examine the possibility that the B - increaseofquantumscatteringrate,indeed,isnotsufficientto k induced suppression of MIROs observed in Ref.3 can also explaincompletequenchingofMIROs. However,1/τq′ isof- beexplainedwithinthesamepicture.First,wenoticethatthe tenconsiderablylargerthan1/τq enteringEqs.(1),(2),which DinglefactorentersequallyinthedescriptionofbothMIROs is also the case for the 2DESused in Ref.3 since the MIRO [Eq.(1)] and HIROs [Eq.(2)] and that both MIROs and HI- onset is much smaller than the SdHO onset. The overesti- ROsaredestroyedbysimilarBk ∼1T.Second,ifBkisused mated1/τq′ isusuallyattributedtothefactthattheamplitude asaparameter(insteadofθ),thecorrectiontotheargumentof of the SdHOs (∝ λ1) is very sensitive to macroscopic den- theDinglefactorcanbewrittenas−π∆/ωc ∝−ǫac·∆. This sityinhomogeneitieswhich,however,donotsignificantlyaf- correctionscales with ǫac (and notwith 1/ǫac if θ = const) fect the amplitude of “induced” oscillations (∝ λ2). Since and therefore higher order oscillations should be more sen- inhomogeneitiescan hardly be affected by B , a modest in- k sitive to B . Indeed, direct examination of Fig.1 in Ref.3 creasein1/τ′ observedinRef.3likelysignalsamuchlarger k q reveals that (i) the number of oscillations quickly decreases increasein1/τ which,inturn,isresponsibleforthedecayof q with increasing B , (ii) this decrease occurs at the expense MIROsobservedinRef.3. k ofhigherorders,(iii)thelowerorderoscillationspersisttoa Insummary,wehavestudiedtheeffectofanin-planemag- muchhigherBk thanthehigherorders, and(iv)the onsetof netic field on Hall field-induced resistance oscillations in a theoscillationsincreaseswithB . Alltheseobservationsim- highmobility2DES.Wehavefoundthatwhiletheoscillation k ply that 1/τq increases with Bk. We believe that a standard frequencyremainsunchanged,the amplitude quicklydecays Dingle plot analysis (which is not feasible on our data ob- as the magnetic field is tilted away from the normal to the tained at fixed θ) would readily revealthe exactdependence 2DES.Thedecayisverysensitivetotheoscillationorderand of1/τqonBk. cannotbe readilyexplainedbyexistingtheoriesof nonlinear Finally, we mention that Ref.3 observed that the onset of transport. Our analysis shows that the decay can be under- the SdHOs increased by ≃ 50% under applied B ≃ 1 T, stoodintermsoftheB -inducedincreaseofasingleparticle k k 4 scatteringrate. However,theexactmechanismofsuchanin- Laboratory, which is supported by NFS Cooperative Agree- creaseremainsasubjectoffuturetheoreticalandexperimental ment No. DMR-0654118, by the State of Florida, and the studies. DOE.TheworkatMinnesotawassupportedbytheNSFGrant We thank I. Dmitriev, A. Kamenev, M. Khodas, I. No. DMR-0548014 and by the DOE Grant de-sc0002567. Kukushkin,andB. I. Shklovskiifordiscussionsand S. Han- A.T.H. acknowledges support by the Thesis Research Grant nas, G.Jones, J. Krzystek,T.Murphy,E.Palm, J.Park, and, andtheDoctoralDissertationFellowshipoftheUniversityof especially,D.Smirnovfortechnicalassistance. A portionof Minnesota. thisworkwasperformedattheNationalHighMagneticField ∗ Correspondingauthor:[email protected] (2008); O. E. Raichev, ibid. 80, 075318 (2009); C. L. Yang et 1 M. A. Zudov, R. R. Du, J. A. Simmons, and J. L. Reno, Phys. al.,PhysicaE12443, (2002); A.A.Bykov, A.K.Kalagin, and Rev.B64,201311(R)(2001);R.G.Manietal.,ibid.69161306 A.K.Bakarov,JETPLett.81,523(2005);A.A.BykovandA.V. (2004); S.I.Dorozhkinetal.,ibid.71,201306(R) (2005); S.A. Goran,ibid.90,578(2009). Studenikinetal.,ibid.71,245313(2005);76,165321(2007);Z. 7 C.L.Yangetal.,Phys.Rev.Lett.89,076801(2002);A.A.Bykov Q.Yuanetal.,ibid.74,075313(2006);K.Stoneetal.,ibid.76, etal.,Phys.Rev.B72,245307 (2005); J.Zhangetal.,ibid.75, 153306(2007);A.Wirthmannetal.,ibid.76,195315(2007);S. 081305 (2007); W.Zhangetal.,ibid.75, 041304(R) (2007); A. Wiedmannetal.,ibid.78,121301(R)(2008);80,035317(2009); AuerbachandG.V.Pai,ibid.76,205318(2007); A.T.Hatkeet O.M.Fedorychetal.,ibid.81,201302(2010);A.T.Hatkeetal., al., ibid.79, 161308(R) (2009); X.L.Lei, Appl.Phys.Lett.90, Phys.Rev.Lett.102,066804(2009);P.D.Yeetal.,Appl.Phys. 132119(2007); PhysicaE4263(2009); A.T.Hatkeetal.,ibid. Lett.79,2193(2001);S.I.Dorozhkin,JETPLett.77,577(2003); 42,1081(2010). ibid.85,576(2007);ibid.86,543(2007);A.A.Bykovetal.,ibid. 8 M.G.Vavilov,I.L.Aleiner,andL.I.Glazman,Phys.Rev.B76, 81, 284(2005); ibid.86, 608(2007); ibid.86, 779(2007); ibid. 115331(2007). 87, 233(2008); ibid.87, 551 (2008); ibid. 89, 575 (2008); I.V. 9 W.Zhang,M.A.Zudov,L.N.Pfeiffer,andK.W.West,PhysicaE Andreevetal.,ibid.88,616(2009);L.-C.Tungetal.,SolidState 40,982(2008);Phys.Rev.Lett.98,106804(2007);100,036805 Commun.149,1531(2009). (2008);M.Khodasetal.,ibid.104,206801(2010);A.T.Hatkeet 2 R.G.Mani,Phys.Rev.B72,075327(2005). al.,ibid.101,246811(2008);Phys.Rev.B77,201304(R)(2008); 3 C.L.Yang,R.R.Du,L.N.Pfeiffer,andK.W.West,Phys.Rev. X.L.Lei,ibid.79, 115308(2009); Appl.Phys.Lett.91112104 B74,045315(2006). (2007); X. L. Lei and S. Y. Liu, ibid. 93, 082101 (2008); I. A. 4 V.I.Ryzhii,Sov.Phys.SolidState11,2078(1970);V.I.Ryzhii, Dmitrievetal.,ibid.82,201311(2010);M.A.Zudovetal.,Int. R. A. Suris, and B. S. Shchamkhalova, Sov. Phys. 20, 1299 J.ofMod.Phys.B23,2684(2009). (1986); A. C. Durst et al., Phys. Rev. Lett. 91, 086803 (2003); 10 M.KhodasandM.G.Vavilov,Phys.Rev.B78,245319(2008). J. Shi and X. C. Xie, ibid. 91, 086801 (2003); I. A. Dmitriev 11 R. G. Mani et al., Nature420, 646 (2002); M. A. Zudov, R. R. et al., ibid. 91, 226802 (2003); ibid. 99, 206805 (2007); X. L. Du, L.N.Pfeifferand K.W.West, Phys. Rev. Lett.90, 046807 LeiandS.Y.Liu,ibid.91, 226805 (2003); A.A.Koulakovand (2003); ibid. 96, 236804 (2006); C. L. Yang et al., ibid. 91, M.E.Raikh, Phys.Rev. B68, 115324 (2003); V.Ryzhii andV. 096803(2003); R.G.Manietal.,ibid.92146801(2004); R.L. Vyurkov, ibid. 68, 165406 (2003); V. Ryzhii, ibid. 68, 193402 Willett,L.N.PfeifferandK.W.West, ibid.93, 026804 (2004); (2003);M.G.VavilovandI.L.Aleiner,ibid.69,035303(2004); J.H.Smetetal.,ibid.95,116804(2005)R.R.Duetal.,Physica I. A. Dmitriev et al., ibid. 70, 165305 (2004); ibid. 71, 115316 E 22, 7 (2004); Int. J. of Mod. Phys. B 18 3465 (2004); M. A. (2005); ibid.75, 245320(2007); C.Joasetal.,ibid.70, 235302 Zudov, Phys.Rev.B69, 041304(R) (2004); M.A.Zudov, R.R. (2004);ibid.72,165323(2005);J.Dieteletal.,ibid.71,045329 Du, L.N.Pfeiffer,andK.W.West,ibid.73, 041303(R) (2006); (2005); M. Torres and A. Kunold, ibid. 71, 115313 (2005); J. A. A.Bykov, A. K.Bakarov, D.R. Islamov, and A.I. Toropov, Alicea et al., ibid. 71, 235322 (2005); X. L. Lei and S. Y. Liu, JETPLett.84,391(2006). ibid.72,075345(2005);J.Dietel,ibid.73,125350(2006);X.L. 12 A.A.Bykovetal.,PhysRev.Lett.99,116801(2007);N.Romero Lei,ibid.73,235322(2006); 79,115308(2009); O.E.Raichev, etal.,Phys.Rev.B78,153311(2008);A.T.Hatkeetal.,ibid.82, ibid. 81, 165319 (2010); V. Ryzhii, A. Chaplik, and R. Suris, 041304(R)(2010). JETPLett.80, 363(2004); I.V.Pechenezhskii, S.I.Dorozhkin, 13 A. V. Andreev, I. L. Aleiner and A. J. Millis, Phys. Rev. Lett. and I. A. Dmitriev, ibid. 85, 86 (2007); V. A. Volkov and E. E. 91, 056803 (2003); A. Auerbach, I. Finkler, B. I. Halperin and Takhtamirov,JETP104602(2007). A. Yacoby, ibid. 94, 196801 (2005); P. W. Anderson and W. 5 I.A.Dmitrievetal.,Phys.Rev.B80,165327(2009). F. Brinkman, arXiv:cond-mat/0302129; I. G. Finkler and B. I. 6 M.A.Zudovetal.,Phys.Rev.Lett.86,3614(2001);A.T.Hatke Halperin,Phys.Rev.B79,085315(2009). etal.,ibid.102,086808(2009);I.V.PonomarevandA.L.Efros, Phys. Rev. B 63, 165305 (2001); X. L. Lei, ibid. 77, 205309