ebook img

Gravitational Solitons PDF

273 Pages·2001·1.287 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Gravitational Solitons

GravitationalSolitons This book gives a self-contained exposition of the theory of gravitational solitons and provides a comprehensive review of exact soliton solutions to Einstein’sequations. The text begins with a detailed discussion of the extension of the inverse scattering method to the theory of gravitation, starting with pure gravity and thenextendingittothecouplingofgravitywiththeelectromagneticfield. There followsasystematicreviewofthegravitationalsolitonsolutionsbasedontheir symmetries. These solutions include some of the most interesting in gravita- tional physics, such as those describing inhomogeneous cosmological models, cylindrical waves, the collision of exact gravity waves, and the Schwarzschild andKerrblackholes. This work will equip the reader with the basic elements of the theory of gravitational solitons as well as with a systematic collection of nontrivial applicationsindifferentcontextsofgravitationalphysics. Itprovidesavaluable referenceforresearchersandgraduatestudentsinthefieldsofgeneralrelativity, string theory and cosmology, but will also be of interest to mathematical physicistsingeneral. VLADIMIR A. BELINSKI studied at the Landau Institute for Theoretical Physics, where he completed his doctorate and worked until 1990. Currently he is Research Supervisor by special appointment at the National Institute for Nuclear Physics, Rome, specializing in general relativity, cosmology and nonlinear physics. He is best known for two scientific results: firstly the proof that there is an infinite curvature singularity in the general solution of Einsteinequations,andthediscoveryofthechaoticoscillatorystructureofthis singularity,knownastheBKLsingularity(1968–75withI.M.Khalatnikovand E.M.Lifshitz),andsecondlytheformulationoftheinversescatteringmethodin generalrelativityandthediscoveryofgravitationalsolitons(1977–82,withV.E. Zakharov). ENRIC VERDAGUER received his PhD in physics from the Autonomous UniversityofBarcelonain1977,andhasheldaprofessorshipattheUniversity ofBarclelonasince1993. Hespecializesingeneralrelativityandquantumfield theory in curved spacetimes, and pioneered the use of the Belinski–Zakharov inverse scattering method in different gravitational contexts, particularly in cosmology,discoveringnewphysicalpropertiesingravitationalsolitons. Since 1991 his main research interest has been the interaction of quantum fields with gravity. He has studied the consequences of this interaction in the collision of exact gravity waves, in the evolution of cosmic strings and in cosmology. More recently he has worked in the formulation and physical consequences of stochasticsemi-classicalgravity. This page intentionally left blank CAMBRIDGEMONOGRAPHSON MATHEMATICALPHYSICS Generaleditors: P.V.Landshoff,D.R.Nelson,D.W.Sciama,S.Weinberg J.Ambjørn,B.DurhuusandT.Jonsson QuantumGeometry:AStatisticalFieldTheoryApproach A.M.Anile RelativisticFluidsandMagneto-Fluids J.A.deAzca´rragaandJ.M.Izquierdo LieGroups,LieAlgebras,CohomologyandSomeApplications inPhysics† V.BelinskiandE.Verdaguer GravitationalSolitons J.Bernstein KineticTheoryintheEarlyUniverse G.F.BertschandR.A.Broglia OscillationsinFiniteQuantumSystems N.D.BirrellandP.C.W.Davies QuantumFieldsinCurvedSpace† S.Carlip QuantumGravityin2+1Dimensions J.C.Collins Renormalization† M.Creutz Quarks,GluonsandLattices† P.D.D’Eath SupersymmetricQuantumCosmology F.deFeliceandC.J.S.Clarke RelativityonCurvedManifolds† P.G.O.Freund IntroductiontoSupersymmetry† J.Fuchs AffineLieAlgebrasandQuantumGroups† J.FuchsandC.Schweigert Symmetries,LieAlgebrasandRepresentations: AGraduateCoursefor Physicists A.S.Galperin,E.A.Ivanov,V.I.OgievetskyandE.S.Sokatchev HarmonicSuperspace R.GambiniandJ.Pullin Loops,Knots,GaugeTheoriesandQuantumGravity† M.Go¨ckelerandT.Schu¨cker DifferentialGeometry,GaugeTheoriesandGravity† C.Go´mez,M.RuizAltabaandG.Sierra QuantumGroupsinTwo-dimensionalPhysics M.B.Green,J.H.SchwarzandE.Witten SuperstringTheory,volume1:Introduction† M. B. Green, J. H. Schwarz and E. Witten Superstring Theory, volume 2: Loop Amplitudes, AnomaliesandPhenomenology† S.W.HawkingandG.F.R.Ellis TheLarge-ScaleStructureofSpace-Time† F.IachelloandA.Aruna TheInteractingBosonModel F.IachelloandP.vanIsacker TheInteractingBoson–FermionModel C. Itzykson and J.-M. Drouffe Statistical Field Theory, volume 1: From Brownian Motion to RenormalizationandLatticeGaugeTheory† C. Itzykson and J.-M. Drouffe Statistical Field Theory, volume 2: Strong Coupling, Monte Carlo Methods,ConformalFieldTheory,andRandomSystems† J.I.Kapusta Finite-TemperatureFieldTheory† V.E.Korepin, A.G.IzerginandN.M.Boguliubov TheQuantumInverseScatteringMethodand CorrelationFunctions† M.LeBellac ThermalFieldTheory† N.H.March LiquidMetals:ConceptsandTheory I.M.MontvayandG.Mu¨nster QuantumFieldsonaLattice† A.OzoriodeAlmeida HamiltonianSystems:ChaosandQuantization† R.PenroseandW.Rindler SpinorsandSpace-time,volume1:Two-SpinorCalculusandRelativistic Fields† R. Penrose and W. Rindler Spinors and Space-time, volume 2: Spinor and Twistor Methods in Space-TimeGeometry† S.Pokorski GaugeFieldTheories,2ndedition J.Polchinski StringTheory,volume1:AnIntroductiontotheBosonicString J.Polchinski StringTheory,volume2:SuperstringTheoryandBeyond V.N.Popov FunctionalIntegralsandCollectiveExcitations† R.G.Roberts TheStructureoftheProton† J.M.Stewart AdvancedGeneralRelativity† A.VilenkinandE.P.S.Shellard CosmicStringsandOtherTopologicalDefects† R.S.WardandR.O.WellsJr TwistorGeometryandFieldTheories† †Issuedasapaperback Gravitational Solitons V.Belinski NationalInstituteforNuclearPhysics(INFN),Rome E.Verdaguer UniversityofBarcelona           The Pitt Building, Trumpington Street, Cambridge, United Kingdom    The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org ©V. Belinski and E. Verdaguer 2004 First published in printed format 2001 ISBN 0-511-04170-5 eBook (netLibrary) ISBN 0-521-80586-4 hardback Contents Preface page x 1 Inversescatteringtechniqueingravity 1 1.1 OutlineoftheISM 1 1.1.1 Themethod 2 1.1.2 Generalizationandexamples 5 1.2 Theintegrableansatzingeneralrelativity 10 1.3 Theintegrationscheme 14 1.4 Constructionofthe n-solitonsolution 17 1.4.1 Thephysicalmetriccomponentsg 23 ab 1.4.2 Thephysicalmetriccomponent f 26 1.5 Multidimensionalspacetime 28 2 Generalpropertiesofgravitationalsolitons 37 2.1 Thesimpleanddoublesolitons 37 2.1.1 Polefusion 43 2.2 Diagonalbackgroundmetrics 45 2.3 Topologicalproperties 48 2.3.1 Gravisolitonsandantigravisolitons 53 2.3.2 Thegravibreathersolution 57 3 Einstein–Maxwellfields 60 3.1 TheEinstein–Maxwellfieldequations 60 3.2 ThespectralproblemforEinstein–Maxwellfields 65 3.3 Thecomponentsg andthepotentials A 69 ab a 3.3.1 The n-solitonsolutionofthespectralproblem 69 3.3.2 Thematrix X 74 3.3.3 Verificationoftheconstraints 76 3.3.4 Summaryofprescriptions 80 vii viii Contents 3.4 Themetriccomponent f 82 3.5 Einstein–Maxwellbreathers 84 4 Cosmology: diagonalmetricsfromKasner 92 4.1 Anisotropicandinhomogeneouscosmologies 93 4.2 Kasnerbackground 95 4.3 Geometricalcharacterizationofdiagonalmetrics 96 4.3.1 RiemanntensorandPetrovclassification 97 4.3.2 Opticalscalars 99 4.3.3 Superenergytensor 100 4.4 Solitonsolutionsincanonicalcoordinates 101 4.4.1 Generalizedsolitonsolutions 103 4.5 Solutionswithrealpoles 106 4.5.1 GenerationofBianchimodelsfromKasner 109 4.5.2 Pulsewaves 110 4.5.3 Cosolitons 114 4.6 Solutionswithcomplexpoles 115 4.6.1 Compositeuniverses 118 4.6.2 Cosolitons 121 4.6.3 Solitoncollision 123 5 Cosmology: nondiagonalmetricsandperturbedFLRW 133 5.1 Nondiagonalmetrics 133 5.1.1 Solutionswithrealpoles 134 5.1.2 Solutionswithcomplexpoles 135 5.2 BianchiIIbackgrounds 140 5.3 Collisionofpulsewavesandsolitonwaves 142 5.4 SolitonsonFLRWbackgrounds 148 5.4.1 SolitonsonvacuumFLRWbackgrounds 149 5.4.2 SolitonswithastiffperfectfluidonFLRW 151 5.4.3 TheKaluza–Kleinansatzandtheorieswithscalarfields 158 5.4.4 Solitonsonradiative,andother,FLRWbackgrounds 161 6 Cylindricalsymmetry 169 6.1 Cylindricallysymmetricspacetimes 169 6.2 Einstein–Rosensolitonmetrics 172 6.2.1 Solutionswithonepole 174 6.2.2 Cosolitonswithonepole 174 6.2.3 Solitonswithtwooppositepoles 175 6.2.4 Cosolitonswithtwooppositepoles 177 6.3 TwopolarizationwavesandFaradayrotation 178 6.3.1 Onerealpole 180 6.3.2 Twocomplexpoles 181 Contents ix 6.3.3 Twodoublecomplexpoles 182 7 Planewavesandcollidingplanewaves 183 7.1 Overview 183 7.2 Planewaves 185 7.2.1 Theplane-wavespacetime 185 7.2.2 Focusingofgeodesics 187 7.2.3 Plane-wavesolitonsolutions 192 7.3 Collidingplanewaves 194 7.3.1 Thematchingconditions 194 7.3.2 Collinearpolarizationwaves: generalizedsolitonsolutions 197 7.3.3 Geometryofthecollidingwavesspacetime 202 7.3.4 Noncollinearpolarizationwaves: nondiagonalmetrics 208 8 Axialsymmetry 213 8.1 Theintegrationscheme 214 8.2 General n-solitonsolution 216 8.3 TheKerrandSchwarzschildmetrics 220 8.4 Asymptoticflatnessofthesolution 224 8.5 GeneralizedsolitonsolutionsoftheWeylclass 227 8.5.1 Generalizedone-solitonsolutions 230 8.5.2 Generalizedtwo-solitonsolutions 234 8.6 Tomimatsu–Satosolution 238 Bibliography 241 Index 253

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.