ebook img

Geometric evolution equations PDF

72 Pages·2000·2.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric evolution equations

GEOMETRICEVOLUTIONEQUATIONS By STAGEYE.GHASTAIN ADISSERTATIONPRESENTEDTOTHEGRADUATESGHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOGTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2000 ForMomandDad ACKNOWLEDGMENTS Firstandforemost,Iwouldliketothankmyadvisor,YunmeiChen,forintro- ducingmetothissubjectandforherconstantguidanceandsupport. Herenthusiasm forteachingandstudyingmathematicsaswellashervastknowledgeofPDEshas beenaninspirationforme. Iwouldalsoliketothankmycommitteememberspast andpresent,BernardMair,GerardEmch,MuraliRao,GangBao,PeterHirschfeld, and JimDuftyfortheirinput andadvice. Specialthanks to the Department of Mathematicsofficestafffortheirassistancethroughoutmyentiregraduatecareer. Finally,mywarmestappreciationgoestoallmyfamilyandfriendswithout whosesupportandencouragementthisworkwouldneverhavebeencompleted. Missy andJason,thankyouforalwaysbeingtherenomatterhowfarawayyouwere. Scott, thankyouforyourconstantencouragement. iii TABLEOFCONTENTS ACKNOWLEDGMENTS iii ABSTRACT vi CHAPTERS 1 INTRODUCTION 1 1.1 NonlinearEvolutionEquations 1 1.2 Problem1: TheFlowofH-Systems 1 1.3 Problem2: PDE-BasedImageProcessing 2 2 PRELIMINARIES 3 2.1 Motivation 3 2.2 SobolovSpaces 3 2.3 HolderSpaces 5 2.4 GlobalApproximationsbySmoothFunctions 6 2.5 EmbeddingTheorems 7 3 THEFLOWOFANH-SYSTEM 9 3.1 Plateau'sProblemandH-Systems 9 3.2 FlowofanH-System 10 3.3 Notation 12 3.4 LocalExistence 13 3.5 SomeA-prioriEstimates 15 3.5.1 V{M^)Estimates 15 3.5.2 Regularity 22 3.5.3 Uniqueness 29 3.6 ExistenceupuntilTimeofEnergyConcentration 30 3.7 GlobalExistence 35 3.8 BehaviorofSingularities 37 4 MODIFIEDMEANCURVATUREFLOWEQUATION 43 4.1 EvolutionofLevelSetsbyMeanCurvature 43 4.2 ApplicationstoImageProcessing 45 4.3 AnisotropicDiffusion 46 4.4 ExistenceandUniquenessoftheWeakSolution 48 4.5 HausdorffMeasure 49 4.6 Monotonicity 50 4.7 ConsequencesoftheMonotonicityFormula 54 4.8 ExtinctionTimes 56 iv V 5 FURTHERQUESTIONS 59 5.1 H-systemsandRelatedTopics 59 5.2 PDE-BasedImageProcessing 59 REFERENCES 62 BIOGRAPHICALSKETCH 64 AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy GEOMETRICEVOLUTIONEQUATIONS By StaceyElizabethChastain May2000 Chairman:YunmeiChen MajorDepartment: Mathematics Thisworkencompassestwogeometricevolutionequationswithapplications toimageprocessing. FirstweshowtheexistenceofauniquesolutiontotheflowofanH-system withDirichletboundaryconditionwhichisregularupuntilthefirsttimeofenergy concentration. Ifweassumethesolutionsatisfiesacertainenergyinequality,then thesolutionexistsforalltimeandissmoothexceptatfinitelymanysingularities. Thebehaviorofthesolutionsatthesesingularitiesisalsodiscussed. Undercertainconformalityconditions,the"H"inthesteadystateversionof thesesystemsisinfactthemeancurvatureofthesolution. Thisequationarosefrom thestudyofminimalsurfaceswithprescribedmeancurvature,whichinturncame fromPlateau'sclassic"soapbubble"problem. Thesteadystatesystemwasstudied indetailbyHildebrandt,Wendt,BrezisandCoron,etal. Itwasthenobservedthat theseH-surfaces(thesolutionsoftheH-systems)couldbestudiedinmoregenerality iftheywereviewedasasymptoticsolutionstotheflowofanH-system. Moreover, vi Vll duetotheirstructuretheycouldbeanalyzedusingsimilartechniquesasthoseused tostudyharmonicmaps. Thisistheapproachthatwetakeinouranalysis. Nextwestudyamodifiedversionofthemeancurvatureflowequationwhich can be used as amodelforimage restoration. This equation is interestingsince thelevelsetsofthesolutioncanbeusedtoextractdetailsfromanimage, while themeancurvatureprovidesforanisotropicdiffusionwhichaidsinnoiseremoval. Wehaveintroducedacontrolfactorthatslowstheevolutionofthelevelsetsnear significantfeaturesintheimage. Wediscusspreciselyhowthemodelcreatesthis behavior,investigatesomeofitsgeometricproperties,andcomputeaboundforthe extinctiontimeofthelevelsetsofitssolution. CHAPTER1 INTRODUCTION 1.1 NonlinearEvolutionEquations Inthiswork,westudytwodifferentnonlinearevolutionequations. Theequa- tionsIhavestudiedherearenotonlynonlinear,butalsoadmitadditionaldifficulties suchaslackofboundedness,lackofenergyinequality,anddegeneracy. Whilethese characteristicsmakethemmoreappropriatetomodernapplications,theyalsopresent addeddifficultiesintotheanalysisoftheequations. ThefirstequationIstudiedistheflowofanH-system. Themainobstacles instudyingthissystemaretheunboundednessofit'ssolutionsandlackofanenergy inequality. This prevents us from using any standard techniques to analyze the equation. Insteadwemustrelyonverydelicateestimateswhichrequireextremecare inderiving. ForthesecondpartofthisexpositionIstudiedapartialdiflFerentialequation (PDE)basedmodelforimageprocessing,namelythemeancurvatureflowequation. Thismodelisusedtoremovenoisefromanimagewhilepreservingitssignificant features. Inaddition,thelevelsetsofthesolutionscanbeusedtoextractfeatures fromanimage. Themodelisextremelyefficient; however, itisalsononlinearand degenerate,creatingfurthercomplicationsinitsanalysisandimplementation. 1.2 Problem1: TheFlowofH-Svstems Oneoftheclassicstudiesinpartialdiff'erentialequationsisthatofharmonic maps. In 1985, Struwe proved the existence ofharmonic maps intoan arbitrary 1 2 manifold[20].Thetechniquesusedin[20]havesincebeenusedtostudyothergeneral secondorderevolutionequationswithvariationalstructure. Twosuchequationsare theLandau-LifshitzequationandtheflowofanH-System. Inthefollowingwork,weanalyzedtheflowoftheH-System. Thisflowactually hasrichgeometricinterpretation. IfthesolutiontothesteadystateH-systemsatisfies certainconformalconditions,then"!!(«)" representsthemeancurvatureofu. We provetheexistenceofauniquesolutionwhichisregularupuntilthefirsttimeof energyconcentrationaswellasproveglobalexistenceandanddiscussthebehavior ofthesingularities. 1.3 Problem2: PDE-BasedImageProcessing Computervisionisanotherfascinatingsubjectforwhichpartialdiflferential equationsserveasextremelyeflFectivemodels. Thesemodelsworkinasystematicway, performingallnecessarytaskssimultaneously. Theyremovenoisewhileretainingand evenenhancingsignificantfeatures. Themodelwestudyherearisesfromevolving levelsetsofanimagebytheirmeancurvature. This modelis based on the work ofOsherand Sethian in [18]. The level setsofthesolutiontothisequationcanbeusedtoidentifyimportantfeaturesin animage. Embeddingthecurvesaslevelsetsofasurfaceallowsforchangesinthe topologyofthecurveswithoutdisruptingtheevolution. In [9], EvansandSpruck provedvariousgeometricpropertiesaswellastheextinctiontimeoflevelsetstothe meancurvatureflowequation. Weintroduceacontrolfactorintothisequationto inhibittheevolutionofthelevelsetsneartheboundariesofsigniflcantfeaturesin animage. Theexistenceofaviscositysolutiontothismodifiedequationhasbeen shownin [4]. Westudyhowthiscontrolfactoraffectsthegeometricpropertiesas wellastheextinctiontimeofthelevelsetsofoursolutions. CHAPTER2 PRELIMINARIES 2.1 Motivation Theequationswestudyherearetoocomplextoarriveatexplicitsolutions. Instead, wemustbesatisfiedinstudyingtheexistence,uniqueness, regularityand variousothersignificantpropertiesoftheirsolutions. Thenaturalspacestolook forand studythese solutionsin are Sobolovand Holderspaces. Forthe easeof thereader,thedefinitionsandpropertiesofthesespacesthatwillbeneededinthe followingchapterareincludedhere. Thisinformationcanbefoundin[11]and[17]. 2.2 SobolovSpaces Throughoutthischapter,1^cM". Forconvenience,wewillusethenotation Jl',=nx[s,t] and =fi*. Asusual,C^{^)willdenotethesetofinfinitelydifferentiablefunctionswithcompact supportonfl. Definition2.2.1 [WeakDerivative] Ifu,veLl^{Q) anda= (ai,...,a„) where theai's, i= l,...,n, arenon-negativeintegers, thenwesaythatv isthea^^-weak derivativeofu,writtenv=D'^uif 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.