ebook img

Geometric analysis of hyperbolic differential equations : an introduction PDF

130 Pages·2010·1.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric analysis of hyperbolic differential equations : an introduction

This page intentionally left blank LONDONMATHEMATICALSOCIETYLECTURENOTESERIES ManagingEditor:ProfessorM.Reid,MathematicsInstitute, UniversityofWarwick,CoventryCV47AL,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,orfromCambridgeUniversityPressatwww.cambridge.org/mathematics 234 Introductiontosubfactors, V.JONES&V.S.SUNDER 235 Numbertheory:Se´minairedethe´oriedesnombresdeParis1993–94, S.DAVID(ed) 236 TheJamesforest, H.FETTER&B.GAMBOADEBUEN 237 Sievemethods,exponentialsums,andtheirapplicationsinnumbertheory, G.R.H.GREAVESetal(eds) 238 Representationtheoryandalgebraicgeometry, A.MARTSINKOVSKY&G.TODOROV(eds) 240 Stablegroups, F.O.WAGNER 241 Surveysincombinatorics,1997, R.A.BAILEY(ed) 242 GeometricGaloisactionsI, L.SCHNEPS&P.LOCHAK(eds) 243 GeometricGaloisactionsII, L.SCHNEPS&P.LOCHAK(eds) 244 Modeltheoryofgroupsandautomorphismgroups, D.M.EVANS(ed) 245 Geometry,combinatorialdesignsandrelatedstructures, J.W.P.HIRSCHFELDetal(eds) 246 p-Automorphismsoffinitep-groups, E.I.KHUKHRO 247 Analyticnumbertheory, Y.MOTOHASHI(ed) 248 TametopologyandO-minimalstructures, L.VANDENDRIES 249 Theatlasoffinitegroups-Tenyearson, R.T.CURTIS&R.A.WILSON(eds) 250 Charactersandblocksoffinitegroups, G.NAVARRO 251 Gro¨bnerbasesandapplications, B.BUCHBERGER&F.WINKLER(eds) 252 Geometryandcohomologyingrouptheory, P.H.KROPHOLLER,G.A.NIBLO&R.STO¨HR(eds) 253 Theq-Schuralgebra, S.DONKIN 254 Galoisrepresentationsinarithmeticalgebraicgeometry, A.J.SCHOLL&R.L.TAYLOR(eds) 255 Symmetriesandintegrabilityofdifferenceequations, P.A.CLARKSON&F.W.NIJHOFF(eds) 256 AspectsofGaloistheory, H.VO¨LKLEIN,J.G.THOMPSON,D.HARBATER&P.MU¨LLER(eds) 257 Anintroductiontononcommutativedifferentialgeometryanditsphysicalapplications(2ndedition), J.MADORE 258 Setsandproofs, S.B.COOPER&J.K.TRUSS(eds) 259 Modelsandcomputability, S.B.COOPER&J.TRUSS(eds) 260 GroupsStAndrews1997inBathI, C.M.CAMPBELLetal(eds) 261 GroupsStAndrews1997inBathII, C.M.CAMPBELLetal(eds) 262 Analysisandlogic, C.W.HENSON,J.IOVINO,A.S.KECHRIS&E.ODELL 263 Singularitytheory, W.BRUCE&D.MOND(eds) 264 Newtrendsinalgebraicgeometry, K.HULEK,F.CATANESE,C.PETERS&M.REID(eds) 265 Ellipticcurvesincryptography, I.BLAKE,G.SEROUSSI&N.SMART 267 Surveysincombinatorics,1999, J.D.LAMB&D.A.PREECE(eds) 268 Spectralasymptoticsinthesemi-classicallimit, M.DIMASSI&J.SJO¨STRAND 269 Ergodictheoryandtopologicaldynamicsofgroupactionsonhomogeneousspaces, M.B.BEKKA&M.MAYER 271 Singularperturbationsofdifferentialoperators, S.ALBEVERIO&P.KURASOV 272 Charactertheoryfortheoddordertheorem, T.PETERFALVI.TranslatedbyR.SANDLING 273 Spectraltheoryandgeometry, E.B.DAVIES&Y.SAFAROV(eds) 274 TheMandelbrotset,themeandvariations, T.LEI(ed) 275 Descriptivesettheoryanddynamicalsystems, M.FOREMAN,A.S.KECHRIS,A.LOUVEAU&B.WEISS(eds) 276 Singularitiesofplanecurves, E.CASAS-ALVERO 277 Computationalandgeometricaspectsofmodernalgebra, M.ATKINSONetal(eds) 278 Globalattractorsinabstractparabolicproblems, J.W.CHOLEWA&T.DLOTKO 279 Topicsinsymbolicdynamicsandapplications, F.BLANCHARD,A.MAASS&A.NOGUEIRA(eds) 280 CharactersandautomorphismgroupsofcompactRiemannsurfaces, T.BREUER 281 Explicitbirationalgeometryof3-folds, A.CORTI&M.REID(eds) 282 Auslander–Buchweitzapproximationsofequivariantmodules, M.HASHIMOTO 283 Nonlinearelasticity, Y.B.FU&R.W.OGDEN(eds) 284 Foundationsofcomputationalmathematics, R.DEVORE,A.ISERLES&E.SU¨LI(eds) 285 Rationalpointsoncurvesoverfinitefields, H.NIEDERREITER&C.XING 286 Cliffordalgebrasandspinors(2ndEdition), P.LOUNESTO 287 TopicsonRiemannsurfacesandFuchsiangroups, E.BUJALANCE,A.F.COSTA&E.MART´INEZ(eds) 288 Surveysincombinatorics,2001, J.W.P.HIRSCHFELD(ed) 289 AspectsofSobolev-typeinequalities, L.SALOFF-COSTE 290 QuantumgroupsandLietheory, A.PRESSLEY(ed) 291 Titsbuildingsandthemodeltheoryofgroups, K.TENT(ed) 292 Aquantumgroupsprimer, S.MAJID 293 SecondorderpartialdifferentialequationsinHilbertspaces, G.DAPRATO&J.ZABCZYK 294 Introductiontooperatorspacetheory, G.PISIER 295 Geometryandintegrability, L.MASON&Y.NUTKU(eds) 296 Lecturesoninvarianttheory, I.DOLGACHEV 297 Thehomotopycategoryofsimplyconnected4-manifolds, H.-J.BAUES 298 Higheroperads,highercategories, T.LEINSTER(ed) 299 Kleiniangroupsandhyperbolic3-manifolds, Y.KOMORI,V.MARKOVIC&C.SERIES(eds) 300 IntroductiontoMo¨biusdifferentialgeometry, U.HERTRICH-JEROMIN 301 StablemodulesandtheD(2)-problem, F.E.A.JOHNSON 302 DiscreteandcontinuousnonlinearSchro¨dingersystems, M.J.ABLOWITZ,B.PRINARI&A.D.TRUBATCH 303 Numbertheoryandalgebraicgeometry, M.REID&A.SKOROBOGATOV(eds) 304 GroupsStAndrews2001inOxfordI, C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 305 GroupsStAndrews2001inOxfordII, C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 306 Geometricmechanicsandsymmetry, J.MONTALDI&T.RATIU(eds) 307 Surveysincombinatorics2003, C.D.WENSLEY(ed.) 308 Topology,geometryandquantumfieldtheory, U.L.TILLMANN(ed) 309 Coringsandcomodules, T.BRZEZINSKI&R.WISBAUER 310 Topicsindynamicsandergodictheory, S.BEZUGLYI&S.KOLYADA(eds) 311 Groups:topological,combinatorialandarithmeticaspects, T.W.MU¨LLER(ed) 312 Foundationsofcomputationalmathematics,Minneapolis2002, F.CUCKERetal(eds) 313 Transcendentalaspectsofalgebraiccycles, S.MU¨LLER-STACH&C.PETERS(eds) 314 Spectralgeneralizationsoflinegraphs, D.CVETKOVIC,P.ROWLINSON&S.SIMIC 315 Structuredringspectra, A.BAKER&B.RICHTER(eds) 316 Linearlogicincomputerscience, T.EHRHARD,P.RUET,J.-Y.GIRARD&P.SCOTT(eds) 317 Advancesinellipticcurvecryptography, I.F.BLAKE,G.SEROUSSI&N.P.SMART(eds) 318 Perturbationoftheboundaryinboundary-valueproblemsofpartialdifferentialequations, D.HENRY 319 DoubleaffineHeckealgebras, I.CHEREDNIK 320 L-functionsandGaloisrepresentations, D.BURNS,K.BUZZARD&J.NEKOVA´R(eds) 321 Surveysinmodernmathematics, V.PRASOLOV&Y.ILYASHENKO(eds) 322 Recentperspectivesinrandommatrixtheoryandnumbertheory, F.MEZZADRI&N.C.SNAITH(eds) 323 Poissongeometry,deformationquantisationandgrouprepresentations, S.GUTTetal(eds) 324 Singularitiesandcomputeralgebra, C.LOSSEN&G.PFISTER(eds) 325 LecturesontheRicciflow, P.TOPPING 326 ModularrepresentationsoffinitegroupsofLietype, J.E.HUMPHREYS 327 Surveysincombinatorics2005, B.S.WEBB(ed) 328 Fundamentalsofhyperbolicmanifolds, R.CANARY,D.EPSTEIN&A.MARDEN(eds) 329 SpacesofKleiniangroups, Y.MINSKY,M.SAKUMA&C.SERIES(eds) 330 Noncommutativelocalizationinalgebraandtopology, A.RANICKI(ed) 331 Foundationsofcomputationalmathematics,Santander2005, L.MPARDO,A.PINKUS,E.SU¨LI& M.J.TODD(eds) 332 Handbookoftiltingtheory, L.ANGELERIHU¨GEL,D.HAPPEL&H.KRAUSE(eds) 333 Syntheticdifferentialgeometry(2ndEdition), A.KOCK 334 TheNavier–Stokesequations, N.RILEY&P.DRAZIN 335 Lecturesonthecombinatoricsoffreeprobability, A.NICA&R.SPEICHER 336 Integralclosureofideals,rings,andmodules, I.SWANSON&C.HUNEKE 337 MethodsinBanachspacetheory, J.M.F.CASTILLO&W.B.JOHNSON(eds) 338 Surveysingeometryandnumbertheory, N.YOUNG(ed) 339 GroupsStAndrews2005I, C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 340 GroupsStAndrews2005II, C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 341 Ranksofellipticcurvesandrandommatrixtheory, J.B.CONREY,D.W.FARMER,F.MEZZADRI&N.C. SNAITH(eds) 342 Ellipticcohomology, H.R.MILLER&D.C.RAVENEL(eds) 343 AlgebraiccyclesandmotivesI, J.NAGEL&C.PETERS(eds) 344 AlgebraiccyclesandmotivesII, J.NAGEL&C.PETERS(eds) 345 Algebraicandanalyticgeometry, A.NEEMAN 346 Surveysincombinatorics2007, A.HILTON&J.TALBOT(eds) 347 Surveysincontemporarymathematics, N.YOUNG&Y.CHOI(eds) 348 Transcendentaldynamicsandcomplexanalysis, P.J.RIPPON&G.M.STALLARD(eds) 349 ModeltheorywithapplicationstoalgebraandanalysisI, Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY&A. WILKIE(eds) 350 ModeltheorywithapplicationstoalgebraandanalysisII, Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY& A.WILKIE(eds) 351 FinitevonNeumannalgebrasandmasas, A.M.SINCLAIR&R.R.SMITH 352 Numbertheoryandpolynomials, J.MCKEE&C.SMYTH(eds) 353 Trendsinstochasticanalysis, J.BLATH,P.MO¨RTERS&M.SCHEUTZOW(eds) 354 Groupsandanalysis, K.TENT(ed) 355 Non-equilibriumstatisticalmechanicsandturbulence, J.CARDY,G.FALKOVICH&K.GAWEDZKI 356 EllipticcurvesandbigGaloisrepresentations, D.DELBOURGO 357 Algebraictheoryofdifferentialequations, M.A.H.MACCALLUM&A.V.MIKHAILOV(eds) 358 Geometricandcohomologicalmethodsingrouptheory, M.R.BRIDSON,P.H.KROPHOLLER&I.J.LEARY(eds) 359 Modulispacesandvectorbundles, L.BRAMBILA-PAZ,S.B.BRADLOW,O.GARC´IA-PRADA& S.RAMANAN(eds) 360 Zariskigeometries, B.ZILBER 361 Words:Notesonverbalwidthingroups, D.SEGAL 362 Differentialtensoralgebrasandtheirmodulecategories, R.BAUTISTA,L.SALMERO´N&R.ZUAZUA 363 Foundationsofcomputationalmathematics,HongKong2008, F.CUCKER,A.PINKUS&M.J.TODD(eds) 364 Partialdifferentialequationsandfluidmechanics, J.C.ROBINSON&J.L.RODRIGO(eds) 365 Surveysincombinatorics2009,S.HUCZYNSKA, J.D.MITCHELL&C.M.RONEY-DOUGAL(eds) 366 Highlyoscillatoryproblems, B.ENGQUIST,A.FOKAS,E.HAIRER&A.ISERLES(eds) 367 Randommatrices:Highdimensionalphenomena, G.BLOWER 368 GeometryofRiemannsurfaces, F.P.GARDINER,G.GONZA´LEZ-DIEZ&C.KOUROUNIOTIS(eds) 369 Epidemicsandrumoursincomplexnetworks, M.DRAIEF&L.MASSOULIE´ 370 Theoryofp-adicdistributions, S.ALBEVERIO,A.YU.KHRENNIKOV&V.M.SHELKOVICH 371 Conformalfractals, F.PRZYTYCKI&M.URBAN´SKI 372 Moonshine:Thefirstquartercenturyandbeyond, J.LEPOWSKY,J.MCKAY&M.P.TUITE(eds) 373 Smoothness,regularity,andcompleteintersection, J.MAJADAS&A.RODICIO LondonMathematicalSocietyLectureNoteSeries:374 Geometric Analysis of Hyperbolic Differential Equations: An Introduction S. ALINHAC Universite´ Paris-Sud,Orsay cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, Sa˜oPaulo,Delhi,Dubai,Tokyo CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521128223 (cid:1)C S.Alinhac2010 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2010 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Alinhac,S.(Serge) Geometricanalysisofhyperbolicdifferentialequations:anintroduction/S.Alinhac. p. cm.–(LondonMathematicalSocietylecturenoteseries;374) Includesbibliographicalreferencesandindex. ISBN978-0-521-12822-3(pbk.) 1.Nonlinearwaveequations. 2.Differentialequations,Hyperbolic. 3.Quantumtheory. 4.Geometry,Differential. I.Title. II.Series. QA927.A3886 2010 515(cid:2).3535–dc22 2010001099 ISBN978-0-521-12822-3Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface pagevii 1 Introduction 1 2 Metricsandframes 8 2.1 Metrics,duality 8 2.2 Opticalfunctions 12 2.3 Nullframes 12 3 Computingwithframes 17 3.1 Metricconnexion 17 3.2 Submanifolds 20 3.3 Hessianandd’Alembertian 21 3.4 Framecoefficients 24 4 Energyinequalitiesandframes 29 4.1 Theenergy–momentumtensor 29 4.2 Deformationtensor 31 4.3 Energyinequalityformalism 33 4.4 Energy 34 4.5 Interiortermsandpositivefields 35 4.6 Maxwellequations 41 4.6.1 Duality 41 4.6.2 Energyformalism 43 5 Thegoodcomponents 45 5.1 Theproblem 45 5.2 Animportantremark 46 5.3 Ghostweightsandimprovedstandardenergyinequalities 47 5.4 Conformalinequalities 53 v vi Contents 6 Pointwiseestimatesandcommutations 57 6.1 Pointwisedecayandconformalinequalities 58 6.2 Commutingfieldsinthescalarcase 59 6.3 ModifiedLorentzfields 61 6.4 CommutingfieldsforMaxwellequations 63 7 Framesandcurvature 65 7.1 Thecurvaturetensor 65 7.2 Opticalfunctionsandcurvature 67 7.3 Transportequations 69 7.4 Ellipticsystems 71 7.5 Mixedtransport–ellipticsystems 75 8 Nonlinearequations,aprioriestimatesandinduction 77 8.1 AsimpleODEexample 77 8.2 Localexistencetheory 80 8.3 Blowupcriteria 81 8.4 InductionontimeforPDEs 84 9 Applicationstosomequasilinearhyperbolicproblems 88 9.1 Quasilinearwaveequationssatisfyingthenullcondition 89 9.2 Quasilinearwaveequations 96 9.3 Lowregularitywell-posednessforquasilinearwaveequations 99 9.4 StabilityofMinkowskispacetime(firstversion) 102 9.5 L2conjectureonthecurvature 106 9.6 StabilityofMinkowskispacetime(secondversion) 108 9.7 Theformationofblackholes 113 References 114 Index 117 Preface Thefieldofnonlinearhyperbolicequationsorsystemshasseenatremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Ho¨rmander, S. Klainerman, A. Majda and many others have been devoted mainly to the questionsofblowup,lifespan,shocks,globalexistence,etc.Someoverviewof theclassicalresultscanbefoundinthebooksofMajda[42]andHo¨rmander [24].Ontheotherhand,ChristodoulouandKlainerman[18]provedinaround 1990thestabilityofMinkowskispace,astrikingmathematicalresultaboutthe CauchyproblemfortheEinsteinequations.Afterthat,manyworkshavedealt withdiagonalsystemsofquasilinearwaveequations,sincethisiswhatEinstein equations reduce to when written in the so-called harmonic coordinates. The mainfeatureofthisparticularcaseisthatthe(scalar)principalpartofthesystem isawaveoperatorassociatedtoauniqueLorentzianmetricontheunderlying space-time.Thisisinstrongcontrastwiththemorecomplicatedcaseofgeneral symmetric quasilinear systems: the compressible isentropic Euler equations, forinstance,canbeviewedasaquasilinearwaveequationcoupledtoavector field;thesystemofnonlinearelasticityinvolvestwodifferentwaveequations, etc. Iconsiderhereonlythecaseofquasilinearwaveequations.Weobservetwo maindomainsofinterest:thestudyofglobalsmoothsolutions,andthestudyof lowregularity solutions,bothdomainsbeingconnected.Thestrikingfeatureis theunityofthetechniquesandideasusedintheworksonthesedomains:The emphasisisalwaysongooddirectionsandgoodcomponents,thesecomponents beingcomponentsoftensorsrelativetosomespecialframes,thenullframes. Hence the observed unity comes from the fact that most concepts, such as vii viii Preface metrics,connexions,curvature,etc.,areborrowedfromLorentziangeometry. Thisis,ofcourse,relatedtomathematicalworkbyPenroseandcollaboratorsin thedomainofgeneralrelativity,wherenullframeshavebeenusedextensively (see,forinstance,PenroseandRindler[43]). SincetheworkofChristodoulouandKlainermancitedabove,manymath- ematicalpapersonthesubjectofquasilinearwaveequationsorEinsteinequa- tionsusethelanguageofLorentziangeometryanddealwithenergy–momentum tensors, deformation tensors, etc. However, there seem to be some difficul- ties:RiemanniangeometrybooksdonotincludethespecificLorentziantools such as null frames; most relativity books do not include a description of the relevant mathematical techniques. Let us, however, draw attention to the booksofHawkingandEllis[23]andRendall[44];whichincludesubstantial mathematics. IbelievethattheuseofLorentziantoolsinthemathematicalstudyofnon- linear hyperbolic systems is going to intensify further, even in the aspects of the field not directly related with general relativity. This is what we call “geometric analysis of hyperbolic equations.” It is true that there are exam- ples of nonlinear wave equations which are perturbations of the standard wave equation by small nonlinear terms, where it is enough to consider only the geometry of the standard wave equation, that is, the Minkowski metric: Theseexamplesarestriking,butthepossibilityofthissimplificationseemsto be related to the fact that one is considering only small solutions; for large solutions,webelievethatitwillbenecessarytotakeintoaccountthegeometry ofthelinearizedoperator,thatis,aLorentzianmetricdependingonthesolution itself. Thisbookismeantforpeoplewantingtoaccessthemathematicalliterature onthesubjectofquasilinearwaveequationsorEinsteinequations.Itsgoalis twofold: (i) To give to analysts in the field of partial differential equations (PDEs) a self-containedandelementaryaccesstothenecessarytoolsofLorentzian geometry, (ii) Toexplainthefundamentalideasconnectedwiththeuseofnullframes. This book can be read by students or researchers with an elementary back- ground in distribution theory and linear PDEs, specifically hyperbolic PDEs. Noknowledgeofdifferentialgeometryisrequired.Thoughthelargestpartof thetextisaboutgeometricconcepts,thisbookisnotabookaboutLorentzian geometry: it introduces the geometric tools required to understand the mod- ern PDE literature only as and when they are needed. The author not being ageometer,Ideliberatelychosetogivenaiveandself-containedproofstoall

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.