ebook img

Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic PDF

17 Pages·2015·1.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic

RESEARCHARTICLE Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Citrus sinensis Sweet Orange ( L. Osb.) CristinadePaulaSantosMartins1,2,AndresaMunizPedrosa1,DongliangDu2,Luana PereiraGonçalves1,QibinYu2,FrederickG.Gmitter,Jr.2,MarcioGilberto CardosoCosta1* 1 CenterforBiotechnologyandGenetics,BiologicalSciencesDepartment,StateUniversityofSantaCruz, Ilhéus,Bahia,Brazil,2 CitrusResearchandEducationCenter,DepartmentofHorticulturalSciences, UniversityofFlorida,LakeAlfred,Florida,UnitedStatesofAmerica *[email protected] Abstract OPENACCESS Thefamilyofaquaporins(AQPs),ormajorintrinsicproteins(MIPs),includesintegralmem- Citation:dePaulaSantosMartinsC,PedrosaAM, braneproteinsthatfunctionastransmembranechannelsforwaterandothersmallmole- DuD,GonçalvesLP,YuQ,GmitterFG,Jr.,etal. culesofphysiologicalsignificance.MIPsareclassifiedintofivesubfamiliesinhigherplants, (2015)Genome-WideCharacterizationand ExpressionAnalysisofMajorIntrinsicProteinsduring includingplasmamembrane(PIPs),tonoplast(TIPs),NOD26-like(NIPs),smallbasic AbioticandBioticStressesinSweetOrange(Citrus (SIPs)andunclassifiedX(XIPs)intrinsicproteins.Thisstudyreportsagenome-widesurvey sinensisL.Osb.).PLoSONE10(9):e0138786. ofMIPencodinggenesinsweetorange(CitrussinensisL.Osb.),themostwidelycultivated doi:10.1371/journal.pone.0138786 Citrusspp.Atotalof34differentgenesencodingC.sinensisMIPs(CsMIPs)wereidentified Editor:DavidDFang,USDA-ARS-SRRC,UNITED andassignedintofivesubfamilies(CsPIPs,CsTIPs,CsNIPs,CsSIPsandCsXIPs)based STATES onsequenceanalysisandalsoontheirphylogeneticrelationshipswithclearlyclassified Received:May1,2015 MIPsofArabidopsisthaliana.Analysisofkeyaminoacidresiduesallowedtheassessment Accepted:September3,2015 ofthesubstratespecificityofeachCsMIP.Genestructureanalysisrevealedthatthe Published:September23,2015 CsMIPspossessanexon-intronorganizationthatishighlyconservedwithineachsubfam- ily.CsMIPlociwerepreciselymappedoneverysweetorangechromosome,indicatinga Copyright:©2015dePaulaSantosMartinsetal. Thisisanopenaccessarticledistributedunderthe widedistributionofthegenefamilyinthesweetorangegenome.Investigationoftheir termsoftheCreativeCommonsAttributionLicense, expressionpatternsindifferenttissuesandupondroughtandsaltstresstreatments,aswell whichpermitsunrestricteduse,distribution,and aswith‘CandidatusLiberibacterasiaticus’infection,revealedatissue-specificandcoordi- reproductioninanymedium,providedtheoriginal natedregulationofthedifferentCsMIPisoforms,consistentwiththeorganizationofthe authorandsourcearecredited. stress-responsivecis-actingregulatoryelementsobservedintheirpromoterregions.Aspe- DataAvailabilityStatement:Allrelevantdataare cialroleinregulatingtheflowofwaterandnutrientsisproposedforCsTIPsandCsXIPsdur- withinthepaperanditsSupportingInformationfiles. ingdroughtstress,andformostCsMIPsduringsaltstressandthedevelopmentofHLB Funding:Thisworkwassupportedinpartby disease.TheseresultsprovideavaluablereferenceforfurtherexplorationoftheCsMIPs researchgrantsfromCNPq(Brasília,Brazil),CAPES (Brasília,Brazil),FAPESP(SãoPaulo,Brazil)and functionsandapplicationstothegeneticimprovementofbothabioticandbioticstresstoler- FloridaCitrusResearchandDevelopment anceincitrus. Foundation(USA).Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 1/17 Genome-WideCharacterizationofSweetOrangeMIPs CompetingInterests:Theauthorshavedeclared Introduction thatnocompetinginterestsexist. Aquaporins(AQPs)areintegralmembraneproteinsthatassisttherapidmovementofwateras wellasotherlowmolecularweightmoleculesacrosscellularmembranes[1–3].AQPsbelongto theancientfamilyofmajorintrinsicproteins(MIPs)foundinmicroorganisms,plantsandani- mals.WhileasmallnumberofdifferentAQPshavebeenidentified(2inE.coli,9inS.cerevisiae, 11inC.elegansand13inmammals[4]),asurprisinglylargenumberofMIPhomologueshave beenfoundinplants;forexample,35AQPswerefoundinArabidopsis[5],36inZeamays[6], 33inOryzasativa[7],28inVitisvinifera[8],55inPopulustrichocarpa[9],71inGossypium hirsutum[10],47inSolanumlycopersicum[11]and66inGlycinemax[12].Theseobservations highlightamajorroleforplantMIPsaskeyregulatorsoftheintricateflowsofwaterandsolutes requiredforgrowthandadaptiveresponsestotheever-changingenvironment. PlantMIPswereoriginallycategorizedintofoursubfamiliesonthebasisofsequencehomol- ogiesandsubcellularlocalization:plasmamembrane(PIP),tonoplast(TIP),nodulin-like(NIP) andsmallbasic(SIP)intrinsicproteins[2,13].Morerecently,studiesinthemossPhyscomitrella patensrevealedthepresenceofnovelAQPisoformsinadditiontothefourconservedplant AQPsubfamilies:ahomologueoftheEscherichiacoliintrinsicproteinGlpF(GIPs),intrinsic hybridproteins(HIPs)andunclassifiedXintrinsicproteins(XIPs)[9,13–17].XIPhomologues havealsobeenidentifiedinsomehigherplants,suchasSolanumlycopersicum,Populustricho- carpaandGlycinemax[9,11,12,15].ThesefindingssuggestthatthefamilyofplantMIPsis largerandmuchmorecomplexthanpreviouslyanticipatedand,hence,mayplaycriticalroles inawiderangeofbiologicalprocessesthatgofarbeyondthecurrentknowledge. AQP-mediatedwatertransportinplantshasbeenimplicatedtoplayacentralregulatorystep indiversebiologicalprocesses,includingcellelongation,seedgerminationandosmoregulation [18].Inaddition,AQPsfacilitatethetransportofsmallunchargedmoleculesofphysiological significancelikeglycerol,urea,boricacid,silicicacid,hydrogenperoxide(H O ),ammonia 2 2 (NH )andcarbondioxide(CO )throughtheplantcellmembranes[1,2]andalsoregulate 3 2 phloemsaploadingandunloading,stomatalandleafmovement,andcytoplasmichomeostasis [1,2,13,19].Therefore,itisnotsurprisingthattheirexpressionandbiologicalactivitieshave beenshowntobedevelopmentallyanddifferentiallyregulatedinacell-specificmanner,viaphy- tohormonessuchasabscisicacid(ABA),gibberellinsandpossiblybrassinosteroids,andbyenvi- ronmentalsignalssuchaslight,waterstress,nematodeinfection,lowtemperature,andsalinity [4].However,ageneralexpressionpatternamongthedistinctMIPisoformscannotbedistin- guished,astheyareeitherup-ordownregulateddependingonthestimulusand/orthecell-type studied[4,19,20].ThisdifferenceintranscriptionalregulationsuggeststhateachMIPisoform mayplayadistinctroleinplantgrowth,developmentandstressresponse[4]. Asamajorhorticulturalcrop,thecultivatedCitrusspp.faceconstantbioticandabioticcon- straintsinthemainregionsofproduction,includingdrought,salinity,extremetemperatures andseriousdiseaseslikeHuanglongbing(HLB,orcitrusgreening),whicharepredictedto increaseinintensity,frequency,andgeographicextentasaconsequenceofglobalclimate change.DespitethehighlightedimportanceofAQPs,thereareonlyafewstudiestodateoncit- rusMIPsandtheirpredictedroleinthetransportofwaterandsolutesrequiredforplant growth,developmentandadaptiveresponsestotheenvironment.TheexpressionoftwoMIP genes,PIP1andPIP2,hasbeeninvestigatedinrootsofPoncirustrifoliata(L.)Raf.,Cleopatra mandarin(C.reshniHortexTan.)andoneoftheirhybrids,subjectedtomoderatewaterdeficit [21],andinrootsofP.trifoliata,CleopatramandarinandCarrizocitrange(C.sinensis[L.] Osb.×P.trifoliata[L.]Raf.),subjectedtosalttreatment[22].PIP1andPIP2geneexpressiondif- ferenceswerecorrelatedwithalterationsinroothydraulicconductance(Kr)andchloride(Cl-) exclusionfromleavesand,hence,tolerancetowaterandsaltstresses,respectively.Withthe PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 2/17 Genome-WideCharacterizationofSweetOrangeMIPs recentcompletionandpublicationofthegenomesequencesofsweetorange[23–25],itisnow possibletoidentifyandcharacterizethecompleterepertoireofMIPsincitrus,aswellastocarry outcomparativegenomeanalysisinordertounderstandtheirevolutionaryhistory.Therefore, theobjectiveofthepresentstudywastoidentifysweetorangeMIPgenesthroughagenome- wideanalysisandtocharacterizetheirsequences,evolutionaryrelationships,putativefunctions andexpressionpatternsinvarioustissuesandinresponsetoabioticandbioticstresses.Thisis thefirstcomprehensivestudyoftheMIPgenefamilyinsweetorange,providingvaluableinfor- mationforfurtherexplorationofthefunctionsofthisimportantgenefamilyincitrus. MaterialsandMethods Plantmaterialsandstresstreatments Two-year-oldsweetorangeplantsgraftedonRangpurlime(C.limoniaOsbeck),arootstock highlyresistanttodrought,wereusedinthedroughtstressexperiment.Plantswerefirst prunedandacclimatizedtogreenhouseconditions(25±4°C,16hoflightandrelativehumidity oscillatingbetween80and95%)during90daystoobtainadequaterootdevelopmentanduni- formleafflushes.Duringacclimatization,plantsweregrowninplasticpotsof45-L,containing amixtureofsoilandsand(ratio3:1)andmicronutrientmixFTE(50gperpot),irrigatedwith tapwatertwiceaweek,andfertilizedweeklywith1literofthefollowingnutrientsolution:1.0g l-1Ca(NO ) ,0.4gl-1KNO ,0.6gl-1MgSO and0.4gl-1NH H P0 (MAP).Thereafter,the 3 2 3 4 4 2 4 potswereclosedwithaluminumfoiltopreventwaterlossbyevaporation,andasetof10plants wasrandomizedovertheexperimentalareaandsubjectedtothefollowingtreatments:(i)5 plantsincontrol,inwhichplantsweremaintainedatleafpredawnwaterpotentialvaluesof -0.2to-0.4MPabydailyirrigationand(ii)5plantsindrought,inwhichtheplantswere exposedtoaprogressivesoilwaterdeficituntiltheirleavesreachpredawnwaterpotentialval- uesof-1.5MPa.Theleafpredawnwaterpotentialwasrecordedonthethirdfullyexpanded matureleaffromtheapexofeachplant,between2AMand4AM,usingaScholander-type pressurepump(m670,PmsInstrumentCo.,Albany,USA). Forsalttreatment,sweetorangeseedsweregerminatedinvitroasdescribedbydeOliveira etal.[26].Twenty-day-oldseedlingsofnucellaroriginwereselectedbasedontheiruniformity, andtransferredtoMSmediumalone(control)orcontaining150mMNaCl(Merck,Darm- stadt,Germany).Eachtreatmentconsistedof15nucellarplants(biologicalreplicates).Leaves androotswereharvested20daysafterthetreatmentsandimmediatelyfrozeninliquidnitro- genandstoredat-80°C. Plantswereinfectedwith‘CandidatusLiberibacterasiaticus’asdescribedinFanetal.[27]. Briefly,two-year-oldseedlingsofroughlemon(C.jambhiriLush.)andsweetorange(C.sinen- sisL.Osbeck)weregraft-inoculatedwithbudwoodfrom‘Ca.L.asiaticus’infected‘Carrizo’ citrangetreeskeptundergreenhouseconditions.Forcontrols,theplantsweregraftedwithbud woodfromhealthyCarrizotrees.AlltheseplantswerekeptinaUnitedStatesDepartmentof AgricultureAnimalandPlantHealthInspectionServiceandCenterforDiseaseControl- approvedandsecuredgreenhouseattheUniversityofFlorida,CitrusResearchandEducation Center,LakeAlfred.Threebiologicalreplicateswereproducedforeachcitrusspeciesineach treatment.Quantitativereal-timePCRwasperformedtoconfirmthepresenceof‘Ca.L.asiati- cus’intheinoculumsourceandinoculatedplantsasdescribedinLietal.[28].Fourfully expandedleavesweresampledseparatelyfrom‘Ca.L.asiaticus’inoculatedplantsandmock- inoculatedplants(usedascontrols)ofeachcitrusspeciesat0,7,17,and34weeksafterinocula- tion(WAI).Leaveswereimmediatelyfrozeninliquidnitrogenandstoredat-80°Cuntiluse. Threebiologicalreplicateswereproducedforeachcondition.Intotal,12plantswith48leaf sampleswerecollected(2speciesx2treatmentsx3replicatesx4timepoints). PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 3/17 Genome-WideCharacterizationofSweetOrangeMIPs IdentificationandclassificationofCsMIPs TheHiddenMarkovModelprofileofthePFAM(http://pfam.sanger.ac.uk/)[29]motif PF00230(majorintrinsicprotein)wasusedasakeywordtosearchthesweetorangegenome sequencedatabase(http://www.phytozome.org/citrus/)[25].TheKEGGOrthology(KO) termsK09872(aquaporinPIP),K09873(aquaporinTIP),K09874(aquaporinNIP)and K09875(aquaporinSIP)werealsousedaskeywordstosearchthesweetorangegenome sequenceatPhytozome.Toavoidthedeficienciesoftheautomaticannotation,the35Arabi- dopsisthalianaMIPproteinsequenceswereretrievedfromTAIR(http://www.arabidopsis.org/ ),accordingtopreviousreports[5,30],andalsousedtoalignwiththesweetorangegenome sequenceassemblyavailableatPhytozomeusingtheTBLASTNtool.Aftermergingtheresults fromallthesestrategies,uniqueentries(withuniquelocusID)wereidentifiedtoremovethe redundancy.Theresultingsequencesweremanuallyinspectedforthepresenceofcharacteris- ticandfunctionallyimportantMIPaminoacidsandmotifs. ThesweetorangeMIPswereclassifiedindifferentisoformsbasedonsequenceanalysisof themultiplealignmentsandontheirphylogeneticrelationshipwiththoseclearlyclassified MIPsofArabidopsisthaliana,RicinuscommunisandNicotianabenthamiana,downloaded fromtheTAIRandNCBIdatabases.Multiplesequencealignmentsofthededucedaminoacid sequencesofCsMIPsandthoseofA.thaliana,R.communisandN.benthamianawereper- formedusingthedefaultparametersofClustalW[31].Thedendrogramwasgeneratedbythe MEGA6program[32]usingtheNeighbor-Joining(NJ)method[33]andbootstrapanalysis (1,000replications). AnalysisofCsMIPproteinpropertiesandconservedaminoacid residues Informationaboutcodingsequence(CDS),full-lengthsequenceandpredictedaminoacid sequencewasobtainedforeachsweetorangeMIPgenefromthePhytozomedatabase.The GRAVY(grandaverageofhydropathy),molecularweightandisoelectricpoint(pI)ofthe deducedaminoacidsequenceswerepredictedbythePROTPARAMtoolavailableonthe ExpertProteinAnalysisSystem(ExPASy)proteomicsserver(www.expasy.ch/tools/protparam. html).ThesubcellularlocalizationofMIPproteinswaspredictedusingtheWoLFPSORTtool availableathttp://www.genscript.com/psort/wolf_psort.html.Carefulvisualinspectionof aminoacidsequencealignmentswereperformedtoidentifythecharacteristicMIPamino acidsandmotifsandtheresiduesinsevenkeypositionsthathavebeenreportedtobespecific foreachfunctionalsubgroup[12,30,34,35]. AnalysisofpromotersequencesandchromosomallocationsofCsMIPs Onekbupstreamregionfromthetranslationstartsitewasextractedfromallthesweetorange MIPgenesandsubsequentlyanalyzedinthePLACEdatabase(http://www.dna.affrc.go.jp/ PLACE/signalscan.html)toidentifythepresenceofthestress-responsivecis-actingregulatory elementsABRE(ABA-responsiveelement;ACGTG),DRE/CRT(dehydrationresponsiveele- ment/C-repeat;G/ACCGAC),MYBS(MYBbindingsite;TAACTG)andLTRE(low-tempera- ture-responsiveelement;CCGAC)intheirpromoters.ThephysicallocationsofCsMIPswere determinedbyconfirmingthestartingpositionofallgenesoneachchromosome,using BLASTNsearchingagainstthelocaldatabaseoftheCitrussinensisAnnotationProject(CAP; http://citrus.hzau.edu.cn/orange/).MapChartsoftwarewasusedtoplotthegenelocionthe sweetorangechromosomes[36]. PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 4/17 Genome-WideCharacterizationofSweetOrangeMIPs ExpressionanalysisofCsMIPs TotalRNAisolation,cDNAsynthesisandquantitativereal-timeRT-PCR(qPCR)analysis wereperformedasdescribedpreviously[26].qPCRprimersweredesignedappropriatelyto avoidtheconservedregions.PrimersequencesareshownindetailinS1Table.Glyceralde- hyde-3-phosphatedehydrogenaseC2(GAPC2)wasusedasaninternalreferencegenetonor- malizeexpressionamongthedifferentsamples[37].Datawereobtainedfromapoolofthree biologicalreplicatesthatwereindividuallyvalidated. RNA-seqdataweredownloadedfromCAP[24]andusedtoanalyzetheexpressionpatterns ofCsMIPsindifferenttissues,namelycallus(C),flower(Fl),leaf(L),fruit(Fr),andmixedtis- suesfromfruitatthreedevelopmentalstages(Mix.1,Mix.2,andMix.3).Theheatmapwasgen- eratedusingR3.1.0software. ResultsandDiscussion MIPencodinggenesinthesweetorangegenome SearchesinthesweetorangegenomesequencedatabaseatPhytozomeusingannotationinfor- mation,aswellasthe35proteinsequencesofthecompletesetofA.thalianaMIPs(AtMIPs) asquerysequences,resultedintheidentificationof34differentgenesencodingC.sinensis MIPs(CsMIPs)(Table1).Theretrievedsequencesweremanuallyinspectedforthepresenceof characteristicandfunctionallyimportantMIPdomainsandmotifs,suchasthehighlycon- servedNPA(Asn-Pro-Ala)motifs,andconsideredtobecorrect.ThenumberofMIPgenes describedinthisstudyissimilartothatfoundinthegenomesofArabidopsis[5],maize[6], rice[7]andgrape[8],butsignificantlylowerthanthatidentifiedinthegenomesofpoplar[9], cotton[10],tomato[11]andsoybean[12].Theabsenceofrecentwhole-genomeduplication (WGD)eventsinthesweetorangegenome,asdescribedbyXuetal.[23],couldaccountfor therelativelysmallsizeoftheMIPfamilyinthecitrusgenome. TheCsMIPswereclassifiedinfivedifferentsubfamilies,PIPs,TIPs,NIPs,SIPsandXIPs, basedonanalysisoftheaminoacidresidueslocatedinsevenkeypositions(P1toP7)thatwere previouslyproposed[12,34,35]todiscriminatethedifferentsubfamilies(S2Table),aswellas ontheirphylogeneticrelationshipswiththewellclassifiedMIPsofA.thalianaandXIPsofR. communisandN.benthamiana(S1Fig).Ouranalysisrevealedthepresenceof8PIPs,11TIPs, 9NIPs,3SIPsand3XIPsinthesweetorangegenome(Table1).TheCsMIPswerenamed accordingtothenomenclatureproposedinclassificationoftheMIPsofA.thaliana.This nomenclaturewasbasedonphylogeneticanalysesandwherethenamesinasystematicway reflectdistinctcladesthatareevolutionarilystable[5].PIPs,TIPs,NIPsandSIPsfromsweet orangegroupedwiththeirrespectiveArabidopsiscounterparts,indicatingthelargeextentof conservationbetweenthesweetorangeandArabidopsisMIPgenefamilies(S1Fig).Theonly exceptionwasCsTIP6;1,whichwasfoundtoencodeaN-andC-terminallytruncatedTIPpro- teincomparedtotherestofthesubfamily. ToexaminewhetherthenumberofMIPgenesfoundinthediploidsweetorangeiscompa- rabletothatofthedihaploidsweetorangeandhaploidClementinemandarin,wealsoper- formedhomologysearchesagainstthedihaploidsweetorangedraftgenomeavailableatthe CitrussinensisAnnotationProject(CAP)andthereferencehaploidClementinemandarin(C. clementina)genomeavailableatPhytozome(S3Table).AlthoughthetotalnumberofMIP geneswasroughlysimilaramongthedifferentcitrusgenomes,significantdifferenceswere observedinthenumberofmemberswithinthesubfamilies(Table2).BLASTsimilarityanaly- sisrevealedthatthedihaploidsweetorangeandhaploidClementinecontainedtwoadditional PIPisoformscloselyrelatedtotheCsPIP2;1(S3Table).Clementinealsocontainedone PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 5/17 Genome-WideCharacterizationofSweetOrangeMIPs Table1. GenesandencodedMIPproteinsinsweetorange. Gene Locus Chromosomelocation Group Kegg Polypeptide pI GRAVY Predictedsubcellular name OrthID length(MW) localization CsPIP1;1 orange1.1g018895m chr7:31,253,722...31,256,103 PIP K09872 349(37.56kDa) 9.39 0.397 plasmamembrane CsPIP1;2 orange1.1g023021m chr7:31,247,369...31,248,902 288(30.67kDa) 7.71 0.414 plasmamembrane CsPIP1;3 orange1.1g023107m chr5:1,804,896...1,807,677 287(30.70kDa) 8.97 0.344 plasmamembrane CsPIP1;4 orange1.1g023069m chr6:9,907,825...9,909,541 287(30.82kDa) 8.96 0.343 plasmamembrane CsPIP2;1 orange1.1g023108m chr6:12,833,884...12,835,042 287(30.67kDa) 8.74 0.376 plasmamembrane CsPIP2;2 orange1.1g022966m chr8:19,657,287...19,659,497 289(31.05kDa) 7.62 0.392 plasmamembrane CsPIP2;3 orange1.1g019681m chr7:26,202,220...26,205,546 337(36.34KDa) 9.77 0.403 plasmamembrane CsPIP2;4 orange1.1g023370m chr8:981,841...983,571 283(30.14kDa) 8.99 0.431 plasmamembrane CsTIP1;1 orange1.1g025548m chrUn:46,663,407...46,665,011 TIP K09873 251(26.06kDa) 6.12 0.675 vacuole CsTIP1;2 orange1.1g025600m chr8:20,659,157...20,660,437 250(25.65kDa) 5.32 0.841 cytosol CsTIP1;3 orange1.1g037978m chr8:20,659,157...20,660,437 124(12.92kDa) 4.37 0.734 cytosol CsTIP1;4 orange1.1g025464m chr7:29,135,182...29,136,531 252(26.01kDa) 5,69 0,786 vacuole CsTIP2;1 orange1.1g025817m chr1:18,627,617...18,629,472 247(25.15kDa) 5.59 0.894 vacuole CsTIP2;2 orange1.1g025865m chr1:18,627,617...18,629,472 247(25.10kDa) 5.59 0.902 vacuole CsTIP2;3 orange1.1g038895m chr5:5,749,487...5,750,939 206(20.55kDa) 4.72 0.979 vacuole CsTIP3;1 orange1.1g025197m chr5:16,938,542...16,940,192 256(26.99kDa) 7.07 0.626 cytosol CsTIP4;1 orange1.1g025864m chr4:19,032,254...19,033,990 247(16.27kDa) 6.27 0.825 vacuole CsTIP5;1 orange1.1g046726m chr9:14,144,215...14,145,199 161(16.86kDa) 9.00 0.770 cytosol CsTIP6;1 orange1.1g042738m chr9:14,144,215...14,145,199 107(11.11kDa) 4.54 0.636 secreted CsNIP1;1 orange1.1g023184m chr2:2,151,220...2,153,387 NIP K09874 286(30.45kDa) 8.64 0.434 vacuole CsNIP2;1 orange1.1g036721m chr6:18,134,848...18,136,228 223(23.70kDa) 9.69 0.889 cytosol CsNIP2;2 orange1.1g040981m chr6:18,134,848...18,136,228 211(22.32kDa) 9.39 0.967 cytosol CsNIP2;3 orange1.1g040755m chr2:13,464,261...13,465,771 275(29.39kDa) 8.88 0.628 plasmamembrane CsNIP3;1 orange1.1g023102m chr6:20,482,599...20,486,038 287(30.30kDa) 8.40 0.387 plasmamembrane CsNIP4;1 orange1.1g046511m chr3:23,770,831...23,774,009 282(29.28kDa) 8.84 0.372 vacuole CsNIP5;1 orange1.1g035030m chr1:13,680,675...13,682,992 75(7.75kDa) 8.98 0.291 chloroplast CsNIP5;2 orange1.1g027840m chr1:13,678,241...13,681,090 218(22.51kDa) 7.75 0.462 plasmamembrane CsNIP6;1 orange1.1g039196m chr9:3,798,017...3,800,780 288(30.20kDa) 7.53 0.718 plasmamembrane CsSIP1;1 orange1.1g026039m chr5:28,968,880...28,972,401 SIP K09875 244(25.92kDa) 9.35 0.727 plasmamembrane CsSIP1;2 orange1.1g026082m chr3:1,234,876...1,236,556 244(26.17kDa) 9.83 0.749 plasmamembrane CsSIP2;1 orange1.1g026600m chr6:17,078,102...17,081,323 236(25.57kDa) 9.70 0.600 chloroplast CsXIP1;1 orange1.1g036381m chr8:7,139,938...7,141,114 XIP - 235(25.09kDa) 8.70 0.821 plasmamembrane CsXIP1;2 orange1.1g040654m chr8:7,131,064...7,132,799 302(32.68kDa) 8.74 0.573 plasmamembrane CsXIP2;1 orange1.1g045670m chr8:7,128,184...7,129,448 319(34.58kDa) 8.32 0.681 plasmamembrane doi:10.1371/journal.pone.0138786.t001 additionalPIPisoformcloselyrelatedtotheCsPIP1;2andonePIP,TIPandNIPisoformwith- outhomologytoanyMIPsequencefromthediploidsweetorange(S3Table).CsTIP1;2and CsTIP1;3,CsTIP2;1andCsTIP2;2,CsTIP5;1andCsTIP6;1,andCsNIP2;1andCsNIP2;2exhib- itedsignificanthitstothesameMIPisoformsofthedihaploidsweetorangeandhaploidClem- entine(S3Table).TheseobservedvariationsinthesizeoftheMIPsubfamiliesmaybea consequenceofthedifferentsequencingdepthandassemblyqualitybetweenthediploidand dihaploidsweetorangegenomes[23,25]andtheevolutionaryoriginofClementine,whichisa hybridofWillowleafmandarinandsweet-orange[25]and,thereby,itcontainsmoreC.reticu- latahaplotyperegionsthanfoundinsweetorange. PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 6/17 Genome-WideCharacterizationofSweetOrangeMIPs Table2. ComparisonofthenumberofthedifferentMIPfamilymembersindiploid(Phytozome)anddihaploid(CAP)sweetoranges(C.sinensis) andhaploidClementine(C.clementina). Subfamily DiploidC.sinensis DihaploidC.sinensis C.clementina PIP 8 10 11 TIP 11 8 9 NIP 9 8 8 SIP 3 3 3 XIP 3 3 2 Total 34 32 33 doi:10.1371/journal.pone.0138786.t002 CsMIPproteinpropertiesandconservedaminoacidresidues TheCsMIPsencodeproteinsrangingfrom75(7.7kDa)to349(37.6kDa)aminoacidsin length,andpIvaluesrangingfrom4.37to9.77(Table1).TheaverageproteinlengthofPIPs, TIPs,NIPs,SIPsandXIPswere300.8(32.2kDa),213.4(21.1kDa),238.3(25.1kDa),241.3 (25.9kDa)and285.3(30.8kDa)aminoacids,respectively.TheaveragepIofPIPs,TIPs,NIPs, SIPsandXIPswere8.77,5.86,8.68,9.63,and8.59,respectively.ThesedatarevealthatCsTIPs arenotonlysmaller,butmostofthemarealsomuchmoreacidicthantheotherCsMIPs,as reportedforArabidopsisMIPs[38].ThecauseoftheselargedifferencesinTIPshasbeenattrib- utedtothesmalleramountofbasicresiduesfoundatthecarboxylterminiofTIPscompared withtheotherMIPs[5].AlltheCsMIPshadapositiveGRAVYscore(Table1),suggestingthat theyarehydrophobicproteins,whichisanecessarycharacteristicforAQPs[1].Analysisofthe predictedsubcellularlocalizationshowedthatallCsPIPsandCsXIPswerelocalizedtoplasma membrane(Table1).ThepredictedlocalizationofCsTIPs,CsNIPsandCsSIPswasmore diverse,includingvacuole(CsTIP1;1,CsTIP1;4,CsTIP2;1,CsTIP2;2,CsTIP2;3,CsTIP4;1, CsNIP1;1andCsNIP4;1),cytosol(CsTIP1;2,CsTIP1;3,CsTIP3;1,CsTIP5;1,CsNIP2;1and CsNIP2;2),plasmamembrane(CsNIP2;3,CsNIP3;1,CsNIP5;2,CsNIP6;1,CsSIP1;1and CsSIP1;2),chloroplast(CsNIP5;1andCsSIP2;1)andsecreted(CsTIP6;1)(Table1).These resultsseemtobeinagreementwiththeexperimentallydeterminedlocalizationsofMIPs reportedintheliterature[13,39]. MIPfoldingischaracterizedbysixtransmembraneα-helices(H1toH6)thatareconnected byfiveloops(loopsA-E),forminganaqueoustransmembraneporethatconstitutesthefunc- tionalcoreofMIPs[35].LoopsB(LB)andE(LE)containtwohighlyconservedNPA(Asn- Pro-Ala)motifsthatareconsideredtobecriticalforthesubstrateselectivityofMIPs[40,41]. Anothersetoffourconservedresiduesformsthearomatic/Arginineselectivityfilter(ar/Rfil- ter),whichhasbeenproposedtoactasasizeexclusionbarrierforsubstratemolecules[42]. ThefirsttworesiduesarelocatedinH2andH5,whilethelattertwoarefoundinLE(LE1and LE2).Finally,sevenkeyaminoacidresidues(namedpositionsP1toP7)havebeenproposedto discriminatethefivesubfamilies[12,34].P1islocatedintheterminalpartofH3,whileP2and P3arelocatedinLE,justbehindthesecondNPAmotif(2ndand6thresiduesafter2ndNPA, respectively).P4andP5correspondtotwoconsecutiveaminoacidslocatedinH6,whileP6 andP7alsocorrespondtotwoconsecutiveaminoacidslocatedinH3.Themultiplesequence alignmentswerecarefullyanalyzedandalltheseconservedmotifsandaminoacidresidues wereidentifiedinmostCsMIPs,indicatingthattheyarefunctionalchannelsforwaterand othersolutes(S2Table).AlltheCsPIPsshowedthedualtypicalNPAmotifsandanar/Rfilter configurationcharacteristicforawater-transportingMIP(F,H,T,R).Additionalpresenceof theS-A-F-WresiduesatP2-P5positions,asobservedinallCsPIPs,exceptforCsPIP1;1,has beeninterpretedasasignatureofCO transporterPIPs[35].AlltheCsTIPsalsohadthetwo 2 PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 7/17 Genome-WideCharacterizationofSweetOrangeMIPs canonicalNPAmotifs,exceptCsTIP1;3,CsTIP5;1andCsTIP6;1,whichwerefoundtoencode truncatedproteinslackingeitherthefirst(CsTIP1;3)orthesecondNPAmotif(CsTIP5;1and CsTIP6;1),aswellasotherconservedaminoacidresiduesofthear/Rfilterregion(S2Table). TIPscontainingtheH-I-A-VorH-I-G-Rresiduesinthear/RfilterandT-A-A-Y-Wor T-S-A-Y-WresiduesatP1-P5positions,likeCsTIP1s,CsTIP2sandCsTIP3,havebeenshown totransportureaandH O [35].TheCsNIP1;1,CsNIP2;1,CsNIP2;2andCsNIP2;3showedan 2 2 ar/RfilterconfigurationidenticaltothatofsoybeanNodulin26,indicatingthattheyarealso abletofacilitatewaterandsolutetransportcapability[30].TheresidueattheH5positionof thear/RfilterofAtNIP5;1wasshowntoplayakeyroleinthemembranepermeabilityto water,silicicacid(Si)andboricacid(B)[42].AtNIP5;1withAIGRresiduesforthear/Rfilter wasshowntotransportwater,Bandarsenite(As),butnotSi[42].CsNIP3;1,withGSGRresi- duesforar/Rfilter,canbeexpectedtotransportwater,SiandB,whileCsNIP4;1(AIGRresi- dues)maytransportwater,BandAs.TheCsSIPsshowedalessconservedfirstNPAmotif, whilethesecondNPAmotifwasperfectlyconservedinallmembers(S2Table).AtSIP1iso- forms,butnotAtSIP2;1,wereshowntobefunctionalwaterchannels[43],suggestingthatthe lattermaybeinvolvedinthetransportofsolutes.However,SIPtransportfunctionandstruc- turalorganizationstillawaitbiochemicalcharacterization.TheCsXIPsalsoshowedamodified firstNPAmotif,NPL(CsXIP1s)orSPV(CsXIP2),andaconservedsecondNPAmotif(S2 Table).Thefourpositionsinthear/Rfilterregioncontainedaminoacidresiduesthatwere strictlyconservedamongtheCsXIPs.CsXIP1;1wasobservedtocontainaninternaldeletionof 13aminoacidresiduesintheH2regionthatabolishedtheconservedaminoacidVatposition H2ofthear/Rselectivefilter.Sincethefirstthreeaminoacidofthear/Rfilterhaverather hydrophobicresidues(VVARorVVVR),theCsXIPsmightbeinvolvedinthetransportof moleculesotherthanwater[35].Infact,arecentstudyhasindicatedthattheSolanaceaeXIPs areplasmamembraneaquaporinsinvolvedinthetransportofmanyunchargedsubstrates, suchasurea,H O andB[44]. 2 2 GenomicorganizationofCsMIPs Theexon-intronstructureofall34CsMIPgeneswasanalyzedusingthesweetorangegenemod- elsannotatedinPhytozome.Withafewexceptions,thenumberandsizeoftheexons,butnot oftheintrons,wereobservedtobeconservedwithineachCsMIPsubfamily(S2Fig).Allthe CsPIPspresentedthreeintronsandfourexons,asreportedforallArabidopsis[5],poplar[9], tomato[11]andsoybeanPIPs[12].ThemajorityofCsTIPscontainedtwointronsandthree exons,withexceptionofCsTIP1;1,CsTIP2;3andCsTIP6;1,whichshowedoneintronandtwo exons,andthetruncatedCsTIP1;3(oneexon)gene.Suchamorevariedpatternofexon-intron structurehasbeenalsoobservedinArabidopsis[5],poplar[9],tomato[11]andsoybeanTIPs [12].MostCsNIPscontainedfourintronsandfiveexons,likeallArabidopsis[5]andmostpop- lar[9],tomato[11]andsoybeanNIPs[12].TheexceptionswereCsNIP2;2(threeintronsand fourexons),CsNIP5;2(twointronsandthreeexons)andthetruncatedCsNIP5;1(oneintron andtwoexons)genes.TheCsSIPsfeaturedtwointronsandthreeexons,exceptCsSIP1;2(one exonandoneintroninthe3’-UTRregion).Similarpatternsofexon-intronstructurewerealso reportedfortomatoSIPs[11],whilealltheArabidopsis[5]andpoplarSIPs[9]hadtwointrons andthreeexons.ThegenestructureofCsXIPsvariedamongallmembers,whichcontainedtwo intronsandthreeexons(CsXIP1;2),eitheroneintronandtwoexons(CsXIP2;1)oronlyone exon(CsXIP1;1).Thepatternoftwointronandthreeexonshasbeenreportedformostpoplar [9]andtomatoXIPs[11],whileallsoybeanXIPscontainedasingleintronandtwoexons[12]. Thepositionsofall34CsMIPsweremappedonthesweetorangechromosomesbyhomol- ogysearchesagainstthefull-lengthsweetorangegenomeassemblyavailableattheCAP PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 8/17 Genome-WideCharacterizationofSweetOrangeMIPs database(Table1andS3Table).ExceptforCsTIP1;1,whichwasnotexactlylocatedonany chromosomebecauseofanincompletephysicalmapforsweetorange,alltheCsMIPlociwere preciselymappedoneverysweetorangechromosome,indicatingawidedistributionofthe genefamilyinthesweetorangegenome(Table1andS3Fig).ThecloselyrelatedCsMIPiso- formsCsTIP1;2andCsTIP1;3,CsTIP2;1andCsTIP2;2,CsTIP5;1andCsTIP6;1,andCsNIP2;1 andCsNIP2;2wererespectivelymappedonidenticalchromosomepositionssincetheyshowed significanthitstothesamegenesintheCAPdatabase(S3Table).SevenCsMIPswerefoundto betandemduplicatedgenesaccordingtothecriteriaofHanadaetal.[45],whichdefinedtan- demduplicatesasgenesinanygenepair,T andT ,that(1)belongtothesamegenefamily, 1 2 (2)arelocatedwithin100kbeachother,and(3)areseparatedby10orfewernonhomologous spacergenes.ThesewereCsNIP5;1andCsNIP5;2onchromosome1,CsPIP1;1andCsPIP1;2on chromosome7,andCsXIP1;1,CsXIP1;2andCsXIP2;1onchromosome8(Table1andS3Fig). TheseresultssuggestthatalltheseCsMIPsmayhaveevolvedfromtandemduplicationevents, asalsorecentlyproposedforthetomatoXIPs[11]. Analysisofpreviouslymappedtraitsrevealedthatthe282-kbregionsurroundingtheCitrus TristezaVirusresistance(Ctv)locusisphysicallylinked(~40-kb)totheCsNIP5;1and CsNIP5;2genes,onthechromosome1[46].ThisregionwasalsoreportedtocontainTyr1,the majorlocuscontrollingcitrusnematode(Tylenchulussemipenetrans)resistance[47,48]. ExpressionpatternsofCsMIPgenesindifferenttissues ToinvestigatetheexpressionpatternsofCsMIPsindifferenttissues,RNA-seqdataweredown- loadedfromCAP[24].Theheatmapgeneratedshowedadifferentialtranscriptabundanceof the34CsMIPsinfourmajortissues,namelycallus,flower,leaf,fruit,andmixedfruittissuesat threedevelopmentalstages(S4Fig).SomeoftheCsMIPs(CsPIP1;1,CsPIP1;3,CsPIP2;2, CsPIP2;3andCsSIP1;1)showedhigherexpressioninalltheseventissues,indicatingarolein constitutivetransportprocessesthroughouttheplant.Othersgeneswerefoundtohavealow expressioninallthetissues(CsTIP1;1,CsTIP1;2,CsTIP1;3,CsTIP2;3,CsTIP5;1,CsTIP6;1, CsNIP2;1,CsNIP2;2,CsNIP2;3,CsNIP5;1,CsNIP5;2,CsXIP1;1andCsXIP2;1).Theputativetan- demduplicatedCsMIPgeneswereobservedtohavedivergentexpressionprofiles,whichprob- ablyhascontributedtotheirmaintenancethroughregulatorysubfunctionalizationand neofunctionalization[49].CsPIP1;1showedahigherexpressionthanCsPIP1;2inalltheseven tissuesanalyzed.CsXIP1;1andCsXIP2;1showedlowexpressioninalltheseventissuesana- lyzed,whileCsXIP1;2exhibitedahighexpressioninflower,leafandmixedfruittissue(Mix.3). Thecelltypelocalizationofaquaporinexpressioncanalsoprovidecluesabouttheirphysio- logicalroles.Forinstance,expressionofPIPaquaporinsisgenerallylocalizedinorgansandtis- suescharacterizedbylargefluxesofwater,suchasvasculartissues,guardcells,flowersand fruits[4].Theirexpressioninrootsandleaveshasbeenalsocorrelatedwiththepresenceof apoplasticbarriers,theexodermisandendodermisinrootsorinsuberizedbundlesheathcells inleaves,suggestingtheiressentialroleinthetransmembranewaterdiffusionwhenitsmove- mentishindered[19,20,50–55].ExceptforCsPIP2;1,alltheCsPIPswerefoundtobehighly expressedinflower,leaf,fruitandmixedfruittissues(S4Fig),supportingtheiractiverolein thetransportofwaterandsolutesacrossthesetissues.Bycontrast,theexpressionofTIPiso- formshasbeenmorerelatedtodevelopmentalstagesand/ororganspecificity[56].For instance,theexpressionofAtTIP2;1isespeciallyhighinthevascularsystemoftheshootbutis barelydetectableintheroot[57].AtTIP3;1ishighlyexpressedincotyledonsandassociated withthemembraneofproteinstoragevacuoles[4].TIPsarealsodifferentiallyexpresseddur- ingfruitmaturation,e.g.,theTIP1;1homologinpearishighlyexpressedintheyoungfruit, whereasTIPproteinslevelsingrapegraduallyincreasealongwithripening[58,59].Vacuoles PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 9/17 Genome-WideCharacterizationofSweetOrangeMIPs participateincellexpansionand,thus,theirenlargementbywatercompartmentationisessen- tialtoprovoketherapidfruitgrowththatischaracteristicoftheripeningprocess.Thelackof specificregulationobservedalongfruitripeningforPIPsisoformspointsouttheessentialrole ofTIPsinthisprocess[60].ThedifferentialexpressionofCsTIP1;3,CsTIP1;4,CsTIP2;1, CsTIP2;2,CsTIP3;1,CsTIP4;1andCsTIP5;1highlightsthefunctionalimportanceofthese CsMIPsoneachtissueandstageoffruitdevelopmentanalyzed(S4Fig).Theoveralllevelof NIPexpressionisusuallylowerthantheexpressionofPIPsandTIPs,anditisusuallyassoci- atedwithspecializedorgansandcells[10].Forinstance,AtNIP2;1isspecificallyexpressedin theendoplasmicreticulum(ER)ofroots,whereasAtNIP5;1isaplasmamembraneMIPmainly expressedinrootelongationzones[39,61].OuranalysisshowedthattheCsNIPshadpreferen- tialexpressioneitherinflower(CsNIP6;1),leaf(CsNIP2;2andCsNIP3;1)ormixedfruittissues atdifferentdevelopmentalstages(CsNIP1;1,CsNIP2;2,CsNIP3;1,CsNIP4;1andCsNIP6;1)(S4 Fig).SIPsseemtobeexpressedinarangeoftissuesinArabidopsis,includingyoungroots,flow- ersandpollen[62].ItisremarkablethatSIPsarealsostronglyexpressedinsuspensioncultured cellscomparedtootherMIPs[62].CsSIP1;1wasobservedtobeconstitutivelyexpressedinall theseventissuesanalyzes,whiletheotherswerepreferentiallyexpressedinflowerandfruittis- sues(S4Fig).XIPswerereportedtobeexpressedinalmostallthepoplartissues[9].Bycon- trast,CsXIPsshowedalowexpressioninalltissuesanalyzed,exceptCsXIP1;2,whichshowa relativelyhighexpressioninflower,leafandmixedfruittissuesatthirddevelopmentalstage (Mix.3)(S4Fig). ExpressionpatternsofCsMIPgenesunderabioticandbioticstresses ToidentifyCsMIPswithapotentialroleinabioticandbioticstressresponseofsweetorange, theexpressionpatternsofallthe34sweetorangeMIPswereinvestigatedinplantsexposedto drought,highsalinityand‘Ca.L.asiaticus’(HLB)infection,byqPCR.Consideringthelog 2 foldchange(LFC)of(cid:1)1.00or(cid:3)-1.00ascutoffthresholdbetweenstressedandcontrolplants, theqPCRanalysesshowedthatalltheCsMIPsweredifferentiallyexpressedinatleastone stressconditionandtissueanalyzed(Figs1–3).TwelveCsMIPs(CsPIP1;1,CsPIP2;4,CsTIP1;3, CsTIP2;1,CsTIP2;2,CsTIP3;1,CsTIP4;1,CsNIP1;1,CsSIP1;2,CsXIP1;1,CsXIP1;2and CsXIP2;1)wereobservedtobedifferentiallyexpressedinresponsetoallthethreestresscondi- tionsanalyzed,inatleastonetissuestudied.Interestingly,onlyCsTIP1;1showeddifferential expressionexclusivelyinresponsetotheabioticstresstreatments,whilesixCsMIPs(CsPIP1;2, CsPIP2;2,CsNIP2;2,CsNIP5;2,CsNIP6;1andCsSIP1;1)weredifferentiallyexpressedexclu- sivelyunderthebioticstresstreatment.Theseresultsseemtobeconsistentwiththerespective organizationofthestress-responsivecis-actingregulatoryelementsobservedintheCsMIPs promoters(S5Fig).CsTIP1;1wasobservedtocontainthehighestnumberofABREcopiesin thepromotorregionamongthesweetorangeMIPgenes,whilenooralownumberofABRE (lessthan2copies)andotherstress-responsivecis-actingregulatoryelementswasdetectedin thepromoterregionsoftheCsMIPsthatwerenotinducedbytheabioticstresstreatments(S5 Fig).AsinglecopyofDRE/CRThasbeenobservedtobesufficientforABA-independent stress-responsivegeneexpression,whilemorethantwoABREsequencesareusuallyrequired fortheABA-responsivetranscription[63]. AlltheCsTIPsandCsXIPswereupregulatedinleavesbutdownregulatedinrootsbydrought treatment,whileonlytwoCsPIPs(CsPIP1;1andCsPIP2;4)andoneCsNIP(CsNIP1;1)and CsSIP(CsSIP1;2)weredifferentiallyupregulatedbydroughttreatmentinleaves(Fig1).Most CsMIPswereupregulatedbysalttreatmentinroots,andeitherupregulatedordownregulated bythistreatmentinleaves,dependingontheisoform(Fig2).Acoordinatedup-anddownregu- lation,dependingontheMIPgeneandorganexamined,hasbeendescribedasageneralpattern PLOSONE|DOI:10.1371/journal.pone.0138786 September23,2015 10/17

Description:
functions and applications to the genetic improvement of both abiotic and biotic stress toler- ance in citrus genes, PIP1 and PIP2, has been investigated in roots of Poncirus trifoliata (L.) Raf., Cleopatra mandarin (C. reshni . Analysis of CsMIP protein properties and conserved amino acid residues
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.