ebook img

Generalized theta linear series on moduli spaces of vector bundles on curves PDF

33 Pages·0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generalized theta linear series on moduli spaces of vector bundles on curves

GENERALIZED THETA LINEAR SERIES ON MODULI SPACES OF VECTOR BUNDLES ON CURVES 0 1 MIHNEAPOPA 0 2 n a CONTENTS J 7 1. Introduction 1 1 2. Semistablebundles 2 2.1. Arbitraryvectorbundles 2 ] G 2.2. Semistablevectorbundles 4 2.3. Example:Lazarsfeld’sbundles 6 A 2.4. Example:Raynaud’sbundles 8 . h 2.5. Themodulispace 9 t a 3. Generalizedthetadivisors 11 m 4. Quotschemesandstablemaps 14 [ 5. VerlindeformulaandStrangeDuality 15 5.1. Verlindeformula 15 4 5.2. StrangeDuality 17 v 6. Basepoints 19 2 9 6.1. Abstractcriteria 19 1 6.2. Concreteconstructions 20 3 6.3. Otherdeterminantsorlevels 22 . 2 7. Effectiveresultsongeneralizedthetalinearseries 23 1 7.1. Thethetamap 23 7 7.2. Basepoint-freeness 24 0 7.3. Veryampleness 26 : v 7.4. VerlindebundlesandboundsforU (r,d) 27 X i X 7.5. Conjectures 30 References 31 r a 1. INTRODUCTION This article is based on lecture notes prepared for the August 2006 Cologne Summer School. Thenoteshaveexpandedinthemeanwhileintoasurveywhosemainfocusisthe studyoflinearseriesonmodulispacesofvectorbundlesoncurves. Thepaperisessentiallydividedintotwoparts.Thefirst,smallerone,consistsof§2and §3,andisalmostentirelydevotedtobackgroundmaterial,reflectingpreciselywhatIwas TheauthorwaspartiallysupportedbytheNSFgrantDMS-0500985,byanAMSCentennialFellowship,and byaSloanFellowship,atvariousstagesinthepreparationofthiswork. 1 2 MihneaPopa abletocoverduringthefirstcoupleofintroductorylecturesattheschool. Thereareafew shortproofsorhints, someexercises, while forthefundamentalresultsI haveto referto thestandardreferences. Thispartisintendedasawarm-upfortherestofthepaper,and especially as an introduction to the literature for beginners in the field. The experts are advisedtoskipto§4(withperhapstheexceptionof§2.3,2.4). Thesecondpartconsistsof§4-§7,andisasurveyofthecurrentstatusinthetheoryof linearseriesandgeneralizedthetadivisorsonthesemodulispaces,includingtheconnec- tion with Quotschemes. Beauville’ssurvey[Be2] has beena greatsourceof inspiration forresearchersinthisfield(andinfactthemainoneformyself). Anumberofproblems proposedtherehavebeenhowever(atleastpartially)solvedinrecentyears,andnewcon- jectureshaveemerged.Anupdateisprovidedin[Be5],wheretheemphasisisspecifically onthethetamap. Heremygoalistocomplementthisbyemphasizingeffectiveresultson pluri-thetalinearseries,andproposingsomequestionsinthisdirection. Concretely, I would like to stress relatively new techniques employed in the analysis of linear series on modulispaces of vector bundles, namely the use of moduli spaces of stablemapsforunderstandingQuotschemes,andoftheFourier-Mukaifunctorinthestudy of coherent sheaves on Jacobians coming from generalized theta divisors. In addition, I will briefly describe recent important developments, namely the proof of the Strange DualityconjecturebyBelkaleandMarian-Oprea,andthealgebro-geometricderivationof theVerlindeformulaviaintersectiontheoryonQuotschemes,duetoMarian-Oprea. ThereiscertainlyrecentandnotsorecentliteraturethatIhavenotcoveredinthissurvey, forwhichIapologize.Thisismainlyduetothefactthatingoesindirectionsdifferentfrom themainthrusthere,butsometimesalsotomyownlackofsufficientfamiliaritywiththe respectiveresults. Forthose soinclined, muchofthematerialcanalso bephrasedin the languageofstacks,withlittleornodifferenceintheproofsoftheresultsin§3-7. Acknowledgements. I would like to warmly thank the organizersof the Cologne Sum- merSchool,ThomasEcklandStefanKebekus,foranextraordinarilywell-organizedand successfulschool,whichIconsideramodelforsuchevents. I amalso gratefultoallthe students who took part for their enthusiasm and their helpfulcommentson the material. Finally, I thank ArnaudBeauville, Prakash Belkale, Alina Marian and Dragos¸ Oprea for veryusefulcommentsandcorrections. 2. SEMISTABLEBUNDLES Most of the foundationalmaterial in this section can be found in detail in the books ofLePotier[LP2]andSeshadri[Se],especiallytheconstructionofmodulispaces,which is only alluded to here. I have only included sketches of simpler arguments, and some exercises, in orderto givethe verybeginneran idea of the subject. However,an explicit descriptionof two specialclasses ofvectorbundlesthatmightbe of interestto the more advancedisgivenin§2.3and§2.4. 2.1. Arbitraryvectorbundles. LetX bea smoothprojectivecurveofgenusg overan algebraicallyclosedfieldk. Iwillidentifyfreelyvectorbundleswithlocallyfreesheaves. Generalizedthetalinearseriesonmodulispacesofvectorbundlesoncurves 3 Definition 2.1. Let E be a vectorbundle on X, of rank r. The determinant of E is the linebundledetE := ∧rE. ThedegreeofE isthedegreeeofdetE.1 TheslopeofE is µ(E)= e ∈Q. r TheRiemann-Rochformulaforvectorbundlesoncurvessays: χ(E)=h0(X,E)−h1(X,E)=e+r(1−g). Animportantexampleisthefollowing:χ(E)=0 ⇐⇒ µ(E)=g−1. Exercise2.2. LetE be a vectorbundleofrankr on thecurveX. Then, foreachk, the degreeofthequotientbundlesofEofrankkisboundedfrombelow. From the modulipointofview, the initialidea wouldbe to constructan algebraicva- riety (orscheme)parametrizingthe isomorphismclasses of all vectorbundleswith fixed invariants,i.e. rankr anddegreee. Notethatfixingtheseinvariantsisthesameasfixing theHilbertpolynomialofE. Definition2.3. LetBbeasetofisomorphismclassesofvectorbundles. WesaythatBis boundedifthereexistsaschemeoffinitetypeS overk andavectorbundleF onS ×X suchthatalltheelementsofBarerepresentedbysomeF :=F withs∈S. s |{s}×X Wefindeasilythattheinitialideaaboveistoonaive. Lemma2.4. Thesetofisomorphismclassesofvectorbundlesofrankr anddegreeeon X isnotbounded. Proof. Assuming thatthe family is bounded,use the notationin Definition2.3. As F is flat over S, by the semicontinuity theorem we get that there are only a finite number of possiblehiF fori = 0,1. Fixnowapointx ∈ X anddefineforeachk ∈ Nthevector s bundle E :=O (−kx)⊕O ((k+e)x)⊕O⊕r−2. k X X X Theyallclearlyhaverankr anddegreee. Ontheotherhand,whenk → ∞wesee that h0E andh1E alsogoto∞,whichgivesacontradiction. (cid:3) k k There exists however a well-known bounded moduli problem in this context, which producestheQuotscheme. LetE beavectorbundleofrankranddegreeeonX,andfix integers0≤k ≤randd. Wewouldliketoparametrizeallthequotients E −→Q−→0 withQacoherentsheafofrankkanddegreed.2WeconsidertheQuotfunctor QuotE : Algebraicvarieties/k→Sets k,d associatingto each S the set ofcoherentquotientsofE := p∗ E which are flatoverS S X andhaverankkanddegreedovereachs ∈ S. Thisisacontravariantfunctorassociating to T →f S the map taking a quotient E → Q to the quotient E = (f ×id)∗E → S T S (f ×id)∗Q. 1ThisisthesameasthefirstChernclassc1(E). 2Recallthattherankofanarbitrarycoherentsheafisitsrankatageneralpoint,whilethedegreeisitsfirst Chernclass. 4 MihneaPopa Theorem2.5(Grothendieck,cf. [LP2]§4). ThereexistsaprojectiveschemeQuot (E) k,d offinitetypeoverk,whichrepresentsthefunctorQuotE . k,d This means the following: there exists a “universal quotient” E → Q on Quot (E) k,d Quot (E)×X,whichinducesforeachvarietyS anisomorphism k,d Hom(S,Quot (E))∼=QuotE (S) k,d k,d givenby (S →f Quot (E))→(E →(f ×id)∗Q). k,d S The terminology is: the Quot functor (scheme) is a fine moduli functor (space). I will discussmorethingsaboutQuotschemeslater–fornowlet’sjustnotethefollowingbasic fact,whichisastandardconsequenceofformalsmoothness. Proposition2.6([LP2]§8.2). LetE beavectorbundleofrankranddegreee,and q : [0→G→E →F →0] apointinQuot (E). Then: k,d (1)ThereisanaturalisomorphismTqQuotk,d(E)∼=Hom(G,F)(∼=H0(G∨⊗F)). (2)IfExt1(G,F)(∼=H1(G∨⊗F))=0,thenQuot (E)issmoothatq. k,d (3)Wehave h0(G∨⊗F)≥dim Quot (E)≥h0(G∨⊗F)−h1(G∨⊗F). q k,d Thelastquantityisχ(G∨⊗F)=rd−ke−k(r−k)(g−1)(byRiemann-Roch). 2.2. Semistable vectorbundles. To remedythe problemexplainedin the previoussub- section,oneintroducesthefollowingnotion. Definition 2.7. Let E be a vector bundle on X of rank r and degree e. It is called semistable(respectivelystable)ifforanysubbundle06=F ֒→E,wehaveµ(F)≤µ(E) (respectivelyµ(F)<µ(E)). Itcanbeeasilycheckedthatinthedefinitionwecanreplace subbundleswitharbitrarycoherentsubsheaves. Exercise2.8. LetEandF bevectorbundlessuchthatχ(E⊗F)=0. IfH0(E⊗F)=0 (orequivalently,byRiemann-Roch,H1(E⊗F)=0),thenE andF aresemistable. Exercise2.9. LetF beastablebundleonthecurveX. Foranyexactsequence 0−→E −→F −→G−→0 wehaveHom(G,E)=0. Herearesomebasicproperties. Proposition2.10. If E and F are stable vector bundles and µ(E) = µ(F), then every non-zerohomomorphismφ : E → F isanisomorphism. InparticularHom(E,E) ∼= k (i.e.E issimple). Generalizedthetalinearseriesonmodulispacesofvectorbundlesoncurves 5 Proof. Say G = Im(φ). Then by definition we must have µ(E) ≤ µ(G) ≤ µ(F) and whereverwe have equality the bundlesthemselvesmustbe equal. Since µ(E) = µ(F), wehaveequalityeverywhere,whichimplieseasilythatφmustbeanisomorphism. Now ifφ ∈ Hom(E,E), bytheabovewesee thatk[φ] isanfinite fieldextensionofk. Since thisisalgebraicallyclosed,wededucethatφ=λ·Id,withλ∈k∗. (cid:3) Exercise2.11. Fixaslopeµ∈Q,andletSS(µ)bethecategoryofsemistablebundlesof slopeµ. BasedonProposition2.10,showthatSS(µ)isanabeliancategory. Definition2.12. LetE ∈SS(µ). AJordan-HölderfiltrationofE isfiltration 0=E ⊂E ⊂...⊂E =E 0 1 p suchthateachquotientE /E isstableofslopeµ. i+1 i Proposition2.13. Jordan-Hölderfiltrationsexist. Anytwohavethesamelengthand,upon reordering,isomorphicstablefactors. Proof. (Sketch)Sincetherankdecreases,thereisaG⊂E stableofslopeµ. Thisimplies thatE/GissemistableofslopeµandwerepeattheprocesswithE/GinsteadofE. The restisawell-knowngeneralalgebraargument. (cid:3) Definition2.14. (1)ForanyJordan-HölderfiltrationE ofE,wedefine • gr(E):=gr(E )= E /E . • i+1 i M i ThisiscalledthegradedobjectassociatedtoE (well-definedbytheabove). (2)AvectorbundleEiscalledpolystableifitisadirectsumofstablebundlesofthesame slope.(SoforE semistable,gr(E)ispolystable.) (3)TwobundlesE,F ∈SS(µ)arecalledS-equivalentifgr(E)∼=gr(F). Sometimeswecanreducethestudyofarbitrarybundlestothatofsemistableonesvia thefollowing: Exercise2.15(Harder-Narasimhanfiltration). LetE beavectorbundleonX. Thenthere existsanincreasingfiltration 0=E ⊂E ⊂...⊂E =E 0 1 p suchthat (1) EachquotientE /E issemistable. i+1 i (2) Wehaveµ(E /E )>µ(E /E )foralli. i i−1 i+1 i Thefiltrationisunique;itiscalledtheHarder-NarasimhanfiltrationofE. Example2.16. (1)Alllinebundlesarestable. AnyextensionofvectorbundlesinSS(µ) isalsoinSS(µ). (2)If(r,e)=1,thenstableisequivalenttosemistable. (3) If X = P1, by Grothendieck’s theorem we know that every vector bundle splits as E ∼=O(a1)⊕...⊕O(ar),soitissemistableiffallaiareequal. 6 MihneaPopa (4)We willencountersomeveryinterestingexamplesbelow. Untilthen, hereisthefirst type of examplewhich requiresa tiny argument. Say L and L are line bundleson X, 1 2 withdegL =danddegL =d+1. Considerextensionsoftheform 1 2 0−→L −→E −→L −→0. 1 2 TheseareparametrizedbyExt1(L ,L )∼=H1(X,L ⊗L−1). ByRiemann-Rochthisis 2 1 1 2 isomorphictokg−2,soassoonasg ≥ 3wecanchoosetheextensiontobenon-split. For suchachoiceEisstable:firstnotethatµ(E)=d+1/2.ConsideranylinesubbundleM ofE. IfdegM ≤deverythingisfine. Ifnot,theinducedmapM →L mustbenon-zero 2 (otherwiseM wouldfactorthroughL ,oftoolowdegree).Thisimmediatelyimpliesthat 1 itmustbeanisomorphism,whichisacontradictionsincetheextensionisnon-split. For later reference, let me also mention the following important result. An elementary proofbasedonGieseker’sideascanbefoundin[Laz2]§6.4. Theorem2.17. Assumethatchar(k)=0.IfEandF aresemistablebundles,thenE⊗F isalsosemistable.3Inparticular,foranyk,SkE and∧kE arealsosemistable. 2.3. Example: Lazarsfeld’s bundles. Here are the more interesting examples of semistable bundles promised above. In this subsection, following [Laz1], I describe a constructionconsideredbyLazarsfeldinthestudyofsyzygiesofcurves.InthenextIwill describeadifferentconstructionduetoRaynaud. ConsideralinebundleLonX ofdegreed≥ 2g+1. DenotebyM thekernelofthe L evaluationmap: 0−→M −→H0(L)⊗O −e→v L−→0 L X andletQ =M∨. NotethatrkQ =h0L−1=d−ganddegL=d,soµ(Q )= d . L L L L d−g ThemainpropertyofQ isthefollowing: L Proposition 2.18. If x ,...,x are the points of a generic hyperplane section of X ⊂ 1 d P(H0(L)),thenQ sitsinanextension: L d−g−1 0−→ O (x )−→Q −→O (x +...+x )−→0. X i L X d−g d M i=1 Proof. (1)Lookfirstatageneralsituation: assumethatx ,...,x aredistinctpointson 1 k X,withD =x +...+x ,suchthat: 1 k (1) L(−D)isgloballygenerated. (2) h0L(−D)=h0L−k. Claim: Inthiscasewehaveanexactsequence k 0−→M −→M −→ O (−x )−→0. L(−D) L X i M i=1 3ItisalsotruethatifEandF areactuallystable,thenE⊗F ispolystable. Generalizedthetalinearseriesonmodulispacesofvectorbundlesoncurves 7 Proof. By Riemann-Roch and (1) we have h1L(−D) = h1L. This implies that after passingtocohomology,theexactsequence 0−→L(−D)−→L−→L −→0 D staysexact. NotealsothattheevaluationmapforL canbewrittenas D k H0L ⊗O →L = (O →O ) . D X D X xi (cid:0) (cid:1) (cid:0)Mi=1 (cid:1) Using all of these facts, (2) and the Snake Lemma, we obtain a diagram whose top row givespreciselyourClaim. 0 0 0 (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 // ML(−D) //ML //⊕ki=1OX(−xi) //0 (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 // H0L(−D)⊗OX //H0L⊗OX //H0LD //0 (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 //L(−D) // L //LD //0 (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 0 0 (cid:3) (2) Note now that if in the situation above we also have h0L(−D) = 2, then the exact sequencetakestheform k 0−→O (x +...+x )⊗L−1 −→M −→ O (−x )−→0. X 1 k L X i M i=1 Thisisclear,sinceinthiscasebydefinitionrkM =1anddetM =L−1(D). L(−D) L(−D) (3)SaynowthatX isembeddedinPnbyalinebundleL,andΛ:=Span x ,...,x ⊂ 1 k Pn. Thenwehavethefollowinggeneral (cid:0) (cid:1) Exercise2.19. (a)h0L(−D)=h0L−k ⇐⇒ dimΛ=k−1. (b)L(−D)isgloballygenerated ⇐⇒ Λ∩X ={x ,...,x }andΛdoesnotcontainthe 1 k tangentlinetoX atx foralli. i (4)NowconsiderthesituationintheProposition,whenX ⊂P(H0L)andx ,...,x are 1 d thepointsofageneralhyperplanesectionofX. Thisimpliesthatthepointsareinlinear generalposition,whichimmediatelygivesthattheconditionsinExercise2.19aresatisfied. Bythepreviouspoints,wearedone. (cid:3) 8 MihneaPopa Proposition2.18impliesthestabilityofQ . TheproofbelowisduetoEin-Lazarsfeld L [EL1]. Proposition2.20. UndertheassumptionsaboveQ isastablebundle. L Proof. Let’s see that the dual M is stable. One can actually prove a bit more: M is L L cohomologicallystable,i.e. foranylinebundleAofdegreeaandanyt<rkM =d−g: L t td (1) H0( M ⊗A−1)=0if a≥t·µ(M )=− . L L d−g ^ ThisimpliesthestabilityofM : indeed,ifF ֒→M isasubbundleofdegreeaandrank L L t, then we have an inclusion A := tF ֒→ tM , which implies that H0( tM ⊗ L L A−1) 6= 0. By cohomologicalstabiVlity we muVst have µ(F) = a < µ(M ),Vso M is t L L stable. To prove (1), take exterior powers in the dual of the sequence in Proposition 2.18 to obtain t−1 d−g−1 t t d−g−1 0→O (−x −...−x )⊗ ( O (−x ))→ M → ( O (−x ))→0. X d−g d X i L X i ^ M ^ ^ M i=1 i=1 Inotherwordswehaveanexactsequence t 0→ O (−x −...−x −x ...−x ))→ M X i1 it−1 d−g d L M ^ 1≤i1<...<it−1≤d−g−1 → O (−x −...−x ))→0. X j1 jt M 1≤j1<...<jt≤d−g−1 We tensor this sequence by A−1. It can be checked easily that on both extremes H0 is zero,asthepointsx aregeneral.Thisimplieswhatwewant. (cid:3) i Corollary2.21. Ifchar(k)=0,thenforallpthebundle pQ issemistable. L V 2.4. Example: Raynaud’sbundles. (cf. [Ra])LetX ֒→ J(X)be an Abel-Jacobiem- bedding. Denote A = J(X). Then A has a principalpolarizationΘ, which inducesan isomorphism A ∼= A = Pic0(A). Denote by P a Poincaré bundle on A×A. For any m≥1,weconsiderwhatiscalledtheFourier-MukaitransformofOb(−mΘ),namely: b A b \ F :=OAb(−mΘ):=RgpA∗(p∗AbO(−mΘ)⊗P). Bybasechange,thisisavectorbundlewithfiberoverx∈Aisomorphicto Hg(A,OAb(−mΘ)⊗P|{x}×Ab)∼=H0(J(X),OJ(X)(mΘ)⊗Px)∨, whereP istheblinebundleinPic0(J(X)))correspondingtox ∈ J(X). (Notethatasx x varieswith J(X), P varieswithPic0(J(X)).) HenceF isa vectorbundleofrankmg. x DefinethevectorbundleE :=F onX. |X Theclaimisthatthisisasemistablebundle. Indeed,considerthemultiplicationbym mapφ :A→A. ByaresultofMukai,[Mu2]Proposition3.11,wehavethat m φ∗mF ∼=H0OAb(mΘ)⊗OAb(mΘ)∼= OAb(mΘ). Mmg Generalizedthetalinearseriesonmodulispacesofvectorbundlesoncurves 9 Weconsidertheétalebasechangeψ : Y →X,whereY = φ−1(X). Thedecomposition m ofF viapull-backbyφ impliesthatψ∗E issemistableonY. Applyingthewell-known m Lemmabelow,wededucethatEissemistable. Lemma2.22. (cf. [Laz2]Lemma6.4.12)Letf : Y →X beafinitemorphismofsmooth projectivecurves,andE avectorbundleonX.ThenEissemistableifandonlyiff∗Eis semistable. Let’salsocomputetheslopeofE.Notethatdegψ∗E =degφ ·degE =m2g·degE. m Thisgives mg·m·(θ·[Y]) θ·[Y] degE = = . m2g mg−1 ButsinceY =φ−1(X),φ∗ θ ≡m2·θandθ·[X]=g,wehavethatm2·(θ·[Y])=g·m2g. m m Puttingeverythingtogether,wefinallyobtain g degE =g·mg−1, i.e.µ(E)= . m Remark2.23. Schneider[Sch2]usesaslightlymorerefinedstudyofRaynaud’sbundles basedontheta-groupactionsinordertoshowthattheyareactuallystable. Remark2.24. AgeneralizationofRaynaud’sexamples,bymeansofsemi-homogeneous vectorbundlesontheJacobianofX,ispresentedinRemark7.18(2). Remark2.25. Iwillonlymentioninpassingonemoreinterestingidea,whichhastodo withmoduliofcurves:certaintypesofstablebundlescanexistonlyonspecialcurves,just like in the usual Brill-Noether theory for line bundles. One can look for vector bundles with“many"sections,i.e. wonderwhetherforagivenkthereexistsemistablebundlesE onX ofrankranddegreed(orfixeddeterminantL),whichhavekindependentsections. For instance, if g(X) = 10, one can see that the condition that there exist a semistable bundleofrank2anddeterminantω withatleast7sectionsiscodimension1inM ,i.e. X 10 suchbundlesexistonlyoncurvesfillingupadivisorinM . Theclosureofthislocusin 10 M isaveryinterestingdivisor,thefirstoneshowntobeofslopesmallerthanexpected 10 (cf. [FP]). As examples of stable bundles though, the vector bundles here are not quite new:theyareroughlyspeakingofthesamekindastheLazarsfeldexamplesabove. 2.5. Themodulispace. Backtotheboundednessproblem:wewanttoseethatsemistable bundlesdothejob.Firstatechnicalpoint,extendingawell-knownfactforlinebundles. Exercise2.26. LetEbeasemistablebundleonX. (a)Ifµ(E)>2g−2,thenh1E =0. (b)Ifµ(E)>2g−1,thenE isgloballygenerated. Proposition2.27. ThesetS(r,d)ofisomorphismclassesofsemistablebundlesofrankr anddegreedisbounded. Proof. FixO (1)apolarizationonthecurve.ByExercise2.26,thereexistsafixedm≫ X 0suchthatforallF inS(r,d)wehaveh1F(m)=0andF(m)isgloballygenerated.Let q :=h0F(m)=χ(F(m)),whichisconstantbyRiemann-Roch.Theglobalgenerationof F(m)meansthatwehaveaquotient O⊕q(−m)−β→F −→0. X 10 MihneaPopa TheseallbelongtotheQuotschemeQuot (O⊕q(−m)),whichisaboundedfamily. (cid:3) r,d X Thequotientβ canberealizedinmanyways: fixa vectorspaceV ∼= kq, andchoose anisomorphismV ∼= H0F(m). OnQuotr,d(V ⊗OX(−m))∼=Quotr,d(OX⊕q(−m))we haveanaturalGL(V)-action,namelyeachg ∈GL(V)inducesadiagram V g⊗⊗OidX(cid:15)(cid:15) (−ssmss)sssssss//99 Q V ⊗O (−m) X Thescalarmatricesacttriviallyonthesequotients,soinfactwehaveaPGL(V)-action. Proposition2.28. LetΩ⊂Quot (V ⊗O (−m))bethesetofquotientsQsuchthatQ r,d X issemistableandV ∼= H0Q(m). ThenΩisinvariantunderthePGL(V)-action,andwe haveabijection Ω/PGL(V)−→S(r,d). Proof. The set Ω is clearly invariant, and the points in the same orbit give isomorphic quotientbundles, sowe havea naturalmapΩ/PGL(V) −→ S(r,d). Since m ≫ 0, by globalgenerationthemapissurjective. Supposenowthatwehavetwodifferentquotients inducinganisomorphismφ: V ⊗O (−m) //Q X φ ∼= (cid:15)(cid:15) V ⊗O (−m) //Q X This inducesan isomorphismH0Q(m) H−0φ→(m) H0Q(m), which correspondsto an ele- mentg ∈GL(V). Thisisuniquelydetermineduptoscalars,sowecaninfactconsiderit inPGL(V). (cid:3) Although this was not one of the topics of the lectures, the main point of Geometric InvariantTheory(GIT)– appropriatelyforthisvolume,oneofD. Mumford’smostcele- brated achievements– is in this contextessentially to show that in fact this quotienthas the structure of a projective algebraic variety.4 The GIT machineryconstructs the space U (r,d) –analgebraicvarietyreplacementofS –themodulispaceofS-equivalence X r,d classes of semistable vector bundles of rank r and degree d on X. For the well-known construction,thatcanbeadaptedtoarbitrarycharacteristicwithoutdifficulty,cf. [LP2]§7 or[Se]Ch.I.WedenotebyUs(r,d)theopensubsetcorrespondingtoisomorphismclasses X ofstablebundles. We consideralso a variantof U (r,d) when the determinantof the vectorbundlesis X fixed. Moreprecisely,foranyL ∈ Picd(X), wedenotebySU (r,L)themodulispace X of(S-equivalenceclassesof)semistablebundlesofrankrandfixeddeterminantL. These arethefibersofthenaturaldeterminantmap det:U (r,d)−→Picd(X). X 4ThisisliterallytrueifweconsiderS-equivalenceclassesofsemistablebundles(cf.Definition2.14)instead ofisomorphismclasses.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.