ebook img

General Helicity Formalism for Polarized Semi-Inclusive Deep Inelastic Scattering PDF

0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview General Helicity Formalism for Polarized Semi-Inclusive Deep Inelastic Scattering

JLAB-THY-11-3 General Helicity Formalism for Polarized Semi-Inclusive Deep Inelastic Scattering M. Anselmino,1,2 M. Boglione,1,2 U. D’Alesio,3,4 S. Melis,5,6 F. Murgia,4 E.R. Nocera,1 and A. Prokudin7 1Dipartimento di Fisica Teorica, Universita` di Torino, Via P. Giuria 1, I-10125 Torino, Italy 2INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy 3Dipartimento di Fisica, Universita` di Cagliari, I-09042 Monserrato (CA), Italy 4INFN, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy 5Dipartimento di Scienze e Tecnologie Avanzate, Universita` del Piemonte Orientale, Viale T. Michel 11, I-15121 Alessandria, Italy 6INFN, Gruppo Collegato di Alessandria, Via P. Giuria 1, I-10125 Torino, Italy 7Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606 1 We study polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes, (cid:96)(S )+p(S) → 1 (cid:96) (cid:96)(cid:48)hX,withintheQCDpartonmodelandafactorizationscheme,takingintoaccountalltransverse 0 motions, of partons inside the initial proton and of hadrons inside the fragmenting partons. We 2 use the helicity formalism. The elementary interactions are computed at LO with non collinear n exact kinematics, which introduces phases in the expressions of their helicity amplitudes. Several a Transverse Momentum Dependent (TMD) distribution and fragmentation functions appear and J contribute to the cross sections and to spin asymmetries. Our results agree with those obtained 5 with different formalisms, showing the consistency of our approach. The full expression for single ] anddoublespinasymmetriesAS(cid:96)S isderived. Simplified,explicitanalyticalexpressions,convenient forphenomenologicalstudies, areobtainedassumingafactorizedGaussiandependenceonintrinsic h p momenta for the TMDs. - p PACSnumbers: 13.88.+e,13.60.-r,13.85.Ni e h [ I. INTRODUCTION 1 v Experiments with inclusive Deep Inelastic Scattering (DIS) processes, (cid:96)N (cid:96)(cid:48)X, have been performed for 1 → decades and have been interpreted as the most common way to investigate the internal structure of protons 1 and neutrons. At large energy and momentum transfer the leptons interact with the nucleon constituents; by 0 detecting the angle and the energy of the scattered lepton one obtains information on the partonic content of 1 . the nucleons. This information is encoded in the Parton Distribution Functions (PDFs) which give the number 1 density of partons moving collinearly with the nucleon and carrying a fraction x of its momentum at a certain 0 valueofthesquaredmomentumtransferQ2. ThepredictionoftheQ2 dependenceofthePDFshasbeenoneof 1 thegreatsuccessesofpQCD.Althoughsuccessful, suchanapproachonlyoffersinformationonthelongitudinal 1 : degrees of freedom of quarks and gluons, giving no information on the transverse motion, which is integrated v over. This transverse motion – transverse with respect to the parent nucleon direction – is related to intrinsic i X properties of the partons, like orbital motion, and reveals new aspects of the nucleon structure. r In the last years, driven by unexpected spin effects and azimuthal dependences, the study of the intrinsic a motion of partons has made enormous progress; indeed, a new phase in the exploration of the proton and neutron composition has begun. The leading role in such an effort is played by Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes, (cid:96)N (cid:96)(cid:48)hX, in which, in addition to the scattered lepton, also a final hadron → is detected; this hadron is generated in the fragmentation of the scattered quark (or gluon) – the so-called current fragmentation region – and, as such, yields some new information on the parton primordial motion. This new information is encoded in the so-called Transverse Momentum Dependent partonic distribution and fragmentation functions (TMD-PDFs and TMD-FFs, or, shortly, TMDs), fˆ (x,k ) and Dˆ (z,p ). The a/p ⊥ h/a ⊥ TMD-PDFs give the number density of quarks (a=q) or gluons (a=g) with light-cone momentum fraction x andtransversemomentumk insideafastmovingproton; theTMD-FFsgivethenumberdensityofhadronsh ⊥ resultinginthe fragmentationofparton a, withalight-cone momentumfraction z andatransversemomentum p , relative to the original parton motion. At leading-twist, taking into account the parton and the nucleon ⊥ spins, there are eight independent TMD-PDFs [1, 2]; if the final hadron is unpolarized or spinless, say a pion, there are two TMD-FFs. All these quantities combine into physical observables and by gathering information about them one accesses the momentum distribution of partons inside the nucleons. ThetheoreticalframeworkusedtoanalyzetheexperimentaldataistheQCDfactorizationscheme,according to which the SIDIS cross section is written as a convolution of TMDs and elementary interactions: dσ(cid:96)p→(cid:96)(cid:48)hX =(cid:88)fˆ (x,k ;Q2) dσˆ(cid:96)q→(cid:96)q Dˆ (z,p ;Q2). (1) q/p ⊥ ⊗ ⊗ h/q ⊥ q 2 hadronplane X axis cm− φ P h h φ S "" S P T γ∗,q p Zcm−axis " leptonplane FIG.1: KinematicalconfigurationandconventionsforSIDISprocesses. Theinitialandfinalleptonmomentadefinethe (X−Z) plane. cm In the γ∗ p c.m. frame, see Fig. 1, the measured transverse momentum, P , of the final hadron is generated T − by the transverse momentum of the quark in the target proton, k , and of the final hadron with respect to the ⊥ fragmenting quark, p . At order k /Q it is simply given by ⊥ ⊥ P =zk +p . (2) T ⊥ ⊥ There is a general consensus [3–7] that such a scheme holds in the kinematical region defined by P Λ Q. (3) T QCD (cid:39) (cid:28) The presence of the two scales, small P and large Q, allows to identify the contribution from the unintegrated T partonic distribution (P k ), while remaining in the region of validity of the QCD parton model. At larger T ⊥ (cid:39) values of P other mechanisms, like quark-gluon correlations and higher order pQCD contributions become T important [7–9]. A similar situation [4, 6, 10–16] holds for Drell-Yan processes, AB (cid:96)+(cid:96)−X, where the two → scales are the small transverse momentum, q , and the large invariant mass, M, of the dilepton pair. T Let us elaborate now on Eq. (1). We consider the SIDIS cross section at the leading α order – i.e. one- em photon exchange – and in the “standard” [17] kinematical configuration of Fig. 1, which defines the azimuthal angles φ and φ in the γ∗ p c.m. frame. The most general dependence on these angles has been discussed h S − in several seminal papers [1, 18–20], both in a model independent scheme and in the parton model. According to the usual derivation, the polarization states of the virtual photon, as emitted by the lepton in a certain direction, contains azimuthal dependences [18, 19]; within the parton model, the virtual photon scatters off a quark – which subsequently fragments into the final hadron – and each term of the azimuthal dependences can be written as a convolution of distribution and fragmentation functions [1, 19–22]. Were-deriveherethesamegeneralexpressionofthecrosssection,anditspartonmodelcontent,byassuming fromthebeginningthevalidityoftheTMDfactorization(1);weusethehelicitybasistocomputetheelementary interactionandtointroducetransversemomentumdependentdistributionandfragmentationfunctions. Insuch an approach the full azimuthal dependence is simply generated by the properties of the helicity spinors and amplitudes. Ourfinalresultscoincidewiththeexistingones,showingthefullequivalenceofthetwoprocedures. Our formalism is based on a physical and intuitive picture, which somehow factorizes the physical process in different steps: the “emission” of a parton by the interacting hadron (p q+X), the interaction of the parton → with the lepton ((cid:96)q (cid:96)q), and the “emission” of the final hadron by the scattered quark (q h+X); each → → step is described by the corresponding helicity amplitudes. For SIDIS processes this factorization has been formallyprovenandexpressedintermsofTMDs,Eq. (1). Suchaprocedurecannaturallybeextendedtoother processes, and indeed this has been done for the large P production of a single particle in inclusive hadronic T interactions, AB CX [2]. The point, however, is that, despite the natural simplicity of the approach, the → TMDfactorizationhasnotbeenprovenforprocesseswithasinglelargescale,likeAB CX. Duetothis,the → study of dijet production at large P in hadronic processes was proposed [23–26], where the second small scale T is the total q of the two jets, which is of the order of the intrinsic partonic momentum k . This procedure T ⊥ leads to a modified TMD factorization approach, with the inclusion in the elementary processes of gauge link 3 color factors [27–30]. However, some doubts on the validity of such a factorization scheme have been recently cast[31]. ApossibleexperimentaltestoftheTMDfactorizationforprocesseswithonlyonelargescalehasbeen proposedinRef.[32]. WelimitourdiscussioninthispapertoSIDISprocesses,inthekinematicalregion(3)for whichTMDfactorizationholds,andobtainthemostgeneralexpressionforthepolarizedcrosssection,withour helicityformalism. Asimilarstudycanbedone,withthesamevalidity,forDrell-Yanprocesses[12,16,33]. We introduce only leading-twist TMDs and take into account exact kinematics, often simplifying results by only keeping terms up to (k /Q). ⊥ O The paper is organized as follows. In Section II we present our formalism and compute the polarized SIDIS cross section. In Section III we give the explicit general expressions of all independent single and double spin asymmetries,intermsoftheTMDs. InSectionIVwegiveexplicitanalyticalformulaeforthespinandazimuthal asymmetries, assuming a factorized Gaussian dependence of the TMDs on k and p . In Section V we draw ⊥ ⊥ our conclusions. Useful results are derived and collected in Appendices A–E. II. CROSS SECTIONS IN POLARIZED SIDIS AccordingtoRefs. [34]and[2]thefulldifferentialcrosssectionforthepolarizedSIDISprocess,(cid:96)(S )+p(S) (cid:96) (cid:96)(cid:48)hX, can be written, within TMD factorization, as → dσ(cid:96)(S(cid:96))+p(S)→(cid:96)(cid:48)hX 1 (cid:88)(cid:88) 1 (cid:90) z = d2k J dx dQ2dz d2P dφ 2π 16π(x s)2 ⊥ z B h T S q {λ} B h ρ(cid:96),S(cid:96) ρqi/p,S fˆ (x,k )Mˆ Mˆ∗ Dˆλh,λh (z,p ) , (4) × λ(cid:96)λ(cid:48)(cid:96) λqiλ(cid:48)qi qi/p,S ⊥ λ(cid:96)(cid:48)λqf;λ(cid:96)λqi λ(cid:96)(cid:48)λ(cid:48)qf;λ(cid:48)(cid:96)λ(cid:48)qi λqf,λ(cid:48)qf ⊥ where we adopt the kinematical configuration of Fig. 1, and, as usual: Q2 p P s=((cid:96)+p)2 Q2 = q2 = ((cid:96) (cid:96)(cid:48))2 x = z = · h (5) − − − B 2p q h p q · · · The variables x, z and p which appear under integration in Eq. (4) are related to the final observed variables ⊥ x , z and P and to the integration variable k . The exact relations can be found in Ref. [34]; at (k /Q) B h T ⊥ O ⊥ one simply has x=x z =z p =P z k . (6) B h ⊥ T − h ⊥ J includes some non-planar kinematical factors [34]: x (cid:18) x2 k2 (cid:19)−1 J = B 1+ B ⊥ 1, (7) x x2 Q2 (cid:39) where the last relation holds at (k /Q). At this order Eq. (4) can be written as: ⊥ O dσ(cid:96)(S(cid:96))+p(S)→(cid:96)(cid:48)hX 1 (cid:88)(cid:88) 1 (cid:90) d2k d2p δ(2)(P z k p ) dx dQ2dz d2P dφ (cid:39) 2π 16π(x s)2 ⊥ ⊥ T − h ⊥− ⊥ B h T S q {λ} B ρ(cid:96),S(cid:96) ρq/p,S fˆ (x,k )Mˆ Mˆ∗ Dˆλh,λh (z,p ) , (8) × λ(cid:96)λ(cid:48)(cid:96) λqiλ(cid:48)qi qi/p,S ⊥ λ(cid:96)(cid:48)λqf;λ(cid:96)λqi λ(cid:96)(cid:48)λ(cid:48)qf;λ(cid:48)(cid:96)λ(cid:48)qi λqf,λ(cid:48)qf ⊥ wherewehaveexplicitlyshowntheintegrationoverp forclarityandfurtheruse. InEqs. (4)and(8)thesums ⊥ are performed over all quark flavors (q =u,u¯,d,d¯,s,s¯) and all quark, lepton and hadron helicity indices; ρ(cid:96),S(cid:96) λ λ(cid:48) (cid:96) (cid:96) is the initial lepton helicity density matrix, which describes the spin state of the lepton beam; for unpolarized leptons one simply has ρ(cid:96)λ(cid:96)λ(cid:48)(cid:96) = 21δλ(cid:96)λ(cid:48)(cid:96). It might be helpful, and useful for physical interpretations, to recall that, in general, for a spin 1/2 Dirac particle one has: (cid:18) (cid:19) 1 1+P P iP ρλλ(cid:48) = 2 Px+iPzy 1x−Pzy , (9) − where P = P ,P ,P are the components of the particle polarization vector in its helicity frame (throughout j x y z the paper we follow the definitions and conventions for helicity states of Ref. [35]). 4 Let us discussin detail the different “factors”in Eq. (4): theyrepresentthe distribution ofpolarized partons (onlyquarksatLO)insidetheproton,theirinteractionwiththeleptonandthefragmentationofthe(polarized) final quark into the observed unpolarized hadron h. We follow, and adapt to the case of SIDIS, the discussion ofRef.[2]. Wedescribethethreestagesoftheprocess–quarkemission,interactionandfragmentation–within the helicity formalism, which allows us to introduce in a natural way, at each step, several phases; these, when combined into the expression for the physical cross section (4) give its full azimuthal dependence, in agreement with results in the literature derived in a more formal and somewhat less intuitive way [22]. A. TMD partonic distribution functions ρqi/p,S fˆ (x,k ) counts the number of polarized quarks inside a polarized proton; it is the polarized λqiλ(cid:48)qi qi/p,S ⊥ distribution function of the initial quark q with light-cone momentum fraction x and intrinsic transverse mo- i mentum k , inside the target proton p in a pure spin state S. Using Eq. (9) and parity invariance one can see ⊥ that there are eight independent distribution functions, which can be defined as: Pqfˆ (x,k )=fˆq (x,k ) fˆq (x,k ) ∆fˆq (x,k ) (10) j q/p,ST ⊥ sj/ST ⊥ − −sj/ST ⊥ ≡ sj/ST ⊥ Pqfˆ (x,k )=fˆq (x,k ) fˆq (x,k ) ∆fˆq (x,k ) (11) j q/p,SL ⊥ sj/SL ⊥ − −sj/SL ⊥ ≡ sj/SL ⊥ 1 fˆ (x,k ) f (x,k )+ ∆fˆ (x,k ), (12) q/p,ST ⊥ ≡ q/p ⊥ 2 q/ST ⊥ with ∆fˆ (x,k ) fˆ (x,k ) fˆ (x,k ). (13) q/ST ⊥ ≡ q/ST ⊥ − q/−ST ⊥ We define, for further use, 1 [fˆ (x,k ) fˆ (x,k )] ∆−fˆ (x,k ). (14) 2 sy/ST ⊥ − sy/−ST ⊥ ≡ sy/ST ⊥ In Eqs. (10) and (11), j =x,y,z are the coordinate-axes in the quark helicity frame and S are respectively L,T the longitudinal and transverse components of the proton polarization vector, with respect to its direction of motion. Different notations can be found in the literature for these functions, in particular those introduced by the Amsterdam group [1, 36, 37], which are largely adopted. The relationships between the two sets can be found in Ref. [2], and will be repeated for convenience in Eqs. (22)–(25). According to the physical interpretation of the factorization scheme, as outlined above, these quantities can be introduced by making use of the helicity amplitudes ˆ , which describe the soft process p q+X. λ ,λ ;λ F q X p → Since the partonic distribution is usually regarded, at LO, as the inclusive cross section for this process, the helicity density matrix of a quark q inside the proton p with spin S can be written as (cid:90) ρq/p,S fˆ (x,k ) = (cid:88) ρp,S (cid:80) ˆ ˆ∗ λqλ(cid:48)q q/p,S ⊥ λ ,λ(cid:48) λpλ(cid:48)p X,λXFλq,λX;λpFλ(cid:48)q,λX;λ(cid:48)p p p (cid:88) ρp,S Fˆλq,λ(cid:48)q , (15) ≡ λpλ(cid:48)p λp,λ(cid:48)p λ ,λ(cid:48) p p having defined (cid:90) Fˆλq,λ(cid:48)q (cid:80) ˆ ˆ∗ , (16) λp,λ(cid:48)p ≡ X,λFXλq,λX;λpFλ(cid:48)q,λX;λ(cid:48)p (cid:90) (cid:80) where the stands for a spin sum and phase-space integration over all the undetected remnants of the X,λX proton,consideredasasystemX,andthe ˆ’sarethehelicitydistributionamplitudesforthep q+X process. F → Eq. (15) relates, via the unknown distribution amplitudes, the helicity density matrix of the parton q, ρqλ/qpλ,(cid:48)qS = 21(cid:18)P1xq++PiPzqyq P1xq−−PiPzqyq (cid:19)= 12(cid:18)P1Tq+eiPϕzsqq P1Tq−e−Piϕzqsq (cid:19), (17) 5 to the helicity density matrix of the polarized parent proton, ρpλ,pSλ(cid:48)p = 12(cid:18)SX1++SiSZY SX1 −SiSZY (cid:19)= 12(cid:18)S1T+eSiϕLS S1T e−SiϕLS (cid:19). (18) − − In the above equations S =(S ,S ,S )=(S cosϕ ,S sinϕ ,S ) is the proton polarization vector and ϕ X Y Z T S T S L S its azimuthal angle, defined in the helicity reference frame of the proton p. Similarly, Pq = (Pq,Pq,Pq) = x y z (Pqcosϕ ,Pqsinϕ ,Pq) is the quark polarization vector defined in the quark helicity frame and ϕ its T sq T sq z sq azimuthal angle. For the kinematical configuration of Fig. 1, one has ϕ =2π φ (see Appendix B), so that: S S − ρp,S = 1(cid:18) 1+SL ST eiφS (cid:19). (19) λpλ(cid:48)p 2 ST e−iφS 1 SL − Notice that, in general, we denote by ϕ angles defined in the proton or quark helicity frames, while the symbol φ is used for the corresponding angles measured in the γ∗ p c.m. frame. The distribution amplitudes ˆ depend on the parton li−ght-cone momentum fraction x and on its intrinsic F transverse momentum k , with modulus k and azimuthal angle φ , in a precise way [2, 35], which, again ⊥ ⊥ ⊥ referred to the kinematical configuration of Fig. 1, reads: ˆ (x,k )= (x,k )exp[ iλ φ ], (20) Fλq,λX;λp ⊥ Fλq,λX;λp ⊥ − p ⊥ so that Fˆλq,λ(cid:48)q(x,k )=Fλq,λ(cid:48)q(x,k )exp[i(λ(cid:48) λ )φ ]. (21) λp,λ(cid:48)p ⊥ λp,λ(cid:48)p ⊥ p− p ⊥ Fλq,λ(cid:48)q(x,k ) has the same definition as Fˆλq,λ(cid:48)q(x,k ), Eq. (16), with ˆ replaced by , and does not depend λp,λ(cid:48)p ⊥ λp,λ(cid:48)p ⊥ F F on phases anymore. Notice that we have chosen, throughout the paper, to denote with a hat all soft quantities whichdependonboththemodulusandthephaseofthek andp intrinsicmomentumvectors,whilewedrop ⊥ ⊥ the hat for quantities which only depend on the modulus of these vectors and not on their phases. Eqs. (15), (17), (19) and (21), together with parity properties and the arguments collected in Appendix B, allow to extract the explicit phase dependence of the eight polarized distribution functions (10)–(12), with the result (more details can be found in Ref. [2]): fˆ (x,k ) = F++(x,k )+F++(x,k ) 2S ImF++(x,k ) sin(φ φ ) (22) q/p,S ⊥ ++ ⊥ −− ⊥ − T +− ⊥ S − ⊥ 1 = f (x,k ) S ∆f (x,k )sin(φ φ ) q/p ⊥ − 2 T q/ST ⊥ S − ⊥ k = f (x,k )+S ⊥ f⊥(x,k ) sin(φ φ ) 1 ⊥ T M 1T ⊥ S − ⊥ Pqfˆ (x,k ) = S (cid:2)F++(x,k ) F++(x,k )(cid:3)+2S ReF++(x,k ) cos(φ φ ) (23) z q/p,S ⊥ L ++ ⊥ − −− ⊥ T +− ⊥ S − ⊥ = S ∆fq (x,k )+S ∆fq (x,k ) cos(φ φ ) L sz/SL ⊥ T sz/ST ⊥ S − ⊥ k = S g (x,k )+S ⊥ g⊥ (x,k ) cos(φ φ ) L 1L ⊥ T M 1T ⊥ S − ⊥ Pqfˆ (x,k ) = 2S ReF+−(x,k ) S (cid:2)F+−(x,k )+F−+(x,k )(cid:3) cos(φ φ ) (24) x q/p,S ⊥ − L ++ ⊥ − T +− ⊥ +− ⊥ S − ⊥ = S ∆fq (x,k ) S ∆fq (x,k ) cos(φ φ ) − L sx/SL ⊥ − T sx/ST ⊥ S − ⊥ k (cid:20) k2 (cid:21) = S ⊥ h⊥ (x,k ) S h (x,k )+ ⊥ h⊥ (x,k ) cos(φ φ ) − L M 1L ⊥ − T 1 ⊥ 2M2 1T ⊥ S − ⊥ Pqfˆ (x,k ) = 2ImF+−(x,k )+S (cid:2)F+−(x,k ) F−+(x,k )(cid:3) sin(φ φ ) (25) y q/p,S ⊥ ++ ⊥ T +− ⊥ − +− ⊥ S − ⊥ = ∆fq (x,k )+S ∆−fq (x,k ) sin(φ φ ) − sy/p ⊥ T sy/ST ⊥ S − ⊥ k (cid:20) k2 (cid:21) = ⊥ h⊥(x,k )+S h (x,k ) ⊥ h⊥ (x,k ) sin(φ φ ). M 1 ⊥ T 1 ⊥ − 2M2 1T ⊥ S − ⊥ As already stated, φ and φ are respectively the azimuthal angle of the proton polarization vector S and of S ⊥ the quark intrinsic momentum k measured in the γ∗ p c.m. frame of Fig. 1. Also the quark polarization ⊥ vector components Pq (i = x,y,z) refer to the helicity −frame of the quark, as reached from the γ∗ p frame: i − 6 this explains the sign differences between Eqs. (22, 24–25) and Eqs. (B12, B14–B15) of Ref. [2] (in the latter case the polarized proton was moving along Z rather than Z . Further comments are given in Appendix cm cm B). Notice that, while Pqf =0, one has Pqf =Pqf −=0. y q/p (cid:54) x q/p z q/p Theaboveequations,whichwillbesoonused,deservesomefurtherexplanation. Ineachequationthefirstline λ ,λ(cid:48) expressesthepartonicdistributionsintermsoftheF q q(x,k )’sandshowstheirexactphasedependence. The λ ,λ(cid:48) ⊥ p p secondlinegivesthesamequantitiesusingournotationsfortheTMD-PDFs. Accordingtoour“hatconvention”, quantitieslike∆fq (x,k )donotdependonphasesanymore,assuchdependencehasbeenexplicitlyextracted sj/S ⊥ out; comparing with Eqs. (10)–(12) one has (always referred to the variables and kinematical configuration of Fig. 1): ∆fˆ (x,k ) = ∆f (x,k ) sin(φ φ ) (26) q/ST ⊥ − q/ST ⊥ S − ⊥ ∆fˆq (x,k ) = ∆fq (x,k ) (27) sx/SL ⊥ − sx/SL ⊥ ∆fˆq (x,k ) = ∆fq (x,k ) cos(φ φ ) (28) sx/ST ⊥ − sx/ST ⊥ S − ⊥ ∆fˆq (x,k ) = ∆fq (x,k )= ∆fq (x,k ) (29) sy/SL ⊥ − sy/SL ⊥ − sy/p ⊥ ∆fˆq (x,k ) = ∆fq (x,k )+∆−fq (x,k ) sin(φ φ ) (30) sy/ST ⊥ − sy/p ⊥ sy/ST ⊥ S − ⊥ ∆fq (x,k )+∆−fˆq (x,k ) ≡ − sy/p ⊥ sy/ST ⊥ ∆fˆq (x,k ) = ∆fq (x,k ) (31) sz/SL ⊥ sz/SL ⊥ ∆fˆq (x,k ) = ∆fq (x,k ) cos(φ φ ). (32) sz/ST ⊥ sz/ST ⊥ S − ⊥ According to our choice the ∆fq (x,k ) introduced here are the same as in Ref. [2]. sj/ST,SL ⊥ The last line of Eqs. (22)–(25) gives the connection with the Amsterdam group notations; M is taken as the proton mass. These last relationships hold at leading twist; notice also that, when comparing with the results of the Amsterdam group, one should take into account other differences in conventions and notations. In particular: (p ) = k (33) T Amsterdam ⊥ ( zk ) = p =(P z k ) (34) − T Amsterdam ⊥ T − h ⊥ P (hˆ) = T =Pˆ . (35) Amsterdam T P T Finally, we recall some other notations widely used in the literature: 2k ∆Nf (x,k ) ∆f (x,k )=4ImF++(x,k )= ⊥ f⊥(x,k ) (36) q/p↑ ⊥ ≡ q/ST ⊥ +− ⊥ − M 1T ⊥ k ∆Nf (x,k ) ∆fq (x,k )= 2ImF+−(x,k )= ⊥ h⊥(x,k ) (37) q↑/p ⊥ ≡ sy/p ⊥ − ++ ⊥ −M 1 ⊥ 1(cid:104) (cid:105) k2 ∆fq (x,k )+∆−fq (x,k ) = F+−(x,k )=h (x,k )+ ⊥ h⊥ (x,k ) h (x,k ) (38) 2 sx/ST ⊥ sy/ST ⊥ +− ⊥ 1T ⊥ 2M2 1T ⊥ ≡ 1 ⊥ 1(cid:104) (cid:105) k2 ∆fq (x,k ) ∆−fq (x,k ) = F−+(x,k )= ⊥ h⊥ (x,k ) (39) 2 sx/ST ⊥ − sy/ST ⊥ +− ⊥ 2M2 1T ⊥ (cid:90) (cid:90) (cid:20) k2 (cid:21) ∆ q(x)=h (x)= d2k h (x,k )= d2k h (x,k )+ ⊥ h⊥ (x,k ) . (40) T 1 ⊥ 1 ⊥ ⊥ 1T ⊥ 2M2 1T ⊥ Eqs. (36), (37) and (40) refer, respectively, to the Sivers, the Boer-Mulders and the transversity distributions. B. TMD fragmentation functions The quantity Dˆλh,λ(cid:48)h (z,p ) describes the hadronization of the quark q into the observed final hadron h, λ ,λ(cid:48) ⊥ f qf qf which carries, with respect to the fragmenting quark, the light-cone momentum fraction z and the intrinsic 7 transverse momentum p . Similarly to the distribution functions, also Dˆλh,λ(cid:48)h(z,p ) can be written as the ⊥ λ ,λ(cid:48) ⊥ q q product of fragmentation amplitudes for the q h+X process: → (cid:90) Dˆλh,λ(cid:48)h =(cid:80) ˆ ˆ∗ , (41) λq,λ(cid:48)q X,λX Dλh,λX;λqDλ(cid:48)h,λX;λ(cid:48)q (cid:90) (cid:80) where the stands for a spin sum and phase space integration over all undetected particles, considered X,λX as a system X. The usual unpolarized fragmentation function D (z), i.e. the number density of hadrons h h/q resulting from the fragmentation of an unpolarized parton q and carrying a light-cone momentum fraction z, is given by D (z)= 1 (cid:88) (cid:90) d2p Dˆλh,λh(z,p ). (42) h/q 2 ⊥ λq,λq ⊥ λ ,λ q h We consider only the cases in which the final particle is either spinless (λ = 0) or its polarization is not h observed, Dh/q (z,p )=(cid:88)Dˆλh,λh(z,p ). (43) λ ,λ(cid:48) ⊥ λ ,λ(cid:48) ⊥ q q q q λ h In such a case, parity invariance reduces to two the number of independent Dˆh/q (z,p ). These, in general, λ ,λ(cid:48) ⊥ q q may depend on the azimuthal angle of the final hadron momentum P around the direction of the fragmenting h quark q, as defined in the quark q helicity frame, which we denote by ϕh (it was actually denoted as φh in q q Ref. [2]): Dˆh/q(z,p )=Dˆh/q(z,p )=D (z,p ) (44) ++ ⊥ −− ⊥ h/q ⊥ Dˆ+h/−q(z,p⊥)=D+h/−q(z,p⊥)eiϕhq (45) Dˆ−h/+q(z,p⊥)=[D+h/−q(z,p⊥)]∗ =−D+h/−q(z,p⊥)e−iϕhq . (46) In Appendix C it is shown how to express ϕh in terms of integration and external variables (defined in the q γ∗ p c.m. frame), with the result, at leading order in the (k /Q) expansion: ⊥ − (cid:20) (cid:21) P k cosϕh = T cos(φ φ ) z ⊥ (47) q p h− ⊥ − hP ⊥ T P sinϕh = T sin(φ φ ). (48) q p h− ⊥ ⊥ In Eq. (44) D (z,p ) is the unintegrated unpolarized fragmentation function. Other common notations used h/q ⊥ in the literature are: 2p ∆ND (z,p ) 2iDh/q(z,p )=2ImDh/q(z,p )= ⊥ H⊥(z,p ), (49) h/q↑ ⊥ ≡− +− ⊥ +− ⊥ zM 1 ⊥ h referred to the Collins fragmentation function. M is the mass of the produced hadron. h C. Elementary interaction The Mˆ are the helicity amplitudes for the elementary process (cid:96)q (cid:96)(cid:48)q , computed at LO in the λ(cid:96)(cid:48)λqf;λ(cid:96)λqi i → f γ∗ p c.m. frame, taking into account the quark intrinsic motion; the amplitudes are normalized so that the − unpolarized cross section, for a collinear collision, is given by dσˆ(cid:96)qi→(cid:96)(cid:48)qf = 1 1(cid:88) Mˆ 2, (50) dtˆ 16πsˆ2 4 | λ(cid:96)(cid:48)λqf;λ(cid:96)λqi| {λ} where tˆ= Q2 and sˆ=x s. − B 8 Helicity conservation for massless particles requires λ(cid:96) = λ(cid:96)(cid:48), λqi = λqf = λq, which implies that there are only two independent non-vanishing amplitudes, explicitly computed in Appendix A, with the result: (cid:20) (cid:21) 1 1 y √1 y k Mˆ1 ≡Mˆ++;++ =Mˆ−∗−;−− =eqe2 y A+e+iφ⊥ − −y A−e−iφ⊥ − 4 y− Q⊥ (51) (cid:20) (cid:21) 1 y 1 √1 y k Mˆ2 ≡Mˆ+−;+− =Mˆ−∗+;−+ =eqe2 −y A+e−iφ⊥ − y A−e+iφ⊥ − 4 y− Q⊥ , (52) where y = Q2 and x s B  (cid:115)  k2 A± =1± 1+4Q⊥2 . (53) These are exact LO results, holding at all orders in the k /Q expansion. By truncating this expansion at first ⊥ order in k /Q, one obtains much simpler expressions, which will be useful later, ⊥ (cid:20) (cid:21) 1 √1 y k Mˆ1 =Mˆ++;++ 2eqe2 e+iφ⊥ 2 − ⊥ (54) (cid:39) y − y Q (cid:20) (cid:21) (1 y) √1 y k Mˆ2 =Mˆ+−;+− 2eqe2 − e−iφ⊥ 2 − ⊥ (55) (cid:39) y − y Q · We can now assemble the expression of the different factors - each corresponding to a physical step - into Eqs. (4) or (8) to obtain the SIDIS cross section in terms of the TMDs. This can be done in several ways. The mostdirectoneisthatofperformingthehelicitysumsinEq.(4)takingintoaccountEqs.(17), (44)–(46), (49), (51) and (52). It yields: dσ(cid:96)(S(cid:96))+p(S)→(cid:96)(cid:48)hX 1 (cid:88) 1 (cid:90) z = d2k J dx dQ2dz d2P dφ 2π 16π(x s)2 ⊥ z B h T S q B h 1(cid:26) (cid:16) (cid:17) fˆ (x,k ) Mˆ 2+ Mˆ 2 D (z,p ) × 2 q/p,S ⊥ | 1| | 2| h/q ⊥ (cid:16) (cid:17) +P(cid:96)Pqfˆ (x,k ) Mˆ 2 Mˆ 2 D (z,p ) (56) z z q/p,S ⊥ | 1| −| 2| h/q ⊥ (cid:104) (cid:16) (cid:17) + Pqfˆ (x,k ) Re(Mˆ Mˆ∗)cosϕh Im(Mˆ Mˆ∗)sinϕh y q/p,S ⊥ 1 2 q − 1 2 q (cid:16) (cid:17)(cid:105) (cid:27) Pqfˆ (x,k ) Im(Mˆ Mˆ∗)cosϕh+Re(Mˆ Mˆ∗)sinϕh ∆ND (z,p ) , − x q/p,S ⊥ 1 2 q 1 2 q h/q↑ ⊥ which expresses the cross section in terms of the lepton and the quark polarization vectors, the helicity am- plitudes of the elementary interaction and either the unpolarized or the Collins fragmentation functions. The intrinsictransversemomentumoftheproducedhadron,p ,isrelatedtok andtheotherkinematicalvariables ⊥ ⊥ as shown in Eq. (28) of Ref. [34]. The exact expressions of cosϕh and sinϕh can be obtained from Eqs. (C3) q q and (C4). We now continue our computation, in this Section, at (k /Q). From Eqs. (54), (55), (47) and (48), we ⊥ O have: Mˆ 2+ Mˆ 2 = 4e2qe4 (cid:20)1+(1 y)2 4(2 y)(cid:112)1 y k⊥ cosφ (cid:21) (57) | 1| | 2| y2 − − − − Q ⊥ Mˆ 2 Mˆ 2 = 4e2qe4 (cid:20)1 (1 y)2 4y(cid:112)1 y k⊥ cosφ (cid:21) (58) | 1| −| 2| y2 − − − − Q ⊥ P 4e2e4 (cid:26) (cid:20) k (cid:21) Im(Mˆ Mˆ∗) cosϕh+Re(Mˆ Mˆ∗) sinϕh = T q (1 y) sin(φ +φ ) z ⊥ sin2φ 1 2 q 1 2 q p y2 − h ⊥ − hP ⊥ ⊥ T (cid:20) (cid:21)(cid:27) 2(cid:112)1 y(2 y)k⊥ sinφ z k⊥ sinφ (59) h h ⊥ − − − Q − P T 9 P 4e2e4 (cid:26) (cid:20) k (cid:21) Re(Mˆ Mˆ∗) cosϕh Im(Mˆ Mˆ∗) sinϕh = T q (1 y) cos(φ +φ ) z ⊥ cos2φ 1 2 q − 1 2 q p y2 − h ⊥ − hP ⊥ ⊥ T (cid:20) (cid:21)(cid:27) 2(cid:112)1 y(2 y)k⊥ cosφ z k⊥ cosφ (60) h h ⊥ − − − Q − P · T Inserting these results, together with Eqs. (22)–(25), into Eq. (56), gives, at order k /Q, the following ⊥ expression for the SIDIS cross section in the TMD factorization scheme: dσ(cid:96)(S(cid:96))+p(S)→(cid:96)(cid:48)hX = 1 (cid:88) 1 (cid:90) d2k d2p δ(2)(P z k p )4e2qe4 dx dQ2dz d2P dφ 2π 16π(x s)2 ⊥ ⊥ T − h ⊥− ⊥ y2 B h T S q B (cid:26) (cid:20) (cid:21) 1f (cid:2)1+(1 y)2(cid:3)D 1∆fq PT(1 y) cos(φ +φ ) z k⊥ cos2φ ∆ND 2 q/p − h/q− 2 sy/p p⊥ − h ⊥ − h PT ⊥ h/q↑ (cid:20) (cid:18) (cid:19) (cid:21) 2(2 y)(cid:112)1 y k⊥ f cosφ D 1∆fq PT cosφ z k⊥ cosφ ∆ND − − − Q q/p ⊥ h/q− 2 sy/p p⊥ h− h PT ⊥ h/q↑ (cid:20) (cid:18) (cid:19) 1 P k + S T(1 y)∆fq sin(φ +φ ) z ⊥ sin2φ ∆ND 2 L p⊥ − sx/SL h ⊥ − h PT ⊥ h/q↑ (cid:18) (cid:19) 2(2 y)(cid:112)1 y k⊥ PT ∆fq sinφ z k⊥ sinφ ∆ND − − − Q p⊥ sx/SL h− h PT ⊥ h/q↑ (cid:18) (cid:19)(cid:21) +P(cid:96) (cid:2)1 (1 y)2(cid:3)∆fq D 4y(cid:112)1 y k⊥ ∆fq cosφ D z − − sz/SL h/q− − Q sz/SL ⊥ h/q (cid:20) +1S 1(cid:2)1+(1 y)2(cid:3)∆f sin(φ φ )D 2 T 2 − q/ST ⊥− S h/q +P(cid:96)(cid:2)1 (1 y)2(cid:3)∆fq cos(φ φ )D z − − sz/ST ⊥− S h/q P(cid:96)2y(cid:112)1 y k⊥ ∆fq (cid:16)cosφ +cos(2φ φ )(cid:17)D − z − Q sz/ST S ⊥− S h/q P (cid:16) k (cid:17) + T (1 y)(∆fq +∆−fq ) sin(φ +φ ) z ⊥ sin(φ +φ ) ∆ND 2p⊥ − sx/ST sy/ST h S − h PT ⊥ S h/q↑ P (cid:16) k (cid:17) + T (1 y)(∆fq ∆−fq ) sin(φ +2φ φ ) z ⊥ sin(3φ φ ) ∆ND 2p⊥ − sx/ST − sy/ST h ⊥− S − hPT ⊥− S h/q↑ PT (2 y)(cid:112)1 y k⊥(∆fq +∆−fq )(cid:16)sin(φ φ +φ ) z k⊥ sinφ (cid:17)∆ND −p⊥ − − Q sx/ST sy/ST h− ⊥ S − h PT S h/q↑ PT (2 y)(cid:112)1 y k⊥(∆fq ∆−fq )(cid:16)sin(φ +φ φ ) z k⊥ sin(2φ φ )(cid:17)∆ND −p⊥ − − Q sx/ST − sy/ST h ⊥− S − h PT ⊥− S h/q↑ +(2 y)(cid:112)1 y k⊥ ∆f (cid:16)sinφ sin(2φ φ )(cid:17)D (cid:21)(cid:27). (61) − − Q q/ST S − ⊥− S h/q The first three terms of Eq. (61) correspond to the contribution of the unpolarized proton to the SIDIS cross section; they contain either the unpolarized or the Boer-Mulders distribution functions. The following three terms correspond to the longitudinally-polarized proton contributions; they depend either on the helicity dis- tribution∆fq [=∆q =g ]oronthe∆fq [=(k /M)h⊥ ]transversemomentumdependentdistribution. sz/SL 1 sx/SL ⊥ 1L Finally, the last eight terms correspond to the transversely-polarized proton contributions; they may originate fromtheSiversfunction,from∆fq [=(k /M)g⊥ ],andfromthetransversitydistributionfunctions,related sz/ST ⊥ 1T to the combinations (∆fq ∆−fq ) as shown in Eqs. (38) and (39). The partonic distributions couple sx/ST ± sy/ST eithertotheunpolarizedortotheCollinsfragmentationfunctions,dependingonwhethertheyare,respectively, chiral even or odd. Notice that we have intentionally grouped all terms according to their phases, so that this expression can be easily compared with the analogous formulae of Ref. [22], which have the same structure. To make the comparison fully explicit, apart from converting our notation to the Amsterdam group notation, we need to extractfromtheintegrationovertheintrinsictransversemomentumk thedependenceontheazimuthalangles ⊥ φ and φ . On the basis of a simple tensorial analysis, which is described in detail in Appendices D and E, we h S 10 can recover Eqs. (4.2)-(4.19) of Ref. [22], without formulating any particular assumption on the x (z) and k ⊥ (p ) dependence of the distribution (fragmentation) functions. ⊥ In analogy with the Amsterdam notation, Ref. [22], we define the convolution on transverse momenta in the following way (cid:90) (cid:88) [wfD]= e2 d2k d2p δ(2)(P z k p )w(k ,P )f(x ,k )D(z ,p ) . (62) C q ⊥ ⊥ T − h ⊥− ⊥ ⊥ T B ⊥ h ⊥ q Notice that this definition differs from Eq. (41) of Ref. [22] by a factor x and for the definition of the parton B momenta, see Eqs. (33)–(35). The convolutions on intrinsic transverse momenta in the single terms of Eq. (61) can in fact be written as: (cid:90) (cid:88) F = e2 d2k f D = [f D ] (63) UU q ⊥ q/p h/q C 1 1 q (cid:90) (cid:20) (cid:21) cos2φ Fcos2φh = (cid:88)e2 d2k ∆fq PT cos(φ +φ ) z k⊥ cos2φ ∆ND h UU − q ⊥ sy/p2p⊥ h ⊥ − hPT ⊥ h/q↑ q (cid:34) (cid:35) (P k ) 2z (Pˆ k )2+z k2 = cos2φ T · ⊥ − h T · ⊥ h ⊥h⊥H⊥ (64) h C z M M 1 1 h h cosφ Fcosφh = 2(cid:88)e2 (cid:90) d2k k⊥(cid:110)cosφ f D h UU − q ⊥ Q ⊥ q/p h/q q P (cid:20) k (cid:21) (cid:111) T cosφ z ⊥ cosφ ∆fq ∆ND − 2p⊥ h− hPT ⊥ sy/p h/q↑  (cid:16) (cid:17)  (cid:18) (cid:19) k2 P z Pˆ k = cosφh −Q2 C(PˆT ·k⊥)f1D1+ ⊥ Tz−MhMT · ⊥ h⊥1 H1⊥ (65) h h (cid:90) (cid:18) (cid:19) sin2φ Fsin2φh = (cid:88)e2 d2k PT ∆fq sin(φ +φ ) z k⊥ sin2φ ∆ND h UL q ⊥ 2p⊥ sx/SL h ⊥ − hPT ⊥ h/q↑ q (cid:34) (cid:35) (P k ) 2z (Pˆ k )2+z k2 = sin2φ T · ⊥ − h T · ⊥ h ⊥ h⊥ H⊥ (66) h C z M M 1L 1 h h (cid:90) (cid:18) (cid:19) sinφ Fsinφh = 2(cid:88)e2 d2k k⊥ PT ∆fq sinφ z k⊥ sinφ ∆ND h UL − q ⊥ Q 2p⊥ sx/SL h− hPT ⊥ h/q↑ q  (cid:16) (cid:17)  (cid:18) (cid:19) k2 P z (Pˆ k ) = sinφh −Q2 C ⊥ Tz−Mh MT · ⊥ h⊥1LH1⊥ (67) h h sinφ Fsinφh = 0 at leading twist (68) h LU (cid:90) (cid:88) F = e2 d2k ∆fq D = [g D ] (69) LL q ⊥ sz/SL h/q C 1L 1 q (cid:90) cosφ Fcosφh = 2(cid:88)e2 d2k k⊥∆fq cosφ D h LL − q ⊥ Q sz/SL ⊥ h/q q (cid:18) 2(cid:19) (cid:104) (cid:105) = cosφ (Pˆ k )g D (70) h T ⊥ 1L 1 −Q C · sin(φ φ )Fsin(φh−φS) = 1(cid:88)e2 (cid:90) d2k ∆f sin(φ φ )D h− S UT 2 q ⊥ q/ST ⊥− S h/q q (cid:34) (cid:35) (Pˆ k ) = sin(φ φ ) − T · ⊥ f⊥ D (71) h− S C M 1T 1 (cid:90) cos(φ φ )Fcos(φh−φS) = (cid:88)e2 d2k ∆fq cos(φ φ )D h− S LT q ⊥ sz/ST ⊥− S h/q q

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.