ebook img

Galactic Winds and Extended Lya Emission from the Host Galaxies of High Column Density QSO Absorption Systems PDF

0.66 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Galactic Winds and Extended Lya Emission from the Host Galaxies of High Column Density QSO Absorption Systems

Mon.Not.R.Astron.Soc.000,1–17(2010) Printed19January2011 (MNLATEXstylefilev2.2) Galactic Winds and Extended Lyα Emission from the Host Galaxies of High Column Density QSO Absorption Systems Luke A. Barnes1 ⋆, Martin G. Haehnelt2⋆, Edoardo Tescari3,4,5 and Matteo Viel3,4 1InstituteforAstronomy,ETHZurich,Wolfgan-Pauli-Strasse27,CH-8093,Zurich 2InstituteofAstronomyandKavliInstituteforCosmology,MadingleyRoad,Cambridge,CB30HA 3INAF-OsservatorioAstronomicodiTrieste,ViaG.B.Tiepolo11,I-34131Trieste,Italy 4INFN/NationalInstituteforNuclearPhysics,ViaValerio2,I-34127Trieste,Italy 1 5DipartimentodiFisica-SezionediAstronomia,Universita´diTrieste,ViaG.B.Tiepolo11,I-34131Trieste,Italy 1 0 2 n notyetsubmitted a J 7 ABSTRACT 1 We present 3D resonant radiative transfer simulations of the spatial and spectral dif- fusion of the Lyα radiation from a centralsource in the host galaxies of high column ] density absorption systems at z∼3. The radiative transfer simulations are based on a O suite of cosmological galaxy formation simulations which reproduce a wide range of C observedpropertiesofdampedLyαabsorptionsystems.TheLyαemissionispredicted . to be spatially extended up to severalarcsec, and the spectral width of the Lyα emis- h sionis broadenedtoseveralhundred(insomecase morethanthousand) kms−1. The p - distribution and the dynamical state of the gas in the simulated galaxies is complex, o the latter with significant contributionsfrom rotation and both in- and out-flows. The tr emergingLyα radiationextendsto gaswith columndensitiesof NHi ∼1018 cm−2 and s its spectral shape varies strongly with viewing angle. The strong dependence on the a centralHicolumndensityandtheHivelocityfieldsuggeststhattheLyαemissionwill [ also varystronglywith time ontimescalesofa few dynamicaltimesofthe centralre- 1 gion.Suchvariationswithtimeshouldbeespeciallypronouncedattimeswherethehost v galaxyundergoesamajormergerand/orstarburst.Dependingonthepre-dominanceof 9 in-orout-flowalongagivensightlineandthecentralcolumndensity,thespectrashow 1 prominentbluepeaks,redpeaksordouble-peakedprofiles.Bothspatialdistributionand 3 spectralshapeareverysensitivetodetailsofthegalacticwindimplementation.Stronger 3 galacticwindsresultinmorespatiallyextendedLyαemissionand–somewhatcounter- . 1 intuitively–anarrowerspectraldistribution. 0 1 Keywords: quasars:absorptionlines—galaxies:formation 1 : v i X 1 INTRODUCTION spondingcontinuumemissionisverycompact(Hayashinoetal. r a 2004; Dijkstra,Haiman,&Spaans 2006; Rauchetal. 2008; Searches for Lyα emission that are performed down to very Finkelsteinetal.2010). low flux levels can detect very faint objects where the Lyα emission is little affected by dust. Lyα emission has there- DeepLyαobservationsofthehigh-redshiftUniversethus fore developed into an important tool to study high-redshift havetremendouspotentialtoprobethesurroundingneutralgas galaxies(Cowie&Hu1998;Steideletal.2000;Huetal.2002; in protogalaxies, and thereby shed light on galaxy formation. Kodairaetal. 2003; Rhoadsetal. 2004; Taniguchietal. 2005; ThespectroscopicsurveyofRauchetal.(2008,hereafterR08) Kashikawaetal. 2006; Iyeetal. 2006; Stanwayetal. 2007; for low surface brightness Lyα emitters based on a 92 hour Otaetal. 2008; Ouchietal. 2010). At high redshift, or for in- longexposurewiththeESOVLTFORS2instrumenthaspushed trinsically faint objects, it is also often the only means of es- Lyα surveys to new sensitivity limitsand yielded a sample of tablishing a spectroscopic redshift. At low flux levels, Lyα 27 spatially extended (several arcsec) low-surface Lyα emit- emission due to star formation in galaxies can be spatially terswithfluxesof3×10−18ergs−1cm−1 andaspacedensityof very extended due to the resonant scattering of Lyα pho- ∼3×10−2h3 Mpc−3,similartothatofthefaintestdwarfgalax- 70 tons — even if Lyα cooling is not important and the corre- iesinthelocal Universe. Basedon theinferred incidence rate forabsorption,R08arguedthattheirsampleshouldoverlapsig- nificantlywiththeelusivehostpopulationofDampedLyαAb- ⋆ E-Mail:[email protected](LAB) sorptionSystems(DLAs). (cid:13)c 2010RAS 2 Barnes,Haehnelt,Tescari andViel Barnes&Haehnelt (2009, 2010, hereafter BH09, celeration scheme, by which photons which have frequencies BH10), building on the successful model for DLAs of close to line centre are scattered into the wings, is adapted Haehnelt,Steinmetz,&Rauch (1998, 2000), presented a to the conditions in the current cell. We have tested and sub- simple model that simultaneously accounts for the kinematic sequently adopted a prescription similar to that described in properties, column density distribution and incidence rate of Laursen,Razoumov,&Sommer-Larsen(2009).Further details DLAs and the luminosity function and the size distribution onthecodecanbefoundinBarnes(2010). of the R08 emitters in the context of the ΛCDM model for The emergent spectrum will depend on the angle structureformation.ThemodellingofBH10assumedspherical from which the system is viewed. Rather than “wait- symmetry and simple power law profiles for gas density and ing” for enough photons to emerge in a given direc- peculiar velocity. Lyα radiative transfer is, however, sensitive tion, we implement the “peeling-off” algorithm, described in tothedetailsof thespatial distributionandvelocityof neutral Yusef-Zadeh,Morris,&White (1984) and Wood&Reynolds hydrogen — inhomogeneity can provide channels for rapid (1999).Ateachscattering,theprobabilityofescapeinthedirec- spatial diffusion, while bulk velocities have a similar effect in tionoftheobserveriscalculatedandasuitableweightaddedto frequencyspace. thecorresponding2Dpixel.Thephotonsthateventuallyescape The complicated physics of galaxy formation — gravity, the system are used to calculate the angularly-averaged spec- hydrodynamics, radiative cooling, star formation, supernovae, trumandsurfacebrightness profile.Wehaverunstandardtest galacticwinds,ionisingradiation,metalanddustproduction— problemstotestour3Dcodeandfoundthattheyarereproduced has led to numerical simulations being the method of choice verywell. forinvestigatingthephysicalpropertiesofthegasfromwhich Our modelling nevertheless has a number of significant galaxies form. These simulations provide us with realistic 3D simplifications. We post-process the output of a cosmological density and velocity fields that take into account most of the simulations.Thesimulationsthereforedonottakeintoaccount relevantphysics. thedynamical effectof radiationpressure. Lyαradiationpres- HerewewillapplytheLyαradiativetransfercodedevel- sure has been proposed to provide sufficient energy to launch oped inBH10, adapted for the post-processing of 3D gasdis- anoutflowingsupershellforluminoussources(Dijkstra&Loeb tributions,totheresultsofsimulationofDLAhostgalaxiesin 2009).However,thesystemsthatweconsiderheredonothave a cosmological context by Tescarietal. (2009). We study the the necessary Lyα luminosity for radiation pressure to be dy- effect of the spatial distributionand thekinematic stateof the namicallysignificant.Oursimulationsalsoignoretheevolution neutral hydrogen on the low surface brightness spatially ex- ofthedensityandvelocityfieldoverthelighttraveltimeofthe tendedLyαemission,whichshouldbecomeanimportantprobe Lyαphotons.Wefurtheronlyconsideraverycentrallyconcen- ofkinematicsofthegasinDLAhostgalaxies. tratedemissivity.Forsimplicityweinjectphotonsatthecentre In this first paper we will focus on a detailed investiga- of mass of the halo. The photons are created with line-centre tion of a small number of such simulated systems. In Section frequency in the fluidframe of the gas. We will discuss these 2,wedescribethe(minor)changestoourLyαradiativetrans- assumptionsfurtherinSection5.1. fercodeneededtofollowphotonsthroughadensitydistribution ona3Dgrid.InSection3.1,wedescribethesetofsimulations of Tescarietal. (2009) that we have used, and in Section 3.2 3 LyαRADIATIVETRANSFERINDLAHOST we describe the three haloes that we have extracted from the GALAXIES simulationsforfurtherstudy.Section4discussesthehaloesin detail,lookingparticularlyattheeffectofgalacticwindsonthe 3.1 TheSimulationsofDLAhostgalaxiesina gaspropertiesandLyαemission.WediscussourresultsinSec- cosmologicalcontextbyTescarietal. tion5,includingtheirrelevancetoobservedpopulationsofhigh Wewillmakehereuseofthecosmologicalhydrodynamicsim- redshift Lyα emitters, including LBG’s, before presenting our ulations described in Tescarietal. (2009). These simulations conclusionsinSection6. were aimed at reproducing the physical properties of the host galaxiesofDLAsatz∼3.Thenumericalcodeisamodification of gadget-2, which isaparallel Tree-PMSPHcode (Springel 2 THE3DLyαRADIATIVETRANSFERCODE 2005). The code is extensively described in Tornatoreetal. (2007),whereitwasusedtosimulateclustersofgalaxies;see 3D Lyα cosmological radiative transfer of Lyα radiation has alsoTornatoreetal.(2010)andTescarietal.(2010).Inaddition been studied by a number of authors (Cantalupoetal. 2005; togravityandhydrodynamics,theotherphysicalprocessesthat Tasitsiomi2006;Laursen,Razoumov,&Sommer-Larsen2009; aremodelledinthesimulationare: Zhengetal.2009;Kollmeieretal.2010;Faucher-Gigue`reetal. 2010),inthecontextof,forexample,fluorescentemissionfrom • Radiativecoolingandheating,includingaUVbackground the IGM, bright Lyα emitters at z≈8, young Lyman break producedbyquasarsandgalaxies. galaxiesandLyαemissionlinkedtoradiativecooling. • Chemical evolution, using the model of Tornatoreetal. Wehavepreviouslydescribedourimplementationofa1D (2007)whichtracesthefollowingelements:H,He,C,O,Mg,S, Lyα radiative transfer algorithm in BH10. In short, Lyα pho- SiandFe.Thecontributionofmetalsisincludedinthecooling tons are created according to the emissivity profile, and then function.ThereleaseofmetalsfromTypeIaandTypeIIsuper- propagatedthroughthegas.Eachtimethephotonisscattered, novae,aswellaslow-andintermediate-massstars,isfollowed. a new frequency is calculated by assuming that the photon’s • Starformation,usingamultiphasecriterion. frequency in the scattering atom’s frame is unchanged. Thus, • AneffectivemodelfortheISM,wherebygasparticlesare the code tracks the random walk in both real and frequency treatedasmultiphaseoncetheyexceedadensitythresholdfor spacebeforethephotonescapesandisobserved.Thenewcode theformationofcoldclouds.Thesecoldcloudsaretheprecur- used here follows photons through a regular 3D grid. The ac- sorstostars.TheneutralhydrogenfractiondependsontheUV (cid:13)c 2010RAS,MNRAS000,1–17 GalacticWindsandExtended LyαEmission 3 background in the low density gas, and on the fraction fc of where vc ∝ M1/3 is the virial velocity of the halo. With this massincoldcloudsabovethedensitythreshold. choice BH09 and BH10 were able to reproduce the luminos- • Galactic winds, using two different prescriptions. An ityfunctionoftheR08emitters.Themassesofthethreehaloes energy-drivenwindmodelisimplementedintheformofafixed probetherangeofmassespredictedtocontributesignificantly velocity kick given to achosen particle, with a mass-loss rate to the incidence rate of DLAs / emitters per unit log mass proportionaltothestarformationrate.Tescarietal.(2009)also (d2N/dX/dlog M).Thecorresponding luminositiesspanthe 10 investigatedamomentum-drivenwindmodelthatmimicsasce- rangeofthoseobservedinthesurveyofR08. nario in which the radiation pressure of a starburst drives an Thephysicalpropertiesofthesehaloes(neutralhydrogen outflow.Inthismodel,thevelocitykickscaleswiththevelocity density, temperature and bulk velocity) were projected onto a dispersion of the galaxy. These wind prescriptions are admit- regular3Dgridcentredonthecentreofmassofthehalo.The tedly rather crude, and rely on phenomenological parameters cubescontainingHaloes1and2have1283cells,eachwithside that are poorly constrained either by observations or by more length3.125h−1comov.kpc,makingtheentirecube400h−1co- sophisticatedmodelling.Thisreflectsthesignificantuncertainty mov.kpcacross.ThecubecontainingHalo3has643cells,each regardingtheinfluenceofwindsongalaxyformation. also3.125h−1 comov.kpcacross,makingthewithoftheentire cube200h−1comov.kpc. Tescarietal.(2009)investigatedsimulationswithvarying WewillfirstexaminethesimulationwiththeMDWimple- box size and numerical resolution for a range of different im- mentation of galactic winds, before comparing with the other plementationsofgalacticwinds.Theychosethe“SW”(Strong simulations in later sections. Figure 1 shows the angularly- Wind)simulationwithaboxsizeof10h−1Mpcand3203 parti- averagedradialmassflowrate,projectedcolumndensityofneu- cles,withamassresolutionof3.5×105h−1M⊙astheirfiducial tral hydrogen and the Lyα surface brightness as a function of simulation. Thissimulation employed astrong(600 km s−1), radius/impactparameteraswellastheangularly-averagedspec- energy-driven windandaSalpeterstellarIMF.Lookingahead tralshapeoftheLyαemissionforthethreehalos. toafavourablecomparisonwiththeR08emittersinalatersec- TherateatwhichHimassflowsthroughasurfaceofcon- tion,wewillinsteadfocusmoreontheMomentumDrivenWind stantradiusrisshownintheupperleftpanelofFigure1,nor- (MDW)simulation,whichdiffersfromtheSWsimulationonly malisedtoamaximum|M˙|=1.Positive(negative)valuescor- inthewindimplementation.Wewillcomparetheresultsofboth respondtooutflow(inflow).ThemaximumM˙ is97,8.5and1.5 the MDW and SW simulation with two further simulations: a weak(energydriven, 100 kms−1) wind(WW)andasimula- M⊙/yr,forHalo1,2and3respectively.Notethat,fortheMDW implementationshownhere,onlyinthemostmassivehalodoes tionwithnowind(NW)whichdidnot appear inTescarietal. the windactually manage to globally reverse the gravitational (2009).Aswewillsee,theMDWandtheSWsimulationsare infall. The mass flow shows a mixture of inflow and outflow, somewhatsimilar,asaretheWWandNWsimulations. withinflowoftendominatingintheouterpartsofthehalo. The simulations of Tescarietal. (2009) reproduce most Theupper rightpanel ofFigure1showstheaveragecol- observed properties of DLAs rather well. The observed inci- umn density for a sightline passing at a given impact param- dence rate of DLAs is matched by the simulations, assuming eter from the centre of the halo. The thin dotted horizontal thathaloesbelow109h−1M⊙ donothostDLAs.Theobserved lineindicatestheminimumcolumndensityofaDLA,N = DLA columndensitydistributionisalsoreproducedsuccessfullyfor 1020.3 cm−2. As expected, the column density peaks near the theSWandMDWsimulations,whilethetotalneutralgasmass centre of the halo. The “steps” in the column density profiles in DLAs (ΩDLA) is reproduced for MDW but underpredicted ofHaloes2and3showtheinfluenceofseparateclumpsofHi by a factor of about 1.7 at z=3 in the SW simulation. The atlargeradii.Theneutralhydrogencolumndensityexceedsthe most problematic observable isthe velocity widthdistribution thresholdforaDLA,whichextendstoaradiusof3.5,1.5,and oflow-ionizationassociatedmetalabsorption.Thehighveloc- 0.5arcsec,respectively. itytail of thedistributionissignificantly underpredicted inall The lower left panel shows the (observed) angularly- simulations. The simulations do not produce enough absorp- averaged spectrum, with each curve normalised to unity. The tionsystemswithvelocitywidthgreaterthan100 kms−1.This lowerrightpanelshowsthesurfacebrightnessprofile.Thelumi- is a common problem for numerical simulations of DLA host nosityusedtonormaliseeachcurveisgiveninthelastcolumn galaxies (Pontzenetal. 2008; Razoumovetal. 2008), but see ofTable1. Hongetal. (2010) and Cen (2010) which appear to be some- The surface brightness profiles peak at the centre of the whatmoresuccessfulinthisrespect.Wewillcomebacktothis halo, and generally follow the decline of the column density pointlater. whilstbeingmuchsmoother.TheLyαemissionisscatteredto similarlylargeradiiasintheobservedemitters.Thehaloesare surrounded by low surface brightness emission which extends 3.2 Threerepresentativehaloes toradiiofseveral arcsec.Thesizeoftheemitter,asmeasured tothesurface brightness limitof theR08 (shown by thehori- Wehaveselectedthreehaloesatz=3fromthesimulationsfor zontaldottedline),isgenerallylargerthanthecross-sectionfor detailed study. Some basic properties of the haloes are sum- dampedabsorption.Themoremassivehaloesaremorespatially marisedinTable1.Thevirialvelocityandradiusarecalculated extended,whilethesmallerhaloesdisplayamorepronounced fromthemassoftheparticlesgroupedbythehalofinder—see centralpeak. Maller&Bullock (2004) for the relevant formulae. Note that Theangularly-averagedspectrumofthemostmassivehalo thepropertiesofagivenhaloforthedifferentwindmodelsimu- isfairlysymmetricwithwellseparatedblueandredpeaks.The lationsareverysimilar.ThefinalcolumnliststheLyαluminos- redpeak isslightlystronger. Thetwolow masshaloes have a ity(L ),calculatedfollowingBH09andBH10as, Lyα moreclearlydominantredandbluepeak,respectively.Increas- LLyα=1042(cid:18)100kvmc s−1(cid:19)3 ergs−1 (1) ifnregquceennctryalspcaoclue.mWnedewnisllitsyeeclienartlhyelneeaxdtssteoctmioonrethdatiffthuesiospnecin- (cid:13)c 2010RAS,MNRAS000,1–17 4 Barnes,Haehnelt,Tescari andViel Halo Wind Mass MassHi VirialVelocity VirialRadius LyαLuminosity ID Model (M⊙) (M⊙) ( kms−1) (kpc) (arcsec) (×1040ergs−1) 1 momentum(MDW) 7.70×1011 2.03×1010 206.7 77.5 9.8 882.7 strong(SW) 7.24×1011 1.38×1010 202.5 76.0 9.6 830.9 weak(WW) 8.15×1011 2.80×1010 210.7 79.0 10.0 935.3 none(NW) 8.12×1011 2.00×1010 210.4 78.9 10.0 931.5 2 MDW 1.54×1011 3.36×109 120.9 45.3 5.8 176.5 SW 1.40×1011 1.07×109 117.2 43.9 5.6 160.8 WW 1.70×1011 6.22×109 125.0 46.9 5.9 195.1 NW 1.65×1011 4.76×109 123.7 46.4 5.9 189.3 3 MDW 1.46×1010 2.74×108 55.1 20.7 2.6 16.7 SW 1.36×1010 1.30×108 53.8 20.2 2.6 15.6 WW 1.58×1010 8.10×108 56.6 21.2 2.7 18.2 NW 1.57×1010 9.12×108 56.5 21.2 2.7 18.1 Table1.CharacteristicpropertiesofthreeDMhaloesofDLAhostgalaxies. 1 Halo1 2] − Halo2 m Halo3 [c 20 /y[Mr]sun 0.05 mndensity 18 dt u /M Col d -0.5 HI 16 g o l -1 14 0 2 4 6 8 0 2 4 6 8 radius[arcsec] impactparameter[arcsec] -16 2 ] 2c −1/[kms] 1.5 2/marcse -18 3×P10v 1 //S[ergsc -20 g 0.5 lo -22 0 -1000 -500 0 500 1000 0 2 4 6 8 vph[km/s] impactparameter[arcsec] Figure1.Theangularly-averaged properties ofthethreeDLAhostgalaxiesdescribedinTable1,fortheMDWwindmodel.Theupperleftpanel showsdM/dt,whichistherateatwhichHimassisflowingthroughasurfaceofconstantradiusr,normalisedtoamaximum|M˙|=1.Themaximum M˙ (bywhichthecurvearescaled)are97,8.5and1.5M⊙/yr,forHalo1,2and3respectively.Theupperrightpanelshowstheaveragecolumndensity forasightlinepassingatagivenimpactparameterfromthecentreofthehalo.Thethindottedhorizontallineindicatestheminimumcolumndensity ofaDLA,NDLA=1020.3cm−2.Thelowerleftpanelshowsthe(observed)angularly-averagedspectrum,withtheareaundereachcurvenormalisedto unity.Thelowerrightpanelshowsthesurfacebrightnessprofile;thehorizontallineshowsthesurfacebrightnesslimitoftheR08survey.Theassumed totalLyαluminosities(whichnormaliseeachcurve)aregiveninthelastcolumnofTable1. tralshapevariesstronglybetweendifferentdirectionsandthat 4 THEEFFECTOFGALACTICWINDSONLyα thereisacorrelationbetweenthedominanceofinflow(outflow) EMISSION andthedominationoftheblue(red)peakinthespectrum.We willleaveamoredetaileddiscussionuntilthen. Wewill now discuss the simulations of the intermediatemass halo(ourfiducialHalo2)inmoredetailwithparticularempha- sisontheeffectofgalacticwindsonthephysicalpropertiesof the gas in the halo and on the emission properties of the Lyα emission.Halo2hasamassofabout1.5×1010M⊙andavirial (cid:13)c 2010RAS,MNRAS000,1–17 GalacticWindsandExtended LyαEmission 5 velocity of about 120 km s−1. Itsproperties aresimilar tothe dM/dt=4πr2vHi(r)ρaHvi(r),whereρaHvi istheaverageneutralhy- brightest of theemittersintheR08 survey, and itsmasscoin- drogendensityatradiusr.Noticethattheflowsintheinnermost cides withthe peak of our preferred model for theDLAmass partsofthehalo,whilebeingofmodestvelocity,carrythemost function(d2N/dX/dlog M)fromBH10andthusshouldrep- significantamountsofmass. 10 resentatypicalDLAhostgalaxy. Comparison of vHi(r), vV and dM/dt is quite instructive. Therelativesmoothnessofv indicatesthatasmallnumberof V denseclumpsdominatethemassflow,moving througharela- 4.1 Angularly-AveragedProperties tivelysmoothbackgroundwhosekinematicsareshapedbythe winds. For example, the MDW model (solid black) shows a Angularly-averaged properties of simulation based on Halo 2 ∼100 km s−1 inflowing clump at 2 arcsec that carries a sig- foreachofthewindmodelsareshowninFigure2.Thelegend nificantamountofmass.However,v isstillpositive,showing V inthetoprightpanelshowstheline-stylesofthedifferentwind thatthewindisfillingtheremainingspaceandoutflowingre- models gardless.Lyαphotonsescapingalonglowcolumndensitypaths ThetopleftpanelshowstheHinumberdensityasfunction willgenerallynot“see”suchdenseclumps. ofradius.Notethattheaveragecosmicnumber densityofhy- The panel to the right shows the rotation velocity of the drogenatz≈3is1.2×10−5cm−3,whilethevolume-averaged gas,averagedovercylindricalshells,whichisapproximatedas neutralfractionofhydrogenintheIGMis.10−5.Asmallde- follows.Ifthegasinthehalowereinarotatingdiskwitharota- crease inthe number density at small radii isthe result of the tionvelocitydependingonlyonthecylindricalradius,thenthe centre of mass of the neutral hydrogen being offset from the angular momentum within a cylindrical shell R,R+dR would centre of mass of the halo. The number density profile shows be, theeffectofseveralclumpsofHi.Themostdramaticdifference between the models is in the centre of the haloes, where the |Lrot|=vrot(R)RXmi, (3) presence of astrong windcanreduce thegasdensity substan- i tially. wherethesumisoverthecellsinsidetheshell.Thusforeach Thetoprightpanelshowstheaveragedcolumndensityfor R,wedividetheangularmomentumbyRtimesthemassinthe a sightline passing at a given impact parameter from the cen- shell.AswithvHi(r),thisdistributionisfarfromsmoothdueto tre of the halo. The thin dotted horizontal line indicates the theinfluenceofdenseclumpsofgas.Thevelocitydropsfrom minimum column density of a DLA. The column density isa ∼150 kms−1 to∼50 kms−1 aswemoveoutwards.Theve- decreasingfunctionofradius,withsightlinescontainingDLAs locityisgenerallyhigherintheweaker windmodels,possibly probingthecentreofthehalo.The“clumps”noticeableinthe indicatingthatthestrongerwindsdisruptordelaythesettlingof number densitydistribution, causestepsintheangle-averaged gasintoadisk.Wecanalsocalculatethefractionofthekinetic columndensitydistributionandcontributetotheLyman-Limit energyateachradiuswhichisintheformofrotationalkinetic Systemcross-section. energy. This quantity peaks at ∼0.7 at the centre of the halo, Thenextpanel(row2,column1)showsthe(Hi)density- decreasing to∼0.2inthe outer parts. Thisshows that theap- weightedradialvelocityprofile, proximations wemade incalculating vrot are most accurate at thecentreofthehalo,asexpected. vHi(r)≡hub·ˆri≡ R02πRR002ππR(0uπb·ρˆrH)i(ρrH,θi(,rφ,)θs,φin)θsidnθθddφθdφ. (2) tsrpuemct.TruohmfetbahosettaoLmfyuαnleceftmitopinsasnoieoflnt.shheTohrweessttt-hhfirecakmanebgluvalceaklrolcyci-utayrvveoerffassgheeotdw(vssptehc≡e- ph Theplotrevealsthepresenceofamixtureofinflow(vrnegative) c∆λ/λ0). All curves are normalised to have unit area. The andoutflow,withtheinnermostpartsofthehalotendingtoshow weaker wind models show a classic double-peaked profile outflowforthestrongerwinds(SWandMDW),andinflowfor (Harrington 1973; Neufeld 1990; see also Urbaniak&Wolfe theweakerwinds(WWandNW). 1981),whilethestrongerwindmodelsshowamoreprominent Thetypicalvelocitiesofinfloware50-100 kms−1,with redpeak,indicatingtheinfluenceoftheoutflowinggas. the largest velocities being comparable to the virial velocity. Wealsoseethatthestrongergalacticwinds—somewhat Thereisageneraltrendtowardlowervelocitiesinthecentreof counterintuitively — result inanarrower spectral distribution. thehalo.Thevelocityprofileis,however,farfromsmooth.The This indicates that it is the high central column density, more total velocity of the gas (v= h|u |2i), by comparison, varies thanthehigheroutergasvelocities,thatarethedominantfactor b between100-150 kms−1forthpestrongerwinds,and140-200 inestablishingthetypicalescapefrequencyofLyαphotons. kms−1 fortheweakerwinds,withaveryslightpreferencefor Thethickblackcurveinthebottomrightpanelshowsthe largervelocitiesatthecentreofthehalo. angularly-averaged surface brightness profile. The luminosity The panel to the right shows the volume-weighted ra- thatnormaliseseachcurveisgiveninthelastcolumnofTable1. dial velocity profile (vV). For the diffusion of Lyα photons, Theverticallineindicatesthevirialradiusofthehalo,whilethe volume-weighted velocities are actually more relevant than horizontal lineshowsthesurfacebrightness limitofR08.The density/mass-weighted velocities as the photons tend to find surfacebrightness profileshowsacentralpeak withatailthat low-density paths of escape, and so the velocity in the under- flattensoutasthecolumndensitydoesthesame.Theemission denseregionsisasimportantormoreimportantasthatinhigh- is more extended in the stronger wind models. There are two density regions. We see a clear difference in v between the reasons for this. Thelower central column density means that V strongerandweakerwindmodels.Thestrongwindmodelshave photonsareingeneralclosertolinecentrewhentheyencounter outflowsthatdominatethekinematicsofthegasalongmostof theouterpartsofthehalo,wherehigherwindvelocitiescanshift theescapepathsofthephotons.Forweakwindmodels,inflow thephotonssufficientlybacktowardslinecentretobescattered dominates.Thenextpanel(row3,column1)showsdM/dtfor byratherlowcolumndensitygas.Comparingtheradialprofile Hi, which isrelated to the density-weighted radial velocity as ofHicolumndensityandLyαsurfacebrightnessforthediffer- (cid:13)c 2010RAS,MNRAS000,1–17 6 Barnes,Haehnelt,Tescari andViel 0 −3m] −2m] 22 MDW replacement[cs [c 21 SW density -2 density 20 WNWW mber -4 umn 19 nu Col HI HI 18 log -6 log 17 16 0 2 4 6 8 0 2 4 6 8 radius[arcsec] impactparameter[arcsec] /ms] 100 /ms] 250 k [ k 200 wgt.) 50 gt.)[ w 150 (dens. 0 (vol. 100 velocity -50 velocity 50 radial -100 radial 0 -150 -50 0 2 4 6 8 0 2 4 6 8 radius[arcsec] radius[arcsec] 200 5 s] r] 0 /m 150 /y [k Msun -5 city dt[ -10 velo 100 /M n o d -15 ati -20 rot 50 -25 0 0 2 4 6 8 0 2 4 6 8 radius[arcsec] radius[arcsec] -16 2 ] 2c −1/ms] 1.5 2/arcse -18 k m [ c 3×10 1 //ergs Pv S[ -20 g o 0.5 l 0 -22 -1000 0 1000 0 2 4 6 8 vph[km/s] impactparameter[arcsec] Figure2.Angularly-averaged propertiesofHalo2,forthewindprescriptionsasshowninthelegend(MDW:momentumdrivenwind,SW:strong wind,WW:weakwind,NW:nowind).ThevelocitiesanddM/dtareallforHi.Verticaldashedlinesindicatethevirialradius.Foradetaileddiscussion, seeSection4.1. (cid:13)c 2010RAS,MNRAS000,1–17 GalacticWindsandExtended LyαEmission 7 entwindmodelssuggestthatthisismoreimportantthanthethe hydrogen distribution. Inparticular, the S contour encloses a 0 Hicolumndensityintheouterpartsofthehalo. much larger area than the DLA contour both by being larger Wehavenotplottedthe(Hiweighted)temperatureprofile, andalsobyhavingfewer“holes”.TheLyαphotonsarescattered whichforallmodelsdecreasesgentlywithradiusfromaround effectivelyouttolargeradiiandlowercolumndensities.TheS 0 105K to 104.3 K.The central temperature isslightlyhigher in contourinthesurfacebrightnessisroughlysimilartothatofthe theweakwindmodels. NHi∼1018cm−2contour2intheHicolumndensityplot. We can now compare the properties of the haloes to the OurcentralLyαsourceisabletoilluminatecloudsofneu- modellingofBH10.Unlikeinourpreviousanalyticalmodelling tralgasthataredetachedfromthecentralclump.TheLyαpho- the column density in our simulations here has a pronounced tonstendtofindlow-densitypathsofescape.Forexample,the coreatverysmallradii.Atlargerradiitheradialprofileofthe photons face a column density of Hi which is on average ∼7 Hi column density in the MDW model appears rather similar times larger in the −z direction than in the +z direction, and even though much larger samples of simulated haloes would the corresponding observed Lyα flux is on average ∼3 times be needed to make a more meaningful comparison; we refer smaller.Forthe xdirection,asshownintheFigure,thediffer- thereadertoTescarietal.(2009)foraquantitativecomparison ence in the observed flux between two opposite viewpoints is withtheobservedDLAcolumndensitydistribution.Theradial around70%. velocityprofilesinourfullcosmologicalsimulationsareobvi- The bottom four panels are 2D spectra, calculated us- ously much morecomplex than thesimplepower lawprofiles ing a “slit” placed along either the y- or z-direction (labelled wehadassumedinourpreviouswork,althoughthereisaslight in the vertical axis) and with a width of 2 arcsec, the same trend toward lower velocities at the centre of the halo. There width as used in Rauchetal. (2008). The contour shows the wasobviouslyalsonopossibilitytoaccountforthe3Deffects spectral intensity limit of the R08 survey, Sλ ≈ 4×10−20 ofanyclumpinginourprevious1Dmodelling. erg/s/cm2/arcsec2/Å. The2D spectrashow adominant bluepeak inthe−xdi- rection, and the opposite trend when viewed from+x;see the 4.2 2DViewsoftheHalo discussionofFigure4below.Asexpected,theseparationofthe Figure3showsmapsoftheHicolumndensitydistributionand peaksislargestwherethecolumndensityislargest.Thedom- Lyαsurfacebrightnessand2DspectraforHalo2fortheMDW inanceofonepeakovertheothertendstoincreaseaswelook modellookingalongthex-axisfrom−∞(left)and+∞(right). awayfromthecentreofthehalo.Thisismostlikelybecausethe probabilityofaphotonscatteringintheouterpartsofthehalo Notethatsomeoftheaxeshavebeenflippedsothattheleftand isquitesensitivetothevelocityofthegas. right columns have their axes pointing in the same direction. Thedashedblackcurveshowsthevirialradius. We illustrate the dependence of the emergent spectrum The top panels show the Hi column density along a line and surface brightness profile on the viewing angle in Figure ofsightparalleltothe x-axis.Eachpanelcorrespondstoaline 4,whichalsoshowstheangularly-averaged value(thickblack line).Thethincolouredlinesshowtheemergentspectrum(cal- ofsightthatpassesthroughthenearerhalfofthebox.Inother culated by collapsing the slit along its spatial direction, or by words,thecoloursinthelegendtotherightofeachFigurerep- resent the column density of neutral hydrogen that thephoton averagingoverthe2Dimage) for6differentviewpointsalong the principal axes. Remember that the observer sees only one (emittedatthecentreofthehalo) would havetopassthrough ofthesespectra-theangularly-averagedquantitiesarenotob- ifitweretoreachtheobserverdirectlywithoutanyscattering. The solid line in the top two panels is a contour representing servable.Thespectrashowsignificantvariations,bothinwhich N =1020.3 cm−2,calculatedforsightlinespassingthrough peakdominatesandintotalamountoflightobserved.Thesep- DLA arationofthepeaksshowsrelativelylittlevariationandthesur- theentirebox;itisthusthesameintheleftandrighttoppanels. Asightlinepassingthroughtheregioninsidethecontourwould facebrightnessprofilesareverysimilar,especiallyintheouter partsofthehalo. encounteraDLA. Thecolumn density distributionreflectstheirregular dis- tributionofgas,withamixtureofthinfilamentsandrelatively isolated clumps of neutral hydrogen. The differences between 4.3 Haloes1and3 thepanels show theasymmetry inthedistributionof gas.The Theangularly-averagedpropertiesofHalo1areshowninFig- cross-sectionfordampedabsorptioniscomposedofalargecen- ure5.Thepanelsshowthevolume-averagedradialvelocitypro- tralclumpaccompanied byanumberofisolatedclumps,scat- file, projected column density of neutral hydrogen, the emer- teredaroundthehalo.Thecolumndensityofindividualclumps of neutral hydrogen drops rapidly below ∼1017 cm−2, due to gentLyαspectrumandtheLyαsurfacebrightnessasafunction ofradius/impactparameter.Thefourdifferentwindmodelsare theeffectoftheionisingUVbackgroundonparticlesbelowthe shownoneachplot. ‘coldcloud’threshold. Theradialvelocityprofileshowstheeffectoftheoutflow- The next two panels show an image of the halo that is ing winds in the low density gas. The winds provide escape coloured according to thesurface brightness of theLyα emis- sion, calculated1 assuming the luminosity as described pre- pathsfilledwithgasthatisoutflowingat∼100−150 kms−1, viously and given in Table 1. The solid contour represents the surface brightness limit of the R08 survey, S = 10−19 0 erg/s/cm2/arcsec2. 2 Varying between ∼ 1017−1019 cm−2. Note that this is not the Thesurface brightness maps show that theLyα emission same as the mean integrated column density along the final escape generallytracesbutislessclumpythantheunderlyingneutral flight of the photon, which we have also calculated explicitly us- ing our code and which can be approximated analytically by Nesc≈ 1020cm−2(vpeak/500kms−1)2,wherevpeakisthepeakoftheemission 1 Seeequation(20)ofLaursen,Razoumov,&Sommer-Larsen(2009). spectrum. (cid:13)c 2010RAS,MNRAS000,1–17 8 Barnes,Haehnelt,Tescari andViel Viewpoint:x=-∞ Viewpoint:x=+∞ 23 23 8 8 22 22 6 6 21 21 4 20 ] 4 20 ] 2 2 − − arcsec] 02 1189 N[cmHI arcsec] 02 1189 N[cmHI [ [ z 17 g z 17 g -2 lo -2 lo 16 16 -4 -4 15 15 -6 14 -6 14 -8 13 -8 13 8 -8 -6 -4 -2 0 2 4 6 8 8 -8 -6 -4 -2 0 2 4 6 8 y[arcsec] -16 y[arcsec] -16 6 6 ] ] -172c -172c 4 cse 4 cse z[arcsec] -022 ---2110982///[ergscmar z[arcsec] -022 ---2110982///[ergscmar S S -4 -21 og -4 -21 og l l -6 -22 -6 -22 -8 -23 -8 -23 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 y[arcsec] y[arcsec] -17 -17 8 8 6 -18 Å] 6 -18 Å] 4 -192/ec 4 -192/ec cs cs sec] 2 -202/mar sec] 2 -202/mar y[arc -20 --2221 //[ergsc y[arc -20 --2221 //[ergsc λ λ S S -4 -23 g -4 -23 g o o l l -6 -24 -6 -24 -8 -25 -8 -25 8 -1500-1000-500 0 500 10001500 -17 8 -1500-1000-500 0 500 1000 1500 -17 6 vph[km/s] -18 Å] 6 vph[km/s] -18 Å] 4 -192/ec 4 -192/ec cs cs sec] 2 -202/mar sec] 2 -202/mar z[arc -20 --2221//[ergsc z[arc -20 --2221//[ergsc λ λ S S -4 -23 g -4 -23 g o o l l -6 -24 -6 -24 -8 -25 -8 -25 -1500-1000-500 0 500 10001500 -1500-1000-500 0 500 1000 1500 vph[km/s] vph[km/s] Figure3.2DimagesandspectraforHalo2intheMDWsimulation.Theleft(right)columnisasviewedfromx=−∞(+∞).Theuppertwopanelsshow theHicolumndensityforthecloserhalf ofthesimulationbox.Thedashedcircleshowsthevirialradius.ThecontourrepresentsNDLA=1020.3cm−2, forasightlinepassingthroughtheentirebox.ThenexttwopanelsshowtheobservedLyαsurfacebrightness.Thecontourshowsthesurfacebrightness limitoftheR08survey,S0=10−19erg/s/cm2/arcsec2.Thelowerfourpanelsshow2Dspectra,calculatedusinga“slit”placedalongeitherthey-or z-direction(labelledintheverticalaxis)andwithawidthof2arcsec,whichisthesamewidthasinRauchetal.(2008).Thecontourshowsthespectral intensitylimitoftheR08survey(Rauch,M.,privatecommunication),whichisSλ≈4×10−20erg/s/cm2/arcsec2/Å.TheFigureisdiscussedfurtherin Section4.2. (cid:13)c 2010RAS,MNRAS000,1–17 GalacticWindsandExtended LyαEmission 9 4 Viewpoint ] -16 x=−∞ 2ec −31/0[kms] 23 yyzx====−+−+∞∞∞∞ 2///gscmarcs -18 ×1 z=+∞ [er Pv gS -20 1 lo 0 -22 -500 0 500 0 2 4 6 8 vph[km/s] impactparameter[arcsec] Figure4.Theemergentspectrum(left)andsurfacebrightnessprofile(right)forHalo2,showingtheeffectoftheviewingangle.Thethickblackline istheangularly-averagedspectrum,whichisthesameasinFigure1.Thethincolouredlinesshowtheemergentspectrum(calculatedbycollapsingthe slitalongitsspatialdirection,orbyaveragingoverthe2Dimage)forthe6differentviewpointsasshowninthelegend.TheFigureisdiscussedfurther inSection4.2 200 /kms] 150 −2m] 22 vol.wgt.)[ 10500 density[c 2201 y( mn 19 ocit 0 olu MDW alvel -50 HIC 18 SWWW radi log 17 NW -100 16 0 2 4 6 8 0 2 4 6 8 radius[arcsec] impactparameter[arcsec] 1 -16 ] 0.8 2ec −1/ms] 0.6 2/marcs -17 30[k //gsc -18 ×1 0.4 [er -19 Pv S g o 0.2 l -20 0 -21 -2000 -1000 0 1000 2000 0 2 4 6 8 vph[km/s] impactparameter[arcsec] Figure5.Angularly-averagedpropertiesofHalo1,forthewindprescriptionsshowninthelegend(upperleft),asdiscussedinSection4.3.Theupper leftpanelshowsthevolume-averagedradialvelocityprofile.TheupperrightpanelshowstheHicolumndensityasafunctionofimpactparameter. Thelowerleftpanelshowsthespectra,normalisedtounitarea.Thelowerrightpanelshowsthesurfacebrightnessdistributionasafunctionofimpact parameter. whileintheweakerwindcasestheaveragevelocityiscloserto smoother thanthatofHalo2and3,andasexpectedtheDLA zero3. crosssectionissignificantlylarger.Onceagainweseethatthe The column density profile of Halo 1 is somewhat windshaveloweredthecentralcolumndensityofthehalo. 3 Thefactthatthevolume-averagedradialvelocityisslightlypositive intheno-windsimulation ismostlikely duetothecentreofmassof baryonshaveovershotthebottomofthepotentialwell.Heatingofthe the baryons being offset from the centre of mass of the halo i.e. the hot,rarefiedISMbytheUVBmayalsocontribute. (cid:13)c 2010RAS,MNRAS000,1–17 10 Barnes,Haehnelt,Tescari andViel For Halo 1 the spectra show again the classic double- higher outflow velocitieson theLyαemission depends on ex- peaked profile with a general trend toward domination of the actlyhowthevelocitywouldbeincreased.Ifthebulkvelocity redpeakforhaloeswithstrongerwinds.Thesurfacebrightness inthecentreofthehaloisincreased,thenthiswouldaccelerate profilesarerathersimilar:theypeakatthecentre,anddecrease frequency-space diffusionresultinginamorecentrallypeaked smoothlyasthecolumndensitydrops.Theweakerwindmod- surfacebrightnessprofile.Ontheotherhand,ifthebulkveloc- elsareasexpectedmorecentrallypeakedthanthestrongerwind ityisincreasedprimarilyintheouterpartsofthehalo,thenthis models. wouldhaveaminimaleffect,perhapsshiftingphotonsbackto- Theangularly-averagedpropertiesofHalo3areshownin wardline-centreandtherebyincreasingtheapparentsizeofthe Figure6.Thegasinthestrongerwindmodelsismoreextended. emitter. Volume-weighted all of the models aredominated by infall at Wehavealsonotattemptedtomodeltheeffectsofduston smallradii,withonlytheSWmodelshowingaverymildout- theLyαradiation.DLAsareknowntobeamongthemostmetal- flowatlargeradii.TheMDWwindclearlydecreasestheaverage poorsystemsinthehighredshiftuniverse,andarethusexpected infallrate,butnottotheextentthattheinfallisreversed. to be relatively dust free(Pontzen&Pettini2009), apart from The angularly-averaged spectrum of Halo 3 is a particu- perhapsthemostmetal-richsystems(Fynboetal.2010a,b).The larlyniceillustrationofinflowinggasatthecentreofthehalo longrandomwalkofatypicalLyαphotonmakesthemparticu- producingamoreprominentbluepeakinthespectrum.Inspite larlysusceptibletoevenasmallamountofdust. ofthis,thereareviewinganglesforwhichthespectrumisdom- Anotherworrycouldbeouruseofarathercoarseregular inatedbyaredpeak—seeFigure9below.Thesurfacedensity grid. Small-scale inhomogeneities in the Hi density are, how- profile reflects the column density profile — the inner, dense ever, notlikelytohavemucheffectintheabsenceof dust.As coreresultsinacentralpeakwhoserapiddeclinegiveswayto wehaveseentheLyαemissionprofilesmoothesthemover.At ashallowerplateauaswereachtheouter,diffusebackground. most,anirregularedgeofanHiregionmayleadtoashallower Figures7,8and9showacomparisonofthe2Dmapsand surfacebrightnessprofile.Inhomogeneitiesinthebulkvelocity spectrafortheMDW(left)andWW(right)windprescriptions wouldhaveasomewhatgreatereffect,increasingthefrequency forthethreehaloes.Notethattheleftpanel ofFigure8isthe diffusion.Theseinhomogeneitiescouldbemodelledasaturbu- same as the left panel of Figure 3, and is reproduced in this lent velocity, which has a similarly small effect as raising the Figurefor convenience. Asnotedabove, theemissionismore temperature. extendedinthestrongerwindmodels,andstrongerwindspro- ThefactthatwehavesimplyinjectedLyαphotonsatthe duceanarrowerspectraldistribution(notethedifferenceinthe centreof thehaloisaratherstrongalbeitobservationally mo- horizontalscaleofthe2Dspectra). tivated assumption. Wolfe&Chen(2006)placed limitson the spatialextentofinsitustarformationinDLAs,concludingthat extended sources (radius & 3kpc, 0.4 arcsec) were very rare4. As R08 and BH09 have argued, Lyα emission in the systems 5 DISCUSSION we are considering is most likely to be powered by star for- mation, suggesting that their large observed sizes are the re- Thedependence of the spectra, inboth theline shape and the sult of radiative transfer through the surrounding neutral gas. totalobservedsurfacebrightness,ontheviewingangleisvery Ourmainfocusherehasbeenonwhethersuchascenarioisin- strikingandisobviouslyveryimportantfortheinterpretationof deedplausible.ThefactthattheHidensitypeaksverynearthe observed(spatiallyextendedlowsurfacebrightness)Lyαemit- centre of the halo means that the majority of photons should ters.Itsuggests,e.g.,thatthelargevarietyoflineshapesinthe be emitted near the centre of the halo, as we have assumed. observed sample of R08 is at least partially an orientation ef- Making the intrinsic Lyα emission more extended would ob- fect. Thedependence of surface brightness on orientation fur- viously make the observed emission also more extended. A thersuggest that the“dutycycle”thatweintroducedinBH10 more realistic Lyα emissivity would need to consider the in- mayalsobeinterpretedasanorientationeffect,withonlyacer- teraction of UV radiation from star formation with the sur- tainfractionofhaloesseenatanorientationwheretheobserved rounding Hi, as well as the possible contribution from cool- fluxexceedsthedetectionlimit.Aratherlargesampleofhaloes ing radiation (Faucher-Gigue`reetal. 2010) and fluorescence would be required to determine the probability distribution of duetotheUVbackgroundandquasars(Cantalupoetal.2005; theobservedLyαfluxfromahaloofgivenmassandintrinsic Cantalupo,Porciani,&Lilly 2008). However, fluorescence is luminosity. Asbrieflymentioned but not investigatedindetail expected to contribute little to the Lyα emission from DLAs here,thereshould,however,obviouslybealsoavariationofthe (R08), and cooling is likely to only be significant in massive spectral shapeand surface brightnessdistributionwithtimein haloes,whicharen’texpectedtohostthebulkoftheDLApop- particularwhenagalaxyundergoesamajormergerand/orstar- ulation. While cooling radiation may not account for the bulk burst. of DLA lya luminosity, it could still be a relevant factor in determining the observed size of the emitters, as the surface brightness of the cooling radiation may drop less rapidly to- 5.1 Limitationsofthemodelling wards large radii than the radiation scattered outwards from We will discuss now again in more detail some of the limita- centralstar-formingregions(Dijkstra,Haiman,&Spaans2006; tionsofourmodelling.Firstly,thefailureofthesimulationsof Dijkstra&Loeb2009;Faucher-Gigue`reetal.2010). Tescarietal. (2009) to reproduce the high velocity tail of the velocitywidthdistributionoftheassociatedmetalabsorptionin DLAssuggeststhathigheroutflowvelocities,amoreextended 4 Some extended star-formation has recently been detected spatialdistributionoftheneutralgas,and/oralessclumpyand (Rafelski,Wolfe,&Chen 2010) — as discussed previously, we morespatiallyextendeddistributionoflow-ionisationmetalsis will investigate the effect ofspatially extended Lyαsources infuture requiredfromourgalacticwindimplementations.Theeffectof work. (cid:13)c 2010RAS,MNRAS000,1–17

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.